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ON THE DJL CONJECTURE FOR ORDER 6

NAOMI SHAKED-MONDERER

(Communicated by C.-K. Li)

Abstract. In 1994 Drew, Johnson and Loewy conjectured that for n � 4 , the cp-rank of any n×n
completely positive matrices is at most �n2/4� . Recently this conjecture has been proved for
n = 5 and disproved for n � 7 , leaving the case n = 6 open. We make a step toward proving the
conjecture for n = 6 . We show that if A is a 6×6 completely positive matrix that is orthogonal
to an exceptional extremal copositive matrix, then the cp-rank of A is at most 9 .

1. Introduction

A square matrix A is completely positive if it has a factorization

A = BBT , B � 0, (1)

where B is not necessarily square. For A �= 0, the minimal number of columns in such B
is the cp-rank of A , denoted here by cpr(A) . The factorization (1) is a cp-factorization
of A ; if the number of columns of B is cpr(A) , (1) is a minimal cp-factorization.
Finding a tight upper bound on the cp-ranks of n× n completely positive matrices is
one of the basic problems in the theory of completely positive matrices.

Let CPn denote the set of all n×n completely positive matrices, and let

pn = max
A∈CPn

cpr(A).

For n � 4 it is long known that pn = n (see, e.g., [3, Theorem 3.3]). It was conjectured
by Drew, Johnson and Loewy in 1994 that pn = � n2

4 � for every n � 4 [10]. The proof
for n = 5 was finally completed only a couple of years ago [15, 18]. However, recently
this conjecture, the DJL conjecture, was disproved by Bomze, Schachinger and Ullrich,
who presented counter examples for any n � 7, and showed that asymptotically pn is
of the order n2

2 [4, 5].
A tight upper bound on the cp-rank of a rank r , r � 2, completely positive matrix

(of any order) is known [11, 1]: r(r+1)
2 − 1, see also [3, Section 3.2]. This yields the
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upper bound n(n+1)
2 −1 on pn , but this bound is not tight: in [19] it was shown that the

maximum cp-rank of an n× n completely positive matrix, n � 5, is not greater than
n(n+1)

2 −4. By [5], for n � 15

pn � n(n+1)
2

−4−n

(√
2n− 3

2

)
.

Finding an exact tight upper bound on the cp-ranks of n× n matrices of order
n � 6 is still an open problem, and it is not known whether the DJL bound holds for
n = 6. In [18] it was proved that for every n , pn is attained at a nonsingular matrix
on the boundary of CPn . Thus to prove the DJL conjecture for n = 6 it suffices to
consider the cp-ranks of (nonsingular) matrices on the boundary of the cone CP6 . In
this paper it is shown that for every matrix A on some part of the boundary of CP6

where p6 may be attained, cpr(A) � 9 = 62/4. This part of the boundary includes all
the positive nonsingular matrices on the boundary of CP6 .

To state the result explicitly, we note that CPn is a closed convex cone in the
space Sn of real n×n symmetric matrices, which is a Euclidean space with the inner
product

〈A,B〉 = trace(AB).

The dual of a cone K ⊆ Sn is defined by

K ∗ = {A ∈ Sn|〈A,B〉 � 0 for every B ∈ K },
and if K is closed and convex, its boundary consists of matrices that are orthogonal
to extremal matrices in the convex cone K ∗ . The dual of the cone CPn is the closed
convex cone COPn of copositive matrices. A matrix A∈Sn is copositive if xTAx � 0
for every nonnegative vector x ∈ Rn . Each positive semidefinite matrix is copositive,
and so is each symmetric nonnegative matrix. A matrix which is a sum of a positive
semidefinite matrix and a nonnegative matrix, called an SPN matrix, is also copositive.
A matrix which is copositive but not SPN is called exceptional. For n � 5 there exist
exceptional matrices in COPn . In COPn there are positive semidefinite extremal
matrices, nonnegative extremal matrices, and for n � 5 also exceptional extremal ma-
trices. Accordingly, for n � 5 the boundary of CPn consists of three (not mutually
disjoint) parts: singular matrices, matrices with some zero entries, and matrices orthog-
onal to exceptional extremal matrices. Since, as mentioned above, pn is attained at a
nonsingular matrix on the boundary of CPn , it is attained either at a matrix with some
zero entries, or at a matrix orthogonal to an exceptional extremal matrix in COPn .
The main result of this paper is:

THEOREM 1.1. Let A ∈ CP6 be orthogonal to an exceptional extremal matrix
M ∈ COP6 . Then cpr(A) � 9 .

To prove the theorem we rely on some known results. In particular we need re-
sults on minimal cp-factorizations and the cp-rank, some of them in terms of the zero-
nonzero pattern of the completely positive matrix, described by a graph. We also need
results on extremal copositive matrices. In Section 2 the needed known results and the
relevant concepts are recalled. Theorem 1.1 is proved in Section 3.
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2. Preliminaries

2.1. Notation and terminology

We denote by |α| the number of elements in a set α . The cone of nonnegative
vectors in Rn is denoted by Rn

+ . Vectors are denoted by bold lower case letters, and
the i th entry of a vector x is denoted by xi . A vector of all ones is denoted by 1
and a zero vector by 0 . The standard basis vectors in Rn are e1, . . . ,en . For a vector
x ∈ Rn , the support of x is suppx = {1 � i � n |xi �= 0} . The space of all m×n real
matrices is denoted by Rm×n , and the cone of nonnegative matrices in this space is
denoted by Rm×n

+ . For M ∈ Rm×m and N ∈ Rn×n , M⊕N is the direct sum of M and
N . The vector of diagonal elements of a matrix A ∈ Rn×n is denoted by diag(A) . The
matrix Ei j ∈ Sn has all entries zero except for the i j and ji entries, which are equal
to 1. The all ones matrix in Sn is denoted by Jn (J , when the order is obvious). A
±1 matrix is a matrix all of whose entries are either 1 or −1. For A ∈ Rn×n and
α ⊆ {1, . . . ,n} , A[α] denotes the principal submatrix of A on rows and columns α ,
and A(α) the submatrix induced on the rows and columns other than α . We abbreviate
A[{i1, . . . , ik}] as A[i1, . . . , ik] , and A({i1, . . . , ik}) as A(i1, . . . , ik) . For a vector x ∈ Rn

and α ⊆ {1, . . . ,n} , x[α] is the vector in R|α | consisting of the entries of x indexed
by α . If A ∈ Sn and B is obtained from A by permutation similarity and/or diagonal
congruence by a positive diagonal matrix, we say that B is in the orbit of A .

