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ANALYTIC MODEL OF DOUBLY COMMUTING CONTRACTIONS

T. BHATTACHARYYA, E. K. NARAYANAN AND JAYDEB SARKAR

(Communicated by R. Curto)

Abstract. An n -tuple (n � 2), T = (T1, . . . ,Tn) , of commuting bounded linear operators on a
Hilbert space H is doubly commuting if TiT ∗

j = T ∗
j Ti for all 1 � i < j � n . If in addition,

each Ti ∈C·0 , then we say that T is a doubly commuting pure tuple. In this paper we prove that
a doubly commuting pure tuple T can be dilated to a tuple of shift operators on some suitable
vector-valued Hardy space H2

DT∗ (Dn) . As a consequence of the dilation theorem, we prove that
there exists a closed subspace ST of the form

ST :=
n

∑
i=1

ΦTiH
2
ETi

(Dn),

such that H ∼= S ⊥
T and

(T1, . . . ,Tn) ∼= PS⊥
T

(Mz1 , . . . ,Mzn )|S ⊥
T

where {ETi}n
i=1 are Hilbert spaces and each ΦTi ∈ H∞

B(ETi
,DT∗ )(D

n) , 1 � i � n is either a one

variable either a one variable inner function in zi , or the zero function.

1. Introduction

Consider a complex separable Hilbert space E and a closed subspace S of
H2

E (D) that is invariant under the operator Mz on H2
E (D) , i.e.,

MzS ⊆ S .

Clearly, T = PS ⊥Mz|S ⊥ is a contraction. But, moreover, T ∗m converges to 0 in strong
operator topology as m → ∞ . This is the so called C·0 property that T inherits from
Mz .

In their pioneering work in the late 1960’s, Sz.-Nagy and Foias showed that for a
contraction to qualify as C·0 , it must be of the above form. See [18]. More precisely, if
T is a C·0 contraction on a Hilbert space H , then there is an E as above and a subspace
ST of H2

E (D) such that ST is invariant under Mz and T is unitarily equivalent to
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PST
⊥Mz|ST

⊥ . Here E is explicit. Indeed, if we denote by DT ∗ the defect operator

(I−TT ∗)1/2 , then E is nothing but DT ∗ , the closure of the range of DT ∗ . This result
was just one part of the revelation. The technique through which it was achieved was
equally revealing. They produced ST as the range of the multiplier MθT where θT is
the characteristic function of T . Thus, they gave a Beurling-Lax-Halmos form of ST .

Recall that the characteristic function of a contraction T ∈ B(H ) is defined by

θT (z) = −T +DT∗(I− zT ∗)−1zDT . (z ∈ D) (1.1)

We refer to [18] for more properties of this function.
Such an elegant characterization of all C·0 contractions obviously led to a search

for such a phenomenon in the polydisk and the Euclidean unit ball. The challenges in a
several variables situation are manifold. One first had to identify the space that would
play the role of the Hardy space. For the ball, it became clear only in the 1990’s with
works of Drury [7], Pott [13], Popescu [12] and Arveson [4] that the natural space for
this purpose on the Euclidean unit ball is the one with reproducing kernel 1

1−〈z,w〉 . It was
shown in [5] that the above mentioned result of Sz.-Nagy and Foias can be generalized
to the Euclidean unit ball.

The case of the polydisk is more interesting. There is no generalization of the
Sz.-Nagy and Foias result mentioned above to this situation. There are invariant sub-
space results though due to Ahern and Clark [1], Mandrekar [9], Rudin [14] and Izuchi,
Nakazi and Seto [10]. As far as the model theory results are concerned, there is a gen-
eral framework due to Ambrozie, Englis and Muller [2]. They do have a generalization
of the C·0 condition which although pretty natural when stated in an abstract setting, is
quite intractable after specializing to the polydisk.

This brings us to what we are doing in this note. We consider a commuting tuple
of contractions T = (T1,T2, . . . ,Tn) such that T ∗

i Tj = TjT ∗
i for i 
= j (double commuta-

tivity) and T ∗m
i → 0 strongly for each i . Under these assumptions, we give a general-

ization of the Sz.-Nagy Foias result involving characteristic functions of the individual
contractions. En route, we produce a new proof of the model.

