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Abstract. Let A, Ã and B be bounded linear operators in a Hilbert space, and f (z) be a function
regular on the convex hull of the union of the spectra of A and Ã . Let SN2 be the ideal of
Hilbert-Schmidt operators. In the paper, a sharp estimate for the Hilbert-Schmidt norm of the
commutator f (A)B−B f (Ã) is established, provided AB−BÃ ∈ SN2 , A−A∗ ∈ SN2 and Ã−
Ã∗ ∈ SN2 . Here the star means the adjointness. Our results are new even in the finite dimensional
case.

1. Introduction and statement of the main result

Let H be a separable complex Hilbert space with a scalar product (., .) , the
norm ‖.‖ =

√
(., .) and unit operator I . B(H ) means the algebra of all bounded

linear operators in H . For an A ∈ B(H ) , σ(A) denotes the spectrum, Rz(A) =
(A− zI)−1 (z �∈ σ(A)) is the resolvent, rs(A) is the spectral radius, A∗ is the adjoint
operator. SN2 denotes the ideal of Hilbert-Schmidt operators C with the finite norm
N2(C) := (Trace (CC∗))1/2 .

Let Ω ⊃ σ(A) be an open set whose boundary L consists of a finite number of
rectifiable Jordan curves, oriented in the positive sense customary in the theory of com-
plex variables. Suppose that Ω∪L is contained in the domain of analyticity of a scalar-
valued function f . Then f (A) is defined by

f (A) = − 1
2π i

∫
L

f (z)Rz(A)dz. (1.1)

Furthermore, for A,B, Ã ∈ B(H ) , [A,B] := AB−BA is the commutator, [A,B, Ã] :=
AB−BÃ is the generalized commutator; [ f (A),B] := f (A)B−B f (A) and [ f (A),B, f (Ã)]
:= f (A)B−B f (Ã) will be called the function commutator and the generalized function
commutator, respectively.

As it is well-known, the generalized function commutator plays an essential role
in the perturbation theory of operators, cf. [2] and references therein. Various esti-
mates for the generalized function commutator and its particular cases have been de-
rived by many mathematicians. For details and further references we recommend the

Mathematics subject classification (2010): 47B47, 47A30, 47B10, 47A56, 47A55.
Keywords and phrases: Generalized commutator, inequality, nonself-adjoint operators, operator func-

tion, Hilbert-Schmidt norm.

c© � � , Zagreb
Paper OaM-11-08

115

http://dx.doi.org/10.7153/oam-11-08


116 M. GIL’

papers [1, 3, 4, 11]. Besides, mainly selfadjoint and normal operators have been consid-
ered. Recently, for a class of analytic functions, Kittaneh [10] considered the operator
f (A)B−B f (Ã) in symmetric ideals of H . Besides A satisfies the inequality

‖Rz(A)‖ � 1
dist (z,σ(A))

.

The similar condition is satisfied by Ã . In that paper, bounds are established for an
arbitrary unitarily invariant norm of the commutator.

In the present paper we consider the generalized function commutator with non-
normal operators satisfying the conditions

AI := (A−A∗)/2i ∈ SN2, ÃI := (Ã− Ã∗)/2i ∈ SN2, (1.2)

and
K := AB−BÃ∈ SN2. (1.3)

To formulate the result put

gI(A) :=

[
2N2

2 (AI)−2
∞

∑
k=1

|Im λk(A)|2
]1/2

,

where λk(A) (k = 1,2, . . .) are the nonreal eigenvalues of A taken with their multi-
plicities. If A is normal, then gI(A) = 0, cf. [5, Lemma 7.7.2]. Obviously, gI(A) �√

2N2(AI) .
Denote by co(A, Ã) the closed convex hull of σ(A)∪σ(Ã) . Now we are in a

position to formulate the main result of the paper.

THEOREM 1.1. Let conditions (1.2) and (1.3) hold. Let f (λ ) be holomorphic on
a neighborhood of co(A, Ã) . Then with the notations

ψ j,k := sup
z∈co (A,Ã)

| f (k+ j+1)(z)|√
k! j!(k+ j +1)!

( j,k = 0,1,2, . . .),

we have the inequality

N2( f (A)B−B f (Ã)) � N2(K)
∞

∑
j,k=0

ψ j,kg
j
I (A)gk

I (Ã).

The proof of this theorem is presented in the next two sections. Theorem 1.1
particularly generalizes the main results from [6, 7].

If A and Ã are normal operators, then Theorem 1.1 implies the inequality.