Several types of graphs associated with matrices will be used. All graphs in this
paper are undirected and simple (no multiple edges or loops). For graph terminology
and notations see [9]. We mention here only a few: The vertex set of a graph G is
referred to as V (G) , and its edge set as E(G) . For a vertex v ∈V (G) , d(v) denotes the
degree of v , i.e., the number of edges at v ; G−v denotes the subgraph of G induced on
V (G)\ {v} . For u,v ∈V (G) , the distance between u and v in G is dG(u,v) . The size
of a graph G is the number of edges in G , |E(G)| . We denote by tf(G) the size of the
largest triangle free subgraph of G . By a theorem of Mantel, the maximum number of

edges in a triangle free graph with n vertices is
⌊

n2

4

⌋
, and it is attained by the complete

bipartite graph whose independent bipartition sets are as balanced as possible. The
complete bipartite graph with independent bipartition sets of size m and k is denoted
by Km,k , and Km,1 is a star. For A ∈ Sn , the graph of A is denoted by G(A) . It is the
graph whose vertex set is {1, . . . ,n} , with i j an edge if and only if ai j �= 0.

2.2. Minimal cp-factorizations and the cp-rank

We often use the fact that when B = (b1| . . . |bp) , (1) is equivalent to

A =
p

∑
i=1

bibT
i , bi ∈ Rn

+ . (2)

The sum (2) is called a cp-decompositionof A (a minimal cp-decomposition if cpr(A) =
p ). Given a cp-decomposition of A ∈ CPn , we may sometimes replace some of the
vectors in the decomposition, without changing the total number of summands, using
the following result, which is Observation 1 in [15].
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PROPOSITION 2.1. Let b,d ∈ Rn
+ such that suppb ⊆ suppd . Then there exist

vectors b̃, d̃ ∈ Rn
+ such that b̃b̃T + d̃d̃T = bbT + ddT , supp d̃ = suppd , supp b̃ ⊆

supp d̃ , suppd\ suppb ⊆ supp b̃ , and for at least one i ∈ suppb , i /∈ supp b̃ .

In particular, if we start with a minimal cp-decomposition of A , and apply the
previous proposition repeatedly (at each step replacing a pair of vectors whose equal
supports are the largest in size), we get:

PROPOSITION 2.2. Let A ∈ CPn . Then it has a minimal cp-decomposition A =
∑p

i=1 bibT
i , bi ∈ Rn

+ , where suppbi , i = 1, . . . , p, are p different sets.

The next result is Theorem 5.6 in [16]. It implies that any cp-decomposition of a
3×3 positive completely positive matrix A can be replaced by a cp-decompositionwith
the same number of summands, where all the summands are rank 1 positive matrices.
To state it, we recall a definition from [16]: A nonnegative matrix B is called nearly
positive if there exists a sequence Q(�) of orthogonal matrices converging to I such
that Q(�)B > 0 for every � .

PROPOSITION 2.3. Let B∈Rm×3
+ . Then B is nearly positive if and only if BT B >

0 .

Next we mention results on the cp-rank involving graphs. Note that if a matrix
B is in the orbit of a symmetric matrix A ∈ Sn , then B is completely positive if and
only if A is, and cpr(B) = cpr(A) . Thus we may symmetrically scale our matrices, and
when considering graph theoretic results on the cp-rank, we may re-label the vertices
of the graph as we wish. For a graph G , we define

cpr(G) = max{cpr(A)|A is completely positive and G(A) = G}.
Basic results on the parameter cpr(G) were collected in [17]. The next proposition
appears there as Lemmas 3.2.

PROPOSITION 2.4. Let G′ be a subgraph of a graph G. Then cpr(G′) � cpr(G) .

In particular, Proposition 2.4 implies that cpr(G) � pn for every graph G on n
vertices. Another relevant result is the following, which is Lemma 3.3 in [3].

PROPOSITION 2.5. Let a graph G have a non-isolated vertex v with d(v) � 2 .
Then

cpr(G) � d(v)+ cpr(G− v).

Several known bounds on the cp-rank of a matrix were given in terms of the its
graph. One such example is the next proposition, originally Theorem 6 in [10].

PROPOSITION 2.6. Let G be a triangle free graph on n vertices. If A is a com-
pletely positive matrix with G(A) = G, then

cpr(A) = max(n, |E(G)|).
In particular, cpr(A) � n2

4 .
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A matrix A ∈ Rn×n is diagonally dominant if |aii| � ∑ j �=i |ai j| for every i =
1, . . . ,n . For the proof of the previous result it was shown in [10] that every matrix
whose graph is triangle free is in the orbit of a diagonally dominant matrix.

PROPOSITION 2.7. Let A ∈ Sn be nonnegative. Then the following are equiva-
lent:

(a) A is in the orbit of a diagonally dominant matrix.

(b) A = ∑k
i=1 bibT

i , where bi ∈ Rn
+ and |suppbi| � 2 for every i .

The following generalization of Proposition 2.6 to matrices with any graph was
proved in [2].

PROPOSITION 2.8. Let a nonnegative A ∈ Sn be in the orbit of a diagonally
dominant and nonnegative matrix. Then cpr(A) � n2

4 .

In [17] it is shown that cpr(G) � tf(G) for every connected graph G , and some
cases where equality holds are discussed. An outerplanar graph is a graph that can be
drawn in the plane so that no two edges cross, and all the vertices lie on the boundary
of the outer face. For such graphs the following was proved [17, Theorem 5.7].

PROPOSITION 2.9. Every connected outerplanar graph G on n vertices with
tf(G) � n satisfies cpr(G) = tf(G) .