The paper is organized as follows. In section 2, we review and collect some of the
preliminary concepts that will be useful. In section 3, we obtain a dilation result for pure
doubly commuting tuple of contractions. In section 4, we obtain a functional model for
the class of pure doubly commuting tuples of contractions. In the final section, section
5, we establish a relationship between the class of pure doubly commuting tuples of
contractions and one variable inner functions defined on the unit polydisc.

2. Preliminaries

Before we introduce a tuple of doubly commuting contractions, let us briefly re-
view the case of a single contraction T ∈ B(H ) which is C·0. Consider the vector
valued Hardy space H2

DT∗ (D). The contraction T is then realized as PQT Mz|QT , where

QT is the orthogonal complement of MθT H2
DT

(D). A key ingredient in this theory is
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the map LT : H → H2
DT∗ (D) defined by

LT h := DT∗(I− zT ∗)−1h =
∞

∑
m=0

zmDT ∗T ∗mh. (h ∈ H ). (2.1)

Then LT is an isometry and
LT T ∗ = M∗

z LT . (2.2)

Moreover,
L∗

T (Sw ⊗η) = (I−wT )−1DT ∗η , (w ∈ D,η ∈ DT ∗)

and

S(λ ,w)(I−θT (λ )θT (w)∗) = DT ∗(I−λT ∗)−1(I−wT )−1DT ∗ , (λ ,w ∈ D) (2.3)

where S is the Szego kernel on the unit disk defined by S(z,w) = (1− zw)−1 for all
z,w ∈ D .

The above two equalities and the definition of the characteristic function (1.1)
yield (cf. Lemmas 2.2 and 3.6 in [5])

L∗
T LT = IH2

DT∗
(D) −MθT M∗

θT
, (2.4)

where MθT is the multiplication operator defined by

(MθT f )(w) = θT (w) f (w)

for all f ∈ H2
DT

(D) and w ∈ D . See [5] for more details, where this is carried out for a
tuple of operators satisfying a ball type condition.

Now we can focus on n tuples of commuting operators. From this point on, we
shall assume that n is an integer and n � 2. We shall denote by Nn the set of all
multi-indices kkk := (k1, . . . ,kn) where ki ∈ N for i = 1, . . . ,n . For a multi-index kkk ∈ Nn

we denote zkkk = zk1
1 · · · zkn

n and Tkkk = Tk1
1 · · ·Tkn

n where zzz := (z1, . . . ,zn) ∈ Cn and T =
(T1, . . . ,Tn) a commuting tuple (that is, TiTj = TjTi for i, j = 1, . . . ,n ) of operators on
some Hilbert space H .

Now, we introduce the notion of isometric dilation of an n -tuple operators (cf.
[15]). Let T and V be n -tuples of operators on Hilbert spaces H and K , respec-
tively. Then V is said to be a dilation of T if there exists an isometry Π : H → K
such that

ΠT ∗
i = V ∗

i Π. (1 � i � n)

The dilation is said to be minimal if

K = span{Vkkk(ΠH ) : kkk ∈ N
n}.

Note that V on K is a dilation of T on H if and only if

Ti
∼= PQVi|Q, (1 � i � n)
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where Q is a joint (V ∗
1 , . . . ,V ∗

n )-invariant subspace of K (see Section 2 of [15] for
more details).

Let T = (T1, . . . ,Tn) be an n -tuple of doubly commuting contractions on H . That
is, T is a commuting tuple and TiT ∗

j = T ∗
j Ti for i 
= j. Define the defect operator DT ∗

by

DT ∗ :=
n

∏
i=1

DT ∗
i

=
( n

∏
i=1

(IH −TiT
∗
i )

) 1
2 .

and the defect space DT ∗ by

DT ∗ := ranDT ∗ = ran
n

∏
i=1

DT ∗
i
.

The Hardy space H2(Dn) over the unit polydisc Dn is the Hilbert space of all
holomorphic functions f on Dn such that

‖ f‖H2(Dn) :=
(

sup
0�r<1

∫
Tn

| f (rzzz)|2dθθθ
) 1

2

< ∞,

where dθθθ is the normalized Lebesgue measure on the torus Tn , the distinguished
boundary of Dn , and rzzz := (rz1, . . . ,rzn) (cf. [14], [8]). Note also that H2(Dn) is a re-
producing kernel Hilbert space [3] corresponding to the Szego kernel S : D

n×D
n →C ,

where

S(zzz,www) =
n

∏
i=1

(1− ziwi)−1. (zzz,www ∈ D
n)

We denote the Banach algebra of all bounded holomorphic functions on Dn by H∞(Dn)
equipped with the supremum norm.