N2( f (A)B−B f (Ã)) � N2(K) sup
z∈co (A,Ã)

| f ′(z)|.
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If A ∈ SN2 , then due to [5, Lemma 6.5.2] we have gI(A) = g(A) , where

g(A) :=

[
N2

2 (A)−
∞

∑
k=1

|λ̂k(A)|2
]1/2

.

Here λ̂k(A) (k = 1,2, . . .) are all the eigenvalues of A taken with their multiplicities.
In addition,

g2(A) � N2
2 (A)−|Trace A2|,

since
∞

∑
k=1

|λ̂k(A)|2 � |Trace A2|.

EXAMPLE 1.2. Let f (A) = eAt ,t � 0. Then

sup
z∈co (A,Ã)

∣∣∣∣dk+ j+1ezt

dzk+ j+1

∣∣∣∣ = eαt tk+ j+1 ( j,k = 0,1,2, . . . ; t � 0),

where
α := max{sup Reσ(A),sup Reσ(Ã)}.

Thus,

ψ j,k =
eαttk+ j+1

√
k! j!(k+ j +1)!

( j,k = 0,1,2, . . .).

Due to Theorem 1.1

N2(eAtB−BeÃt) � eαtN2(K)
∞

∑
j,k=0

tk+ j+1gk
I (A)g j

I (Ã)√
k! j!(k+ j +1)!

(t � 0).

2. Auxiliary results

In this section our reasonings are valid if H is considered as a Banach space.
Let A, Ã,B ∈ B(H ) . Then for any z �∈ σ(A)∪σ(Ã) , we have

(zI−A)−1B−B(zI− Ã)−1 = (Iz−A)−1K(Iz− Ã)−1. (2.1)

This well known identity can be checked by multiplying the both sides of (2.1) by zI−A
from the left and by zI− Ã from the right.

Formulas (2.1) and (1.1) imply

f (A)B−B f (Ã) = − 1
2π i

∫
L

f (z)(Rz(A)B−BRz(Ã))dz

=
1

2π i

∫
L

f (z)Rz(A)KRz(Ã)dz (2.2)

for any f (z) regular on a neighborhood of σ(A)∪σ(Ã) .
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Put Ω(r) = {|z| � r} and ∂Ω(r) = {|z| = r} . In the rest of this section it is
assumed that f (z) is regular on Ω(r) with r > rs(A, Ã) := max{rs(A),rs(Ã)} . Take
into account that

Rλ (A) = −
∞

∑
k=0

Ak

λ k+1 (|λ | > rs(A)).

Then by the previous lemma

f (A)B−B f (Ã) =
1

2π i

∫
∂Ω(r)

f (z)Rz(A)KRz(Ã)dz =
∞

∑
j,k=0

1
2π i

∫
∂Ω(r)

f (z)dz
zk+ j+2 AjKÃk.

Or

f (A)B−B f (Ã) =
∞

∑
j,k=0

f j+k+1A
jKÃk, (2.3)

where f j are the Taylor coefficients of f at zero.
If, in particular, f (z) = zm , for an integer m � 1, then f jk = 0 for j + k +1 �= m

and f jk = 1 for j + k+1 = m . Thus we arrive at the identity

AmB−BÃm =
m−1

∑
j=0

AjKÃm− j−1. (2.4)

3. Proof of Theorem 1.1

Let A,B and Ã have n -dimensional ranges (n < ∞) . Then by the triangular
(Schur) representation

A = D+V (σ(A) = σ(D)), (3.1)

where D is a normal and V is a nilpotent operators having the joint invariant subspaces.
Similarly,

Ã = D̃+ Ṽ (σ(Ã) = σ(D̃)), (3.2)

where D̃ is a normal and Ṽ is a nilpotent operators having the same invariant subspaces.
Let us prove that

N2( f (A)B−B f (Ã)) � N2(K)
n−1

∑
j,k=0

ψ j,kN
j
2(V )Nk

2(Ṽ ). (3.3)

Indeed, by (3.1)

Rλ (A) = (D+V − Iλ )−1 = (I +Rλ (D)V )Rλ (D).

Note that Rλ (D)V is a nilpotent matrix and therefore (Rλ (D)V )n = 0. Consequently,

Rλ (A) =
n−1

∑
k=0

(−1)k(Rλ (D)V )kRλ (D).
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Similarly,

Rλ (Ã) =
n−1

∑
k=0

(−1)k(Rλ (D̃)Ṽ )kRλ (D̃).