A wheel is a graph which consists of a cycle and one additional vertex adjacent to
all vertices of the cycle. The wheel on n vertices is denoted by Wn . It is not outerplanar,
but it too satisfies cpr(Wn) = tf(Wn) , by [17, Theorem 5.9].

PROPOSITION 2.10. For n � 4 ,

cpr(Wn) = tf(Wn) =

⎧⎪⎨
⎪⎩

3n−3
2

n is odd

3n−4
2

n is even

2.3. Copositive matrices and their zeros

Let SPN n denote the set of n×n SPN matrices. The set SPN n is a closed
convex cone with a nonempty interior in Sn , and SPN n ⊆ COPn . In [6] it was
shown that for n � 4 this inclusion is an equality. For n � 5 the inclusion is strict. The
first example of an exceptional copositive matrix was given by A. Horn [6]; it is called
the Horn matrix:

H =

⎛
⎜⎜⎜⎜⎝

1 −1 1 1 −1
−1 1 −1 1 1

1 −1 1 −1 1
1 1 −1 1 −1

−1 1 1 −1 1

⎞
⎟⎟⎟⎟⎠ . (3)
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If a matrix B is in the orbit of A ∈ Sn , then B is SPN if and only if A is, and it
is copositive if and only if A is. Thus B is an exceptional copositive matrix if and only
if A is. Also, B is an extremal copositive matrix if and only if A is. If the diagonal
of a matrix A is positive, then there is a matrix B in the orbit of A with diagonal 1
(B = DAD , where D is the diagonal matrix with diagD =

(
1/

√
a11, . . . ,1/

√
ann

)
). We

therefore often assume that diag(A) = 1 , as in the next several propositions:

PROPOSITION 2.11. Let A ∈ COPn be an extremal copositive matrix.

(a) If aii = 0 , then ai j = 0 for every i �= j , and A(i) ∈ COPn−1 is extremal.

(b) If diag(A) = 1 , then ai j ∈ [−1,1] for every i �= j .

For A ∈ Sn let G−1(A) be the graph whose vertex set is {1, . . . ,n} and i j is an
edge of the graph if and only if ai j =−1. The next two propositions are Lemma 3.4 and
Lemma 3.5 in [20]. They characterize positive semidefinite matrices and SPN matrices
with diagonal 1 and a connected G−1(A) .

PROPOSITION 2.12. Let A ∈ PS Dn have diagA = 1 . If G−1(A) is connected,
then rankA = 1 . In particular, A is a ±1 matrix and G−1(A) is a complete bipartite
graph.

PROPOSITION 2.13. Let A ∈ Sn have diagA = 1 and ai j � −1 for every i, j ,
and let G−1(A) be connected. Then A ∈ SPN n if and only if the following two
conditions are satisfied: G−1(A) is bipartite and ai j � 1 whenever dG−1(A)(i, j) is
even.

A zero of a matrix A ∈ COPn is a nonzero vector u ∈ Rn
+ such that uT Au = 0.

We will use the following additional terms defined in [13]: The zero u is minimal if no
other zero of A has support which is strictly contained in suppu . A set σ ⊆ {1, . . . ,n}
is called a zero support of A if it is the support of a zero of A ; it is a minimal support
of A if it is the support of a minimal zero of A . The set of all zeros of A is denoted by
V A , i.e.,

V A = {u ∈ Rn
+ \ {0}|uTAu = 0}.

Zeros and minimal zeros are useful in studying extremal copositive matrices. In the
next four propositions we recall some basic facts. These are Lemma 2.4, Lemma 2.6,
Lemma 4.12 and Corollary 4.10 in [8].

PROPOSITION 2.14. Let A ∈ COPn , u ∈ V A and σ = suppu . Then the princi-
pal submatrix A[σ ] is positive semidefinite, and u[σ ] is in the nullspace of A[σ ] .

A matrix A ∈ COPn is called Ei j -irreducible if if A− δEi j /∈ COPn for every
δ > 0. A is N -irreducible if A is Ei j -irreducible for every 1 � i, j � n , and it is ˜N -
irreducible if A is Ei j -irreducible for every 1 � i �= j � n . Clearly, any exceptional
extremal copositive matrix is N -irreducible (and ˜N -irreducible), but not vice versa.
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PROPOSITION 2.15. A matrix A ∈ COPn is Ei j -irreducible if and only if there
exists a zero u ∈ V A such that (Au)i = (Au) j = 0 and ui +u j > 0 .

PROPOSITION 2.16. Let A∈COPn be ˜N -irreducible. If for some σ ⊆{1, ...,n}
with |σ |= n−1 the submatrix A[σ ] is positive semidefinite, then A is positive semidef-
inite.

Propositions 2.14 and 2.16 imply the next proposition.

PROPOSITION 2.17. Let A ∈ COPn , be ˜N -irreducible. If some u ∈ V A has
|supp(u)| � n−1 , then A is positive semidefinite.

Let A ∈ COPn be an exceptional N -irreducible matrix with diag(A) = 1 . It is
easy to see (e.g., by Proposition 2.14) that a zero of A cannot have support of size 1,
the minimal supports of A are of size at least 2 , and if a minimal support σ has two
elements, then its two positive entries are equal. Zeros and zero supports were studied
in [13], and the next proposition sums up Lemma 3.5 and Corollary 3.6 there.

PROPOSITION 2.18. Let A ∈ COPn .

(a) To every minimal support σ of A corresponds a unique, up to scalar multiplica-
tion, zero of A.

(b) Every zero of A is a nonnegative combination of minimal zeros of A. Thus every
zero support is the union of minimal supports.

We also need the following, which is Corollary 3.12 in [13].

PROPOSITION 2.19. Let A be a copositive matrix and u,v minimal zeros of A
such that |suppv\suppu|= 1 . Then every zero of A with support contained in suppu∪
suppv can be represented as a nonnegative combination of u and v . In particular, up
to multiplication by a positive scalar, the only minimal zeros with support contained in
suppu∪ suppv are u and v .