Given a Hilbert space E we identify H2(Dn)⊗ E with H2
E (Dn) via the unitary

map zzzkkk ⊗ η 
→ zzzkkkη for all kkk ∈ Nn and η ∈ E . Moreover, it is easy to see that the
corresponding multiplication operators by the coordinate functions are intertwined by
this unitary map.

DEFINITION 2.1. Let T be an n -tuple (n > 1) of doubly commuting contractions
on a Hilbert space H . The tuple is said to be a doubly commuting pure tuple if Ti ∈C·0
for all 1 � i � n .

The tuple of shift operators (Mz1 , . . . ,Mzn) on H2
E (Dn) is a natural example of a

doubly commuting pure tuple of operators.

3. Isometric dilation

In this section we will be concerned with the isometric dilation of a doubly com-
muting pure tuple on a Hilbert space H . Suppose that T = (T1, . . . ,Tn) is a doubly
commuting tuple. Then

TiDT ∗
j

= DT∗
j
Ti (3.1)
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for 1 � i, j � n and i 
= j and

DT ∗
i
DT ∗

j
= DT ∗

j
DT ∗

i
. (1 � i < j � n) (3.2)

THEOREM 3.1. Let T be a doubly commuting pure tuple on H . Then the bounded
linear operator LT : H → H2

DT∗ (D
n) defined by

(LT h)(zzz) = DT ∗
n

∏
i=1

(I− ziT
∗
i )−1h

for h ∈ H and z ∈ Dn , is an isometry, and

LT T ∗
i = M∗

ziLT ,

for i = 1, . . . ,n. Moreover,

L∗
T (S(·,www)η) =

n

∏
i=1

(I−wiTi)−1DT ∗η ,

for all www ∈ Dn and η ∈ DT ∗ , and

H2
DT∗ (D

n) = span{zkkk(LTH ) : kkk ∈ N
n}.

Proof. First identify H2
DTi

(Dn) with H2(D)⊗·· ·⊗ (H2(D)⊗DTi)⊗·· ·⊗H2(D)

and H2
DT∗i

(Dn) with H2(D)⊗ ·· ·⊗ (H2(D)⊗DT∗
i
)⊗ ·· ·⊗H2(D) . Then (2.1) shows

that the operator LTi : H → H2
DT∗i

(Dn) defined by

(LTih)(zzz) = DT ∗
i
(I− ziT

∗
i )−1h, (h ∈ H , zzz ∈ D

n)

is an isometry for i = 1, . . . ,n . We now calculate

‖h‖2
H = ‖LT1h‖2

H2(Dn)⊗DT∗1
= ‖ ∑

k1∈N

zk1
1 DT∗

1
T ∗k1
1 h‖2

H2(Dn)⊗DT∗1

= ∑
k1∈N

‖DT∗
1
T ∗k1
1 h‖2

DT∗1
= ∑

k1∈N

‖LT2(DT ∗
1
T ∗k1
1 h)‖2

H2(Dn)⊗DT∗2

= ∑
k1∈N

‖ ∑
k2∈N

zk2
2 DT ∗

2
T ∗k2
2 DT ∗

1
T ∗k1
1 h‖2

H2(Dn)⊗DT∗2

= ∑
k1,k2∈N

‖DT∗
2
DT ∗

1
T ∗k1
1 T ∗k2

2 h‖2
DT∗2

= ∑
k1,k2∈N

‖DT∗
1
DT ∗

2
T ∗k1
1 T ∗k2

2 h‖2
ran(DT∗1

DT∗2
). (h ∈ H )

Continuing this process we obtain

‖h‖2
H = ∑

kkk∈Nn

‖
n

∏
i=1

DT ∗
i
T ∗kkkh‖2

ran(DT∗1 ···DT∗n ) = ∑
kkk∈Nn

‖DT∗T ∗kkkh‖2
DT∗ .
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Hence it follows that

‖h‖2
H = ‖ ∑

kkk∈Nn

zkkkDT ∗T ∗kkkh‖2
H2

DT∗ (Dn) = ‖LT h‖2
H2

DT∗ (Dn). (h ∈ H )

This implies that LT is an isometry. Moreover

LT T ∗
i h = DT∗ ∑

kkk∈Nn

zkkkT ∗(kkk+ei)h = M∗
ziDT ∗ ∑

kkk∈Nn

zkkkT ∗kkkh = M∗
ziLT h, (h∈H ,1 � i � n)

and consequently
LT T ∗

i = M∗
ziLT . (1 � i � n)

