A BOUND FOR THE HILBERT-SCHMIDT NORM OF GENERALIZED COMMUTATORS OF NONSELF-ADJOINT OPERATORS

Michael Gil'
(Communicated by F. Kittaneh)

Abstract

Let A, \tilde{A} and B be bounded linear operators in a Hilbert space, and $f(z)$ be a function regular on the convex hull of the union of the spectra of A and \tilde{A}. Let $S N_{2}$ be the ideal of Hilbert-Schmidt operators. In the paper, a sharp estimate for the Hilbert-Schmidt norm of the commutator $f(A) B-B f(\tilde{A})$ is established, provided $A B-B \tilde{A} \in S N_{2}, A-A^{*} \in S N_{2}$ and $\tilde{A}-$ $\tilde{A}^{*} \in S N_{2}$. Here the star means the adjointness. Our results are new even in the finite dimensional case.

1. Introduction and statement of the main result

Let \mathscr{H} be a separable complex Hilbert space with a scalar product (.,.), the norm $\|\cdot\|=\sqrt{(., .)}$ and unit operator $I . \mathscr{B}(\mathscr{H})$ means the algebra of all bounded linear operators in \mathscr{H}. For an $A \in \mathscr{B}(\mathscr{H}), \sigma(A)$ denotes the spectrum, $R_{z}(A)=$ $(A-z I)^{-1} \quad(z \notin \sigma(A))$ is the resolvent, $r_{s}(A)$ is the spectral radius, A^{*} is the adjoint operator. $S N_{2}$ denotes the ideal of Hilbert-Schmidt operators C with the finite norm $N_{2}(C):=\left(\text { Trace }\left(C C^{*}\right)\right)^{1 / 2}$.

Let $\Omega \supset \sigma(A)$ be an open set whose boundary L consists of a finite number of rectifiable Jordan curves, oriented in the positive sense customary in the theory of complex variables. Suppose that $\Omega \cup L$ is contained in the domain of analyticity of a scalarvalued function f. Then $f(A)$ is defined by

$$
\begin{equation*}
f(A)=-\frac{1}{2 \pi i} \int_{L} f(z) R_{z}(A) d z \tag{1.1}
\end{equation*}
$$

Furthermore, for $A, B, \tilde{A} \in \mathscr{B}(\mathscr{H}),[A, B]:=A B-B A$ is the commutator, $[A, B, \tilde{A}]:=$ $A B-B \tilde{A}$ is the generalized commutator; $[f(A), B]:=f(A) B-B f(A)$ and $[f(A), B, f(\tilde{A})]$ $:=f(A) B-B f(\tilde{A})$ will be called the function commutator and the generalized function commutator, respectively.

As it is well-known, the generalized function commutator plays an essential role in the perturbation theory of operators, cf. [2] and references therein. Various estimates for the generalized function commutator and its particular cases have been derived by many mathematicians. For details and further references we recommend the

[^0]papers $[1,3,4,11]$. Besides, mainly selfadjoint and normal operators have been considered. Recently, for a class of analytic functions, Kittaneh [10] considered the operator $f(A) B-B f(\tilde{A})$ in symmetric ideals of \mathscr{H}. Besides A satisfies the inequality
$$
\left\|R_{z}(A)\right\| \leqslant \frac{1}{\operatorname{dist}(z, \sigma(A))}
$$

The similar condition is satisfied by \tilde{A}. In that paper, bounds are established for an arbitrary unitarily invariant norm of the commutator.

In the present paper we consider the generalized function commutator with nonnormal operators satisfying the conditions

$$
\begin{equation*}
A_{I}:=\left(A-A^{*}\right) / 2 i \in S N_{2}, \quad \tilde{A}_{I}:=\left(\tilde{A}-\tilde{A}^{*}\right) / 2 i \in S N_{2} \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
K:=A B-B \tilde{A} \in S N_{2} \tag{1.3}
\end{equation*}
$$

To formulate the result put

$$
g_{I}(A):=\left[2 N_{2}^{2}\left(A_{I}\right)-2 \sum_{k=1}^{\infty}\left|\operatorname{Im} \lambda_{k}(A)\right|^{2}\right]^{1 / 2}
$$

where $\lambda_{k}(A) \quad(k=1,2, \ldots)$ are the nonreal eigenvalues of A taken with their multiplicities. If A is normal, then $g_{I}(A)=0$, cf. [5, Lemma 7.7.2]. Obviously, $g_{I}(A) \leqslant$ $\sqrt{2} N_{2}\left(A_{I}\right)$.

Denote by $\operatorname{co}(A, \tilde{A})$ the closed convex hull of