The exceptional extremal matrices in COP5 were completely characterized in
[12]. They consist of the matrices in the orbit of the Horn matrix (3), and matrices, now
called Hildebrand matrices. The Horn matrix has exactly five minimal suports: {1,2} ,
{2,3} , {3,4} , {4,5} and {1,5} . Its minimal zeros are wi = ei + ei+̂1 ∈ R5 and its
zeros are the vectors of the form swi + twi+̂1 , s,t > 0. where +̂ denotes summation
modulo 5. Every Hildebrand matrix has exactly five zeros, up to multiplication by
scalar, all of them minimal, and each with support of size 3. The minimal supports are,
up to permutations, {1,2,3} , {2,3,4} , {3,4,5} , {1,4,5} and {1,2,5} . (Note that if
B is in the orbit of A ∈ COPn , then the minimal/zero supports of B are obtained from
the minimal/zero supports of A by permutation.)

In [13] all the potential minimal support sets of extremal matrices in COP6 were
found. These are, up to permutation, the sets in Table 1.
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Table 1: Potential minimal support sets of exceptional extremal M ∈ COP6 with diag(M) > 0
No. potential minimal supports set No. potential minimal supports set
1 {1,2},{1,3},{1,4},{2,5},{3,6},{5,6} 23 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{2,4,6},{3,4,5,6}
2 {1,2},{1,3},{1,4},{2,5},{3,6},{4,5,6} 24 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{3,4,6},{3,5,6}
3 {1,2},{1,3},{1,4},{2,5},{3,5,6},{4,5,6} 25 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{3,4,6},{4,5,6}
4 {1,2},{1,3},{1,4},{2,5,6},{3,5,6},{4,5,6} 26 {1,2,3},{1,2,4},{1,3,5},{1,4,5},{2,3,6},{2,4,6}
5 {1,2},{1,3},{2,4},{3,4,5},{1,5,6},{4,5,6} 27 {1,2,3},{1,2,4},{1,3,5},{1,4,5},{2,3,6},{3,4,6}
6 {1,2},{1,3},{1,4,5},{2,4,6},{3,4,6},{4,5,6} 28 {1,2,3},{1,2,4},{1,3,5},{2,4,5},{3,4,5},{2,3,6}
7 {1,2},{1,3},{2,4,5},{3,4,5},{2,4,6},{3,4,6} 29 {1,2,3},{1,2,4},{1,3,5},{2,4,5},{2,3,6},{2,5,6}
8 {1,2},{1,3},{2,4,5},{3,4,5},{2,4,6},{3,5,6} 30 {1,2,3},{1,2,4},{1,3,5},{2,4,5},{3,4,6},{3,5,6}
9 {1,2},{3,4},{1,3,5},{2,4,6},{1,5,6},{4,5,6} 31 {1,2,3},{1,2,4},{1,3,5},{2,4,5},{1,5,6},{2,5,6}
10 {1,2},{1,3,4},{1,3,5},{2,3,6},{3,4,6},{3,5,6} 32 {1,2,3},{1,2,4},{1,3,5},{2,4,5},{1,5,6},{4,5,6}
11 {1,2},{1,3,4},{1,3,5},{1,4,6},{2,5,6},{3,5,6} 33 {1,2,3},{1,2,4},{1,3,5},{2,4,5},{3,5,6},{4,5,6}
12 {1,2},{1,3,4},{1,3,5},{1,4,6},{3,5,6},{4,5,6} 34 {1,2,3},{1,2,4},{1,3,5},{2,4,6},{3,5,6},{4,5,6}
13 {1,2},{1,3,4},{1,3,5},{2,4,6},{3,4,6},{2,5,6} 35 {1,2,3,4},{1,2,3,5},{1,2,4,6},{1,3,5,6},{2,4,5,6},{3,4,5,6}
14 {1,2},{1,3,4},{1,3,5},{2,4,6},{3,4,6},{3,5,6} 36 {1,2},{1,3},{1,4},{2,5},{4,5},{3,6},{5,6}
15 {1,2},{1,3,4},{1,3,5},{2,4,6},{3,4,6},{4,5,6} 37 {1,2},{1,3,4},{1,3,5},{1,4,6},{2,5,6},{3,5,6},{4,5,6}
16 {1,2},{1,3,4},{1,3,5},{2,4,6},{3,5,6},{4,5,6} 38 {1,2},{1,3,4},{1,3,5},{2,4,6},{3,4,6},{2,5,6},{3,5,6}
17 {1,2},{1,3,4},{2,3,5},{3,4,5},{2,4,6},{3,4,6} 39 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{1,4,6},{2,5,6},{3,5,6}
18 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{1,4,6},{1,5,6} 40 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{1,4,6},{3,5,6},{4,5,6}
19 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{1,4,6},{2,5,6} 41 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{2,4,6},{3,4,6},{3,5,6}
20 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{1,4,6},{3,5,6} 42 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{2,4,6},{3,5,6},{4,5,6}
21 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{2,4,6},{3,4,6} 43 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{1,4,6},{2,5,6},{3,5,6},{4,5,6}
22 {1,2,3},{1,2,4},{1,2,5},{1,3,6},{2,4,6},{3,5,6} 44 {1,2,3},{1,2,4},{1,3,5},{1,4,5},{2,3,6},{2,4,6},{3,5,6},{4,5,6}

A few of the sets in the table have been confirmed as minimal supports sets of
exceptional extremal matrices, and some excluded (some by Hildebrand and some by
Dickinson), but for the majority of these sets it is yet unknown whether they are indeed
minimal support sets. Since these additional results have not yet been properly pub-
lished, we will not use them, and will show that in any case, if there exists an excep-
tional extreme matrix M with one of these minimal supports set, then any A ∈ COP6

orthogonal to M has cpr(A) � 9.

3. Proof of the main result

Given a matrix M ∈ COPn with some zeros, let {σ1, . . . ,σk} be the set of its
minimal supports, and let w1, . . . ,wk be minimal zeros such that supp(wi) = σi . We
set

W = (w1| . . . |wk) ∈ Rn×k
+ (4)

and refer to W as the matrix of minimal zeros of M . It is, of course, unique only up
to permutation of the columns and multiplication on the right by a positive diagonal
matrix (Proposition 2.18(a)).