So by (2.2) we have

f (A)B−B f (Ã) =
n−1

∑
m,k=0

Cmk (3.4)

where

Cmk = (−1)k+m 1
2π i

∫
L

f (λ )(Rλ (D)V )mRλ (D)K(Rλ (D̃)Ṽ )kRλ (D̃)dλ .

Since D is a diagonal matrix in the orthonormal basis of the triangular representations
of A (the Schur basis) {ek} of A , and D̃ is a diagonal matrix in the Schur basis {ẽk}
of Ã , we can write out

Rλ (D) =
n

∑
j=1

Qj

λ j −λ
, Rλ (D̃) =

n

∑
j=1

Q̃ j

λ̃ j −λ
,

where λ j = λ j(A), λ̃ j = λ j(Ã) , Qk = (.,ek)ek,Q̃k = (., ẽk)ẽk . Consequently,

Cmk =
n

∑
i1=1

Qi1V
n

∑
i2=1

Qi2V . . .V
n

∑
im+1=1

Qim+1K
n

∑
j1=1

Q̃ j1Ṽ
n

∑
j2=1

Q̃ j2Ṽ . . . (3.5)

Ṽ
n

∑
jk+1=1

Q̃ jk+1Ji1,i2,...,im+1, j1 j2... jk+1 .

Here
Ji1,i2,...,im+1, j1 j2... jk+1

=
(−1)k+m

2π i

∫
L

f (λ )dλ
(λi1 −λ ) . . .(λim+1 −λ )(λ̃ j1 −λ ) . . .(λ̃ jk+1 −λ )

.

Below the symbol |V | means the operator whose entries are absolute values of the
entries of V in the basis {ek} and |Ṽ | means the operator whose entries are absolute
values of the entries of Ṽ in the basis {ẽk} . That is, if

Vek =
k−1

∑
j=1

a jke j, Ṽ ek =
k−1

∑
j=1

ã jkẽ j,

then |V | and |Ṽ | are defined by

|V |ek =
k−1

∑
j=1

|a jk|e j and Ṽ ek =
k−1

∑
j=1

|ã jk|ẽ j,

respectively.
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Furthermore, denote Kk j = (Kẽ j,ek) and c(ml)
k j = (Cml ẽ j,ek) . Then

K =
n

∑
j,k=1

Kk j(., ẽ j)ek and Cml =
n

∑
j,k=1

c(ml)
k j (., ẽ j)ek.

Introduce the operators

|K| =
n

∑
j,k=1

|Kk j|(., ẽ j)ek and |Cml | =
n

∑
j,k=1

|c(ml)
k j |(., ẽ j)ek.

So |K| and |Cml | are defined as the operators whose entries are absolute values of the
entries of |K| and |Cml | in the corresponding base.

By [5, Lemma 1.5.1],

|Ji1,i2,...,im+1, j1 j2... jk+1 | � ψ̃m,k := sup
z∈co (A,Ã)

| f (k+m+1)(z)|
(m+ k+1)!

.

Now (3.5) implies

|Cmk| � ψ̃m,k

n

∑
i1=1

Qi1 |V |
n

∑
i2=1

Qi2 |V | . . . |V |
n

∑
im+1=1

Qjm+1 |K|
n

∑
j1=1

Q̃ j2 |Ṽ | . . . |Ṽ |
n

∑
jk+1=1

Q̃ jk+1 .

But
n

∑
i=1

Qi = I.

Thus,
|Cmk| � ψ̃m,k|V |m|K||Ṽ |k. (3.6)

Note that

N2
2 (|K|) =

n

∑
k=1

‖|K|ẽk‖2 =
n

∑
k=1

n

∑
j=1

|Kjk|2 = N2
2 (K).

Hence (3.6) yields the inequality

N2(Cmk) � ψ̃m,k‖|V |m‖N2(K)‖|Ṽ |k‖.
By [5, Corollary 2.5.2] we have

‖ |V |m‖ � Nm
2 (|V |)√

m!
.

But obviously,

N2
2 (|V |) =

n

∑
k=2

k−1

∑
j=1

|a jk|2 = N2
2 (V ).

Recall that a jk are the entries of V in the Schur basis. Thus,

‖ |V |m‖ � Nm
2 (V )√
m!
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So

N2(Cmk) � ψ̃m,kN2(K)
Nm

2 (V )Nk
2(Ṽ )√

m!
√

k!
.