Also for all h ∈ H , η ∈ DT ∗ and www ∈ Dn , it follows that

〈L∗
T (S(·,www)η),h〉H = 〈S(·,www)η ,LTTT h〉H2

DT∗
(Dn)

= 〈 ∑
kkk∈Nn

zkkkwkkkη , ∑
lll∈Nn

zlllDT ∗T ∗lllh〉H2
DT∗

(Dn)

= ∑
kkk∈Nn

〈wkkkη ,DT ∗T ∗kkkh〉H ,

and so

〈L∗
T (S(·,www)η),h〉H = 〈

n

∏
i=1

(I−wiTi)−1DT ∗η ,h〉H .

We complete the proof by showing that the dilation (Mz1 , . . . ,Mzn) on H2
DT∗ (D

n)
is minimal, that is,

H2
DT∗ (D

n) = span{zkkk(LTH ) : kkk ∈ N
n}.

But since span{zkkk(LT H ) : kkk ∈ N
n} is a joint (Mz1 , . . . ,Mzn)-reducing closed subspace

of H2
DT∗ (D

n) , it follows from Proposition 2.2 in [17] that

span{zkkk(LTH ) : kkk ∈ N
n} = H2

E (Dn),

for some E ⊆ DT ∗ . We claim that E = DT ∗ . To see that, first we note that for
(Mz1 , . . . ,Mzn) on H2

DT∗ (D
n) we have (cf. [17])

∑
0�i1<...<il�n

(−1)lMzi1
· · ·Mzil

M∗
zi1

· · ·M∗
zil

= PDT∗ ,

where PDT∗ is the projection to the space of constant functions. We then have(
∑

0�i1<...<il�n

(−1)lMzi1
· · ·Mzil

M∗
zi1

· · ·M∗
zil

)
(LT h)= PDT∗ (LT h)= (LT h)(0). (h∈H )

On the other hand,

(LT h)(0) = (DT ∗
n

∏
i=1

(I− ziT
∗
i )−1h)(0) = DT ∗h.

It now follows that E = DT ∗ and the proof is complete. �

The following corollary is a rephrasing of the definition of isometric dilation and
Theorem 3.1.
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COROLLARY 3.2. Let T be a doubly commuting pure tuple on H . Then
(Mz1 , . . . ,Mzn) on H2

DT∗ (D
n) is the minimal isometric dilation of T , that is, there exists

a joint (M∗
z1 , . . . ,M

∗
zn)-invariant subspace Q of H2

DT∗ (D
n) such that

Ti
∼= PQMzi |Q,

for all 1 � i � n, and

H2
DT∗ (D

n) = span{zkkkQ : kkk ∈ N
n}.

The proofs of the dilation theorem obtained in this way are quite different from
any earlier proofs (cf. [11], [6], [4], [15]).

REMARK. An anonymous referee of an earlier version of this paper pointed out
that most of Theorem 3.1 can be obtained using results from [2]. But, our proofs are
essentially arguments based on the case of a single contraction (unlike that of [2]),
because the deflect operator splits into a product of individual defect operators. Hence,
our techniques demonstrate the importance of the dilation theory of a single contraction
in the dilation theory of a tuple of doubly commuting contractions.

4. Canonical model

In this section, we study the analytic structure of the backward shift invariant sub-
space Q in Corollary 3.2. We begin with a few definitions.

Let T = (T1, . . . ,Tn) be an n -tuple of commuting contractions on H . Define a
one variable multiplier ΘTi ∈ H∞

B(DTi ,DT∗i )(D
n) by

ΘTi(zzz) = θTi(zi), (zzz ∈ D
n)

where θTi is the characteristic function of the contraction Ti and i = 1, . . . ,n (see the
definition in (1.1)). Therefore, MΘTi

: H2
DTi

(Dn) → H2
DT∗i

(Dn) is a bounded linear oper-

ator defined by

(MΘTi
f )(zzz) = (ΘTi f )(zzz) = θTi(zi) f (zzz), (zzz ∈ D

n, f ∈ H2
DTi

(Dn)) (4.1)

for i = 1, . . . ,n . It is easy to see that

MΘTi
Mzj = MzjMΘTi

,

for all i, j = 1, . . . ,n , and
MΘTi

M∗
z j

= M∗
z j

MΘTi
,

for all i, j = 1, . . . ,n , and i 
= j . We have,

MΘTi
= IH2(D) ⊗·· ·⊗MθTi

⊗·· ·⊗ IH2(D),

for i = 1, . . . ,n . We have also by virtue of (2.3)