OBSERVATION 3.1. Let A ∈ CPn be orthogonal to M ∈ COPn , and let W ∈
Rn×k

+ be the matrix of minimal zeros of M . If A = BBT is a cp-factorization of A with
B ∈ Rn×m

+ , then there exists a nonnegative X ∈ Rk×m
+ such that B =WX , and for every

such X , cpr(A) � cpr(XXT ) .

Proof. By Proposition 2.18(b), every column of B is a nonnegative combination
of the columns of W , hence B = WX for some X ∈ Rk×m

+ . If YYT is a minimal cp-
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factorization of XXT with Y ∈ R
k×p
+ , then

A = BBT = (WX)(WX)T = W (XXT )WT = W (YYT )WT = (WY )(WY )T ,

where WY ∈ R
n×p
+ , implying that cpr(A) � p . �

Using the above observation, we can improve the bound in [19, Proposition 6.1]
on the cp-ranks of matrices orthogonal to a matrix M in the orbit of H⊕0, where H is
either the Horn matrix or a Hildebrand matrix.

LEMMA 3.1. Let M ∈ COP6 be an exceptional extremal matrix with a zero di-
agonal entry. If A ∈ CP6 is orthogonal to M , then cpr(A) � 7 .

Proof. By Proposition 2.11 an extremal matrix in COP6 with two zero diagonal
entries is a direct sum of a 4×4 SPN matrix and a 2×2 zero matrix, and is therefore
SPN. Since M is exceptional, it has exactly one zero entry on the diagonal. Since M
is extremal, it is in the orbit of a matrix H ⊕ 0, where H is either the Horn matrix or
a Hildebrand matrix. We may assume that M = H ⊕ 0. For every zero u of M , if
u[1,2,3,4,5] �= 0, then it is a zero of H .

If H is the Horn matrix, the minimal zeros of M are wi = ei + ei+̂1 ∈ R6 , i =
1, . . . ,5, where +̂ denotes summation modulo 5, and w6 = e6 . Let W =(w1| . . . |w6) be
the matrix of minimal zeros of M . By Observation 3.1, A = (WX)(WX)T for some X ∈
R6×k

+ , and cpr(A) � cpr(XXT ) . Since every zero of M is a nonnegative combination
of wi,wi+̂1 and w6 for some 1 � i � 5, G(XXT ) is a subgraph of the wheel W6 and,
by Proposition 2.10, cpr(XXT ) � cpr(W6) = 7.

If H is a Hildebrand matrix, then M has six minimal zeros: five zeros w1, . . . ,w5

obtained by appending a zero entry to each (minimal) zero of H , and w6 = e6 . As
above, A = (WX)(WX)T , where W is the matrix of minimal zeros of M and X ∈R6×k

+ ,
and cpr(A) � cpr(XXT ) . In this case, every zero of M is a nonnegative combination
of wi and w6 for some 1 � i � 5, so G(XXT ) is a subgraph of the star on 6 vertices.
A star is a tree and thus, by Proposition 2.6, its cp-rank is equal to the number of its
vertices. Thus cpr(XXT ) � 6. �

To find good bounds on the cp-rank for matrices orthogonal to an exceptional
extremal matrix M ∈ COP6 with positive diagonal we need also some lemmas about
the zero supports of such M . We may assume that diag(M) = 1 . Note that in this
case each zero support has at least two elements, and thus zero supports of size 2 are
necessarily minimal. The next lemma states that the union of two non-disjoint size 2
zero supports of M is also a zero support of M .

LEMMA 3.2. Let M ∈ COPn be an extremal copositive matrix with diag(M) =
1 . If {i, j} and { j,k} are minimal supports of M , then {i, j,k} is a zero support of
M , and {i,k} is not a zero support of M .



80 N. SHAKED-MONDERER

Proof. W.l.o.g. assume that i = 1, j = 2, k = 3, and let σ = {1,2,3} . Then

M[σ ] =

⎛
⎝ 1 −1 a

−1 1 −1
a −1 1

⎞
⎠ .

Since M[σ ] ∈ SPN 3 , necessarily a � 1 by Proposition 2.13, and since M is ex-
tremal, a = 1 by Proposition 2.11(b). It is then easy to see that there are zeros of M
with support σ (e.g., u = e1 +2e2 + e3 ), while {1,3} is not a zero support. �

The next lemma gives a sufficient condition for a union of three zero supports to
be a zero support.

LEMMA 3.3. Let M ∈ COPn , and let σ1,σ2,σ3 be three minimal supports of
M , such that σi ∪σ j is a zero support for every 1 � i �= j � 3 . Then σ1 ∪σ2∪σ3 is a
zero support of M .

Proof. For each 1 � i � 3 let wi be a minimal zero of M with supports σi , and let
xi be a zero of M with support σi ∪σi+1 (here 3+1 = 1). By Proposition 2.18, xi =
aiwi + biwi+1 , where ai and bi are positive. Let W = (w1|w2|w3) , X = (x1|x2|x3) ,
and

Y =

⎛
⎝a1 0 b3

b1 a2 0
0 b2 a3

⎞
⎠ .

Then X =WY . Since the matrix YYT is a 3×3 positive matrix, Proposition 2.3 implies
that there exists an orthogonal matrix Q ∈ R3×3 such that QYT > 0. Thus WYQT > 0,
and XXT = WYYTW = (WYQT )(WYQT )T . Since the columns of X are zeros of M ,
so are the columns of WQYT . Since the columns of YQT are positive, the support of
each column of WYQT is σ1∪σ2 ∪σ3 . �

Combining the last two lemmas, we get the following corollary:

COROLLARY 3.1. Let M ∈ COPn , and let σ1,σ2,σ3 be three different minimal
supports of M of size 2 , such that σi ∩σ j �= /0 for every i �= j . Then σ1 ∪σ2 ∪σ3 is a
zero support of M , of size 4 .