Now (3.4) implies the required inequality (3.3).
Furthermore, taking into account the equality N2(V ) = gI(A) , cf. [5, Lemma

7.7.2], from (3.3) we have

N2( f (A)B−B f (Ã)) � N2(K)
n−1

∑
j,k=0

ψ j,kg
j
I (A)gk

I (Ã), (3.7)

provided A and Ã are n -dimensional.
Now let us recall that there is a sequence of n -dimensional operators An , strongly

converging to A , such that σ(An) ⊆ σ(A) , cf. [5, Section 7.11]. In addition, gI(An) →
gI(A) as n → ∞ . Indeed, according to [8, Theorem I.5.2], the nonreal spectrum of A
under conditions (1.2) consists of no more countable number of points which are normal
eigenvalues (that is, isolated and having finite multiplicities). Denote by E the linear
closed convex hall of all the root vectors of A corresponding to non-real eigenvalues.
Choice in each root subspace a Jordan basis. Then we obtain vectors φk for each of
which either Aφk = λk(A)φk , or Aφk = λk(A)φk + φk+1 . Orthogonalizing the system
{φk} , we obtain the (orthonormal) Schur basis {ek} of the triangular representation:

Aek = a1ke1 +a2ke2 + . . .+akkek (k = 1,2, . . .) (3.8)

with akk = λk(A) (see [8, Section II.6])). Besides, E is an invariant subspace of A . Let
P be the orthogonal projection of H onto E and C = AP = PAP . So σ(C) consists
of the nonreal spectrum of A . Denote P1 = I−P , M = P1AP1 and W = PAP1 . We have

A = (P+P1)A(P+P1) = C+M +W,

since P1AP = P1PAP = 0. Take into account that

(C+M−λ )−1 = (C−Pλ )−1 +(M−P1λ )−1,

where the inverse (C−Pλ )−1 is understood in PH and the inverse (M−P1λ )−1 is
understood in P1H . Hence,

(C+M−λ )−1W = (C+M−λ )−1PAP1 = P(C−Pλ )−1PAP1

and therefore, ((C+M−λ )−1W )2 = 0. Consequently, for sufficiently large λ ,

(I +(C+M−λ )−1W )−1 =
∞

∑
k=0

(−1)k(C+M−λ )−1W )k = I− (C+M−λ )−1W.

So for all regular λ ,

(A−λ )−1 = (C+M +W −λ )−1 = (I +(C+M−λ )−1W )−1(C+M−λ )−1

= (C+M−λ )−1 +(C+M−λ )−1W (C+M−λ )−1.
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Consequently,
σ(A) = σ(C)∪σ(M). (3.9)

Moreover,

(AP1−λ )−1 = (W +M−λ )−1 = (I +(M−λ )−1W )−1(M−λ )−1

= (M−λ )−1 +(M−λ )−1W (M−λ )−1.

Thus σ(AP1) = σ(M) and it is real. Let Cn (n = 1,2, . . .) be the sequence of n -
dimensional operators, defined by

Cnek = a1ke1 +a2ke2 + . . .+akkek (k = 1, . . . ,n).

Then according to (3.8) λk(Cn) = λk(A) (k = 1, . . . ,n) and Cn → C at least strongly.
Let Qn be a sequence of n -dimensional orthogonal projections strongly converging to
I . Then QnAP1 → AP1 strongly. Since Cn = CnP , according to (3.9),

σ(QnAP1 +Cn) = σ(QnAP1)∪σ(Cn).

Besides, An := QnAP1 +Cn → A strongly. Due to the upper semicontinuity of the
spectrum [9, p. 56, Problem 103], limn→∞ σ(An)⊆ σ(A) . Hence, since σ(AP1) is real,
we can write

lim
n→∞

ℑσ(QnAP1) = 0

and therefore, under condition (1.2),

lim
n→∞

n

∑
k=1

|ℑλk(An)|2 = lim
n→∞

n

∑
k=1

|ℑλk(Cn)|2 =
∞

∑
k=1

|ℑλk(C)|2 =
∞

∑
k=1

|ℑλk(A)|2. (3.10)

Since, An → A strongly, we have An −A∗
n → A−A∗ strongly, but A−A∗ ∈ SN2 , and

therefore, N2(An −A∗
n) → N2(A−A∗) . This and (3.10) implies that really gI(An) →

gI(A) as n → ∞ . Moreover, due to the relation σ(An) ⊆ σ(A) we have limn co(An) ⊆
co(A) . So replacing in (3.7) A and Ã by An and Ãn , respectively, we get the required
result by passing to the limit n → ∞ in that inequality. �
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