S(zi,wi)(IDT∗i
−ΘTi(zzz)ΘTi(www)∗) = DT ∗

i
(I− ziT

∗
i )−1(I−wiTi)−1DT ∗

i
, (4.2)

for i = 1, . . . ,n . Here we record the following simple observation.
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LEMMA 4.1. Let T = (T1, . . . ,Tn) be an n-tuple of bounded linear operators
on a Hilbert space H and Ti be of class C·0 for all 1 = 1, . . . ,n. Then ΘTi ∈
H∞

B(DTi ,DT∗ )(D
n) is a one variable inner function for i = 1, . . . ,n.

Now suppose that T is a doubly commuting tuple. Let zzz,www ∈ Dn . The equalities
(3.1) and (3.2) imply that

[DT ∗
i
(I−ziT

∗
i )−1(I−wiTi)−1DT ∗

i
]
( n

∏
j=1

DT ∗
j

)
=

( n

∏
j=1

DT ∗
j

)
[(I−ziT

∗
i )−1(I−wiTi)−1D2

T ∗
i
],

and hence
[DT ∗

i
(I− ziT

∗
i )−1(I−wiTi)−1DT ∗

i
]DT ∗ ⊆ DT ∗ , (4.3)

for i = 1, . . . ,n . This observation, together with (4.2) imply that

(ΘTi(zzz)ΘTi(www)∗)DT ∗ ⊆ DT ∗ . (4.4)

In particular,

(MΘTi
M∗

ΘTi
)H2

DT∗ (D
n) ⊆ H2

DT∗ (D
n). (1 � i � n) (4.5)

Moreover, it follows from (4.2), (4.3) and (4.4) that

n

∏
i=1

[DT ∗
i
(I− ziT

∗
i )−1(I−wiTi)−1DT ∗

i
]|DT∗ = S(zzz,www)

n

∏
i=1

(IDT∗i
−ΘTi(zzz)ΘTi(www)∗)|DT∗ .

(4.6)
The following result relates the characteristic functions of the coordinate operators

and the isometric dilation of a doubly commuting pure tuple T .

PROPOSITION 4.2. Let T be a doubly commuting pure tuple of operators on H .
Then

LT L∗
T =

n

∏
i=1

(IH2
DT∗

(Dn)−MΘTi
M∗

ΘTi
|H2

DT∗ (Dn)
).

Proof. Let zzz,www ∈ D
n and η ,ζ ∈ DT ∗ so that

〈LT L∗
T (S(·,www)η), S(·,zzz)ζ 〉H2

DT∗ (Dn) = 〈
n

∏
i=1

(I−wiTi)−1DT ∗η ,
n

∏
j=1

(I− z jTj)−1DT ∗ζ 〉H

= 〈
n

∏
i=1

DT ∗(1− ziT
∗
i )−1(I−wiTi)−1DT ∗η ,ζ 〉H .

By virtue of (4.6), it follows that

〈LT L∗
T (S(·,www)η),S(·,zzz)η〉H2

DT∗
(Dn) = S(zzz,www)〈

n

∏
i=1

(I−ΘTi(zzz)ΘTi(www)∗)η ,ζ 〉

= 〈
n

∏
i=1

(IH2
DT∗

(Dn)−MΘTi
M∗

ΘTi
)(S(·,www)η),S(·,zzz)η〉,
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which completes the proof of the proposition. �

The following well known result (cf. [16]), concerning the range of the sum of a
finite family of commuting orthogonal projections, will play a key role in the model
theory for doubly commuting pure tuples.

LEMMA 4.3. Let {Pi}n
i=1 be a collection of commuting orthogonal projections on

a Hilbert space H . Then L := ∑n
i=1 ranPi is closed and the orthogonal projection of

H onto L is given by

PL = IH −
n

∏
i=1

(IH −Pi).

Proof. We set Xi = Pi(IH −Pi+1) · · · (IH −Pn−1)(IH −Pn) for all i = 1, . . . ,n−1,
and Xn = Pn . Since

n

∑
i=1

Xi = IH − n
Π
i=1

(IH −Pi),

and {Xi}n
i=1 is a family of orthogonal projections with orthogonal ranges, we have

L = ranX1 ⊕·· ·⊕ ranXn.