If M is an exceptional extremal M ∈ COP6 whose diagonal is positive, each of
its zero supports has at most 4 elements by Proposition 2.17.

LEMMA 3.4. Let M ∈ COP6 , and let σ be a zero support of M of size 4 . If σ
contains a minimal support of size 3 , then σ contains exactly two minimal supports,
and is equal to their union.

Proof. W.l.o.g. assume that σ = {1,2,3,4} and that σ1 = {1,2,3} is a minimal
support of size 3 contained in σ . Let u be a zero of M with suppu = σ . Then u is a
nonnegative combination of minimal zeros, and the union of the correspondingminimal
supports is σ . Thus there is at least one minimal support σ2 ⊆ σ such that 4∈ σ2 . But
then σ = σ1 ∪σ2 . The result now follows from Proposition 2.19. �
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LEMMA 3.5. Let M ∈COP6 be an exceptional extremal matrix with diag(M) =
1 . If a zero support σ of M contains 3 or more different minimal supports, then
|σ | = 4 and M[σ ] is a ±1 positive semidefinite matrix of rank 1 . Moreover, there are
either 3 or 4 minimal supports contained in σ , each of them of size 2 , and the union
of any two of these minimal supports is also a zero support.

Proof. By Lemma 3.4, all the minimal supports contained in σ are of size 2.
Since |σ | � 4, the three minimal supports cannot all be pairwise disjoint. Suppose σ1

and σ2 are size 2 minimal supports contained in σ such that

σ1∩σ2 �= /0. (5)

Then |σ1 ∩σ2| = 1 and |σ1 ∪σ2| = 3. By Proposition 2.19, σ1 and σ2 are the only
minimal supports contained in σ1 ∪σ2 . Therefore, a third minimal support, σ3 , satis-
fies |σ1 ∪σ2∪σ3| = 4. That is, σ = σ1∪σ2 ∪σ3 , and

σ3∩ (σ1 ∪σ2) �= /0. (6)

Since M is extremal and diag(M) = 1 , all the entries of M are in the interval [−1,1] ,
and each minimal support of size 2 contained in σ corresponds to a −1 off diagonal
entry in M[σ ] . Since σ is a zero support, the matrix M[σ ] is positive semidefinite. By
(5) and (6), G−1(M[σ ]) is connected. Proposition 2.12 then implies that M[σ ] is a ±1
positive semidefinite matrix of rank 1, and G−1(M[σ ]) is a complete bipartite graph on
4 vertices. That is, G−1(M[σ ]) is either K1,3 or K2,2 . The minimal supports contained
in σ correspond to the edges of G−1(M[σ ]) , and therefore there are either three or four
of them. If σi ∩σ j �= /0 , then σi ∪σ j is a zero support by Lemma 3.2. If σi ∩σ j = /0
then σi ∪σ j = σ , and is therefore a zero support by the initial assumption. �

For an exceptional extremal M ∈COP6 with positive diagonal we define GV (M)
to be the graph whose vertex set is the set of minimal supports of M , {σ1, . . . ,σk} , in
which σiσ j is an edge if and only if σi ∪σ j is a zero support of M . By Lemmas
3.4 and 3.5 each zero support of M corresponds to a clique on at most 4 vertices in
GV (M) , and if a zero support is represented by a clique on three or four vertices, then
the vertices of the clique are minimal supports of size 2.

Suppose A∈CP6 is orthogonal to M . Let B and X be as in Observation 3.1, B =
(b1| . . . |bm) . For every 1 � i � m , the column bi can be represented as a nonnegative
combination of �i minimal zeros, �i � 4. Thus we may choose X such that support of
its i-th column is a clique with �i elements in GV (M) . In particular,

G(XXT ) ⊆ GV (M). (7)

By Observation 3.1 and Proposition 2.4, (7) implies

cpr(A) � cpr(GV (M)). (8)

In some cases the bound in (8) can be improved.
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LEMMA 3.6. Let M ∈ COP6 be an exceptional extremal matrix with k minimal
zeros, and let A ∈ CP6 be orthogonal to M . If each zero support of M is a union of
at most two minimal supports, then

cpr(A) � max(k, tf(GV (M))).

Proof. Let B and X be as in Observation 3.1. By Lemma 3.3 and the assumptions
on M , GV (M) is a triangle free graph, and so is its subgraph G(XXT ) . By Proposition
2.6 and (7)

cpr(XXT ) � max(k, |E(G(XXT ))|) � max(k, tf(GV (M))).

The result follows from Observation 3.1. �
For most potential minimal zero sets in Table 1 we do not have enough information

on the graph GV (M) . We therefore define for each M the graph G (M) whose vertices
are the minimal zero supports σ1, . . . ,σk of M , and σiσ j is an edge if and only if
|σi ∪σ j| � 4. Then

GV (M) ⊆ G (M), (9)

and therefore

cpr(GV (M)) � cpr(G (M)) and tf(GV (M)) � tf(G (M)). (10)

We can now prove Theorem 1.1.

Proof of Theorem 1.1. Let M and A be as in the statement of the theorem. If
M has a zero diagonal entry, then by Lemma 3.1 cpr(A) � 7. So suppose M has
all diagonal entries positive. We may assume that diag(M) = 1 . The set of minimal
supports of M is one of the sets on Table 1. We will show that cpr(A) � 9 for each of
these potential minimal supports sets.

For a large number of these cases the same short proof applies:
Sets no. 6–35. Each of these (potential) minimal support sets has 6 elements, at most
two of them are supports of size 2. Let X ∈R6×m be as in Observation 3.1. By Lemma
3.4 each zero of M is a nonnegative combination of at most two minimal zeros, so the
support of each column of X is of size at most 2. Thus XXT is a 6×6 matrix which is
in the orbit of a diagonally dominant matrix (Proposition 2.7), so cpr(XXT ) � 62/4 = 9
(Proposition 2.8). By Observation 3.1, cpr(A) � 9.

We now consider the remaining sets:
Sets no. 1–2. Let σ = {2,5} . Each of the principal submatrices M[1,2,4,5] ,
M[1,2,3,5] , M[2,3,5,6] is SPN with diagonal equal to 1 , and its G−1 graph is con-
nected and not complete bipartite. By Proposition 2.12 these principal submatrices are
not positive semidefinite. Thus, by Proposition 2.18, {1,2,4,5} , {1,2,3,5} , {2,3,5,6}
are not zero supports. The possible zero supports containing σ are therefore {2,5} it-
self, {1,2,5} and {2,5,6} (in case 1) or {2,4,5,6} (in case 2). This means that the
degree of σ as a vertex of GV (M) in both cases is at most 2. By Proposition 2.5, and
since GV (M)−σ has 5 vertices,

cpr(GV (M)) � 2+ cpr(GV (M)−σ) � 2+6.



ON THE DJL CONJECTURE FOR ORDER 6 83

By (8), this implies that cpr(A) � 8.
Sets no. 3–4. Let σ = {2,5} (in Set 3) or σ = {2,5,6} (in Set 4). In case of Set 3,
M[1,2,4,5] , M[1,2,3,5] are not positive semidefinite by the same argument used for
the sets 1-2. Thus the only possible zero supports of M containing σ , other than σ
itself, are {1,2,5} , {2,3,5,6} and {2,4,5,6} in case 3, and {1,2,5,6} , {2,3,5,6}
and {2,4,5,6} in the case of Set 4.

Let w1 be a minimal zero of A supported by σ , and let w2,w3 and w4 be minimal
zeros supported by {1,2} , {3,5,6} and {4,5,6} , respectively. For a minimal cp-
factorization A = BBT with B = (b1| . . . |bm) ∈ R6×m , let

Ω1 = {i|σ ⊆ suppbi}, Ω2 = {1, . . . ,m} \Ω1.

Choose a minimal cp-factorization for which |Ω1| is minimal. Let A1 = ∑i∈Ω1
bibT

i

and A2 = ∑i∈Ω2
bibT

i . Since the cp-factorization is minimal, cpr(Ai) = |Ωi| , i = 1,2,
and

cpr(A) = cpr(A1)+ cpr(A2).

Since each bi , i ∈ Ω2 , is a nonnegative combination of minimal zeros whose sup-
port does not contain σ , applying Observation 3.1 and (8) to A2 (and observing that
GV (M)−σ has 5 vertices) yields that

cpr(A2) � cpr(GV (M)−σ) � 6.

It thus remains to show that cpr(A1) = |Ω1| � 3.
If Ω1 is a singleton, cpr(A1) = 1 and we are done. Otherwise, Ω1 has at least

two elements. In that case, no bi , i ∈ Ω1 , is supported by σ , otherwise we could apply
Proposition 2.1 to replace it and another b j , j ∈ Ω1 , by two vectors, one of which with
support that does not contain σ . This would contradict the assumption that |Ω1| is
minimal. We therefore have for every i ∈ Ω1 , σ � suppbi . Moreover, by the same
argument, in any other cp-decomposition of A1 none of the vectors is supported by
σ . By Proposition 2.2 applied to A1 we may assume that bi , i ∈ Ω1 , have different
supports. Since there are exactly three zero supports strictly containing σ , cpr(A1)� 3,
and the proof for these two cases is complete.
Set no. 5. As in the previous cases, M[1,2,3,4] is not positive semidefinite, and thus
the union of {1,2} , {1,3} and {2,4} is not a zero support. Combined with the fact
that all the other minimal supports or M are of size 3, we get by Lemma 3.4 that every
zero support of M is the union of at most two minimal zero supports.

By Lemma 3.6 and (10),

cpr(A) � max(6, tf(GV (M))) � tf(G (M)) = 8.

(To compute tf(G (M)) note that there exist two disjoint triangles in G (M) (see Fig.
1), thus at least two of this graph’s ten edges need to be removed to get a triangle
free subgraph. Omit the edges {1,2}{1,3} and {2,4}{3,4,5} to get a triangle free
subgraph of G (M) of maximal size.)
Set no. 36. In this case, each minimal zero is of size 2. Since {1,3}, {1,2}, {2,5},
{5,6} and {3,6} are minimal zeros of M(4) and diag(M(4)) = 1 , the matrix M(4) is
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{1,5,6} {4,5,6}

{1,2}

{2,4}

{3,4,5}{1,3}

Figure 1: tf(G (M)) = 8 , Case 5

a permutation of the Horn matrix. Similarly, M(2) is also a permutation of the Horn
matrix. This implies that M is a ±1-matrix, except possibly the entry m24 . By Lemma
3.2 applied to i = 2, j = 1 and k = 4, we also have m24 = 1. By Proposition 2.12,
M[2,3,5,6] , M[1,2,3,6] and M[3,4,5,6] are not positive semidefinite since their G−1

graph is not complete bipartite. Therefore the only zero supports of M containing
{3,6} are {3,6} itself, {1,3,6} and {3,5,6} .

The minimal zeros of size 2 contained in {1,2,4,5} imply that G−1(M[1,2,4,5])
is a complete bipartite graph, K2,2 , hence the submatrix M[1,2,4,5] is a ±1 rank 1
positive semidefinite matrix, and {1,2,4,5} is a zero support of size 4 (it is a union of
two disjoint minimal supports in two ways: {1,2}∪{4,5} and {1,4}∪{2,5} ). The
nullspace of the positive semidefinite matrix M[1,2,4,5] is spanned by the minimal
zeros of this submatrix,

v1 =

⎛
⎜⎜⎝

1
1
0
0

⎞
⎟⎟⎠ , v2 =

⎛
⎜⎜⎝

0
0
1
1

⎞
⎟⎟⎠ , v3 =

⎛
⎜⎜⎝

1
0
1
0

⎞
⎟⎟⎠ , v4 =

⎛
⎜⎜⎝

0
1
0
1

⎞
⎟⎟⎠ .