This completes the proof of the lemma. �

We now have the following key corollary to the main result of this section.

COROLLARY 4.4. Let T be a doubly commuting pure tuple on H . Then

ST :=
n

∑
i=1

(
H2

DT∗ (D
n)

⋂
ΘTiH

2
DTi

(Dn)
)

is a closed subspace of H2
DT∗ (D

n) and

IH2
DT∗

(Dn) −PST =
n

∏
i=1

(IH2
DT∗

(Dn) −MΘTi
M∗

ΘTi
)|H2

DT∗
(Dn).

Proof. It follows from the definition of MΘTi
and the fact that Ti is pure, that MΘTi

is an isometry and hence MΘTi
M∗

ΘTi
is an orthogonal projection for i = 1, . . . ,n . Also

by (4.5), we have

PH2
DT∗

(Dn)(MΘTi
M∗

ΘTi
)PH2

DT∗
(Dn) = (MΘTi

M∗
ΘTi

)PH2
DT∗

(Dn).

Let Pi = (MΘTi
M∗

ΘTi
)|H2

DT∗
(Dn) ∈ B(H2

DT∗ (D
n)) . Then Pi , for each i = 1, . . . ,n , is an

orthogonal projection and

ranPi = ranMΘTi

⋂
H2

DT∗ (D
n) = ΘTiH

2
DTi

(Dn)
⋂

H2
DT∗ (D

n). (4.7)
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Further,
PiPj = PjPi. (1 � i < j � n)

By Lemma 4.3 and (4.7), we have

ST =
n

∑
i=1

ranPi =
n

∑
i=1

(
H2

DT∗ (D
n)

⋂
ΘTiH

2
DTi

(Dn)
)
,

is a closed subspace of H2
DT∗ (D

n) . Again by Lemma 4.3, we have

PST = IH2
DT∗

(Dn)−
n

∏
i=1

(IH2
DT∗

(Dn)−Pi)= IH2
DT∗

(Dn)−
n

∏
i=1

(IH2
DT∗

(Dn)−MΘTi
M∗

ΘTi
)|H2

DT∗
(Dn).

This completes the proof. �

THEOREM 4.5. Let T be a doubly commuting pure tuple on H . Then for all
i = 1, . . . ,n,

Ti
∼= PQT Mzi |QT ,

where
QT = S ⊥

T
∼= H2

DT∗ (D
n)/ST ,

is a joint (M∗
z1 , . . . ,M

∗
zn)-invariant subspace of H2

DT∗ (D
n) corresponding to the joint

(Mz1 , . . . ,Mzn)-invariant subspace

ST =
n

∑
i=1

(
H2

DT∗ (D
n)

⋂
ΘTiH

2
DTi

(Dn)
)
.

Proof. Let T be a doubly commuting pure tuple on H . By Proposition 4.2, we
have

LT L∗
T =

n

∏
i=1

(IH2
DTTT∗

(Dn) −MΘTi
M∗

ΘTi
)|H2

DT∗
(Dn).

This along with Corollary 4.4 yields

LT L∗
T = IH2

DT∗ (Dn)− [IH2
DT∗ (Dn) −

n

∏
i=1

(IH2
DTTT∗

(Dn)−MΘTi
M∗

ΘTi
)]|H2

DT∗ (Dn)

= IH2
DT∗ (Dn)−PST .

Consequently,
ranLT

∼= S ⊥
T

∼= H2
DT∗ (D

n)/ST ,

and
Ti
∼= PQT Mzi |QT ,

for i = 1, . . . ,n . This completes the proof. �
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5. One variable inner functions

The purpose of this section is to obtain a concrete realization of the joint
(Mz1 , . . . ,Mzn)-invariant subspace ST , in Theorem 4.5, in terms of one variable inner
functions on the polydisc.