In fact, it is not hard to see that every zero of M[1,2,4,5] may be represented ei-
ther as a nonnegative combination of v1, v2, v3 , or as a nonnegative combination of
v1, v2, v4 . Let v1,v2,v3,v4 the vectors in R6 obtained by appending zero entries to
v1, v2, v3, v4 , so that vi[1,2,4,5] = vi . Then every zero of M whose support is con-
tained in {1,2,4,5} can be represented as a nonnegative combination of either v1,v2,v3

or v1,v2,v4 . Let W ∈ Rn×k
+ be the matrix of minimal zeros of M . Then A has a min-

imal cp-factorization A = BBT with B = WX , where X ∈ R
k×p
+ , and G(XXT ) is a

subgraph of the graph G shown in Fig. 2 (note that GV (M) contains also the edge
σ1σ2 , where σ1 = {1,4} , σ2 = {2,5} , but by the above X can be chosen so that
G(XXT ) does not include that edge). Let σ = {3,6} . Then σ is a vertex of degree 2
in G , and G −σ is an outerplanar graph with tf(G −σ) = 7 (it has 9 edges, and two
disjoint triangles). Combining Propositions 2.5 and 2.9 we get that

cpr(A) � 2+ cpr(G −σ) = 2+ tf(G −σ) = 9.
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{1,3}

{1,4}

{1,2}

{4,5}

{2,5}

{5,6}

{3,6}

Figure 2: The graph G , Case 36

Sets no. 37–42. In each of these cases there are 7 minimal supports, each of them,
except possibly one, of size 3. By Lemma 3.4, each zero support of M is a union of at
most two minimal supports. Thus Lemma 3.6 implies that cpr(A)� max(7, tf(GV (M))) .
Combined with (10) we get that

cpr(A) � max(7, tf(G (M))).

In Figs. 3–8 the graph G (M) is shown for each of these cases. In all of them tf(G (M))�
9. (In each case, tf(G )(M) turns out to be |E(G (M))| − q , where q = 1 or 2 is the
maximal number of edge-disjoint triangles in the graph.)

{1,4,6}

{4,5,6} {1,3,4}

{2,5,6} {1,2}

{3,5,6} {1,3,5}

Figure 3: Case 37, tf(G (M)) = 9

{3,5,6}

{2,5,6} {1,2}

{3,4,6}

{1,3,4}

{1,3,5}

{2,4,6}

Figure 4: Case 38, tf(G (M)) = 8

{1,4,6}

{3,5,6}

{1,3,6}

{1,2,4}

{1,2,3}

{2,5,6}

{1,2,5}

Figure 5: Case 39, tf(G (M)) = 8

{4,5,6}

{3,5,6} {1,3,6}

{1,4,6}

{1,2,5}

{1,2,3}

{1,2,4}

Figure 6: Case 40, tf(G (M)) = 8
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{3,4,6}

{1,3,6}

{2,4,6}

{3,5,6} {1,2,5}

{1,2,3}

{1,2,4}

Figure 7: Case 41, tf(G (M)) = 7

{4,5,6}

{3,5,6}

{2,4,6}

{1,3,6}

{1,2,5}

{1,2,3}

{1,2,4}

Figure 8: Case 42, tf(G (M)) = 7

Set no. 43. In this case, the matrix M has 8 minimal supports of size 3, and by Lemma
3.4, each zero support is the union of at most two minimal supports. The graph G (M)
for this case is shown in Fig. 9.

{3,5,6}

{2,5,6}

{1,2,4}{4,5,6}

{1,2,5}

{1,4,6}
{1,2,3}

{1,3,6}

Figure 9: G (M) , Case 43

For every i, j ∈ {1,2,3,5,6} , i �= j , {i, j} is a subset of one of the minimal zeros.
Thus by Proposition 2.15, the matrix M(4) is ˜N -irreducible. Thus if M(4) had a
zero support of size 4, then M(4) would be positive semidefinite by Proposition 2.17,
and then, since M itself is ˜N -irreducible, M would also be positive semidefinite by
Proposiition 2.16, contrary to the assumption that M is exceptional. Thus there are
no zero supports of M of size 4 contained in {1,2,3,5,6} . By the same argument
for M(3) , there are no zero supports of M of size 4 contained in {1,2,4,5,6} . Thus
GV (M) is actually a subgraph of the smaller graph shown in Fig. 10, which is a forest.
By (8), cpr(A) � cpr(GV (M)) � 8.
Set no. 44. In this case, the matrix M has 8 minimal supports, all of size 3. The graph
G (M) is the bipartite graph shown in Fig. 11 (the cube graph). Suppose there is a path
of length two in the inner 4-cycle, such that each of its edges represents a zero support
of size 4 of M . Then for every i, j ∈ {1,2,3,4,5} , i �= j , {i, j} is a subset of a zero
support of M , and therefore of M(6) . Thus the principal submatrix M(6) is a 5× 5

˜N -irreducible matrix with a zero support of size 4. By Proposition 2.17, M(6) is then
positive semidefinite. But then M itself is positive semidefinite by Proposition 2.16,
contrary to the fact that M is exceptional. Thus at most two parallel edges of the inner
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{3,5,6}

{2,5,6}

{1,2,4}{4,5,6}

{1,2,5}

{1,4,6}
{1,2,3}

{1,3,6}

Figure 10: A supergraph of GV (M) , Case 43

4-cycle in Fig. 11 represent zeros of size 4 of M . By the same argument for M(1) at
most two parallel edges of the outer 4-cycle represent zeros of size 4 of M . That is,
at most 8 of the 12 edges of the graph G (M) shown in Fig. 11 are edges of GV (M) .
Hence cpr(A) � cpr(GV (M)) � 8. �

{3,5,6} {4,5,6}

{2,3,6} {2,4,6}

{1,3,5} {1,4,5}

{1,2,3} {1,2,4}

Figure 11: G (M) , Case 44

Note that by Proposition 2.6 a completely positive matrix A whose graph is the
complete bipartite graph K3,3 has cpr(A) = |E(K3,3)| = 9. Since p6 is attained at a
nonsingular matrix on the boundary, this together with Theorem 1.1 implies the follow-
ing.

COROLLARY 3.2. The maximum cp-rank p6 is attained at a nonsingular matrix
A ∈ CP6 which has a zero entry.
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