Let T be a doubly commuting pure tuple of operators on H . By Theorem 4.5,
we get

H ∼= S ⊥
T , and Ti

∼= PS⊥
T

Mzi |S ⊥
T

,

where

ST =
n

∑
i=1

STi ,

is a joint (Mz1 , . . . ,Mzn)-invariant subspace of H2
DT∗ (D

n) and

STi := H2
DT∗ (D

n)
⋂

ΘTiH
2
DTi

(Dn). (1 � i � n)

Recall that H2
DT∗ (D

n) and ΘTiH
2
DTi

(Dn) can be identified with H2(D)⊗·· ·⊗H2
DT∗ (D)⊗

·· ·⊗H2(D) and H2(D)⊗·· ·⊗ (
θTiH

2
DTi

(D)
)⊗·· ·⊗H2(D) , respectively. Also

STi
∼= H2(D)⊗·· ·⊗ S̃Ti ⊗·· ·⊗H2(D),

for some Mz -invariant subspace S̃Ti of H2
DT∗i

(D) .

Let 1 � i � n and assume that STi 
= {0} . Then by the Beurling-Lax-Halmos
theorem, on shift invariant subspaces of vector-valued Hardy spaces ([18]), there exist
a Hilbert space ETi and an inner multiplier φTi ∈ H∞

B(ETi ,DT∗ )(D) , such that

S̃Ti = φTiH
2
ETi

(D).

Thus
STi

∼= H2(D)⊗·· ·⊗ (
φTiH

2
ETi

(D)
)⊗·· ·⊗H2(D).

Let
(ΦTi f )(zzz) = φTi(zi) f (zzz). (zzz ∈ D

n, f ∈ H2
ETi

(Dn))

Certainly ΦTi ∈ H∞
B(ETi ,DT∗ )(D

n) is a one variable inner function. Moreover, H2(D)⊗
·· ·⊗ (

φTiH
2
ETi

(D)
)⊗·· ·⊗H2(D) can be identified to ΦTiH

2
ETi

(Dn) , via the same iden-

tification map, and
S̃Ti = ΦTiH

2
ETi

(Dn).

Consequently,

ST =
n

∑
i=1

ΦTiH
2
ETi

(Dn),

where each ΦTi ∈ H∞
B(ETi ,DT∗ )(D

n) is either a one variable inner function in zi , or the

zero function and i = 1, . . . ,n .
This along with Theorem 4.5 proves the following result.
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THEOREM 5.1. Let T be a doubly commuting pure tuple on H . Then there
exists a joint (M∗

z1 , . . . ,M
∗
zn)-invariant subspace QT of H2

DT∗ (D
n) such that

H ∼= QT , and Ti
∼= PQT Mzi |QT ,

for i = 1, . . . ,n. Moreover, there exist Hilbert spaces {ETi}n
i=1 and ΦTi ∈H∞

B(ETi ,DT∗ )(D
n) ,

such that each ΦTi (1 � i � n) is either a one variable inner function in zi , or the zero
function and

ST :=
n

∑
i=1

ΦTiH
2
ETi

(Dn)

is closed in H2
DT∗ (D

n) , and

QT = S ⊥
T .

In particular, Theorem 5.1 says that the class of all doubly commuting pure tuples
on separable Hilbert spaces is equal, to the class of all doubly commuting (M∗

z1 , . . . ,M
∗
zn)-

invariant subspaces of vector-valued Hardy spaces over the polydisc.

As a special case of Theorem 5.1 we obtain the following corollary.

COROLLARY 5.2. Let Q be a joint (M∗
z1 , . . . ,M

∗
zn)-invariant closed proper sub-

space of H2(Dn) and let Czi := PQMzi |Q for i = 1, . . . ,n. Then (Cz1 , . . . ,Czn) is doubly
commuting if and only if there exists {θi}n

i=1 ⊆H∞(D) such that each θi is either inner
or the zero function for i = 1, . . . ,n and

Q =
( n

∑
i=1

ΘiH
2(Dn)

)⊥
,

where Θi(zzz) = θi(zi) for all zzz ∈ Dn and i = 1, . . . ,n.

Proof. If T := (Cz1 , . . . ,Czn) , then

D2
T ∗ =

n

∏
i=1

(IQ −CziC
∗
zi) = PQ

( n

∏
i=1

(IH2(Dn) −MziM
∗
zi)

)|Q = PQPC|Q.

Thus the rank of DT ∗ is one. Now the result follows from Theorem 5.1. �

This result was proved by the third author in [16]. See also the work by Izuchi,
Nakazi and Seto [10] for the base case n = 2.



ANALYTIC MODEL OF DOUBLY COMMUTING CONTRACTIONS 113

RE F ER EN C ES

[1] P. R. AHERN AND D. N. CLARK, Invariant subspaces and analytic continuation in several variables,
J. Math. Mech. 19 (1969/1970), 963–969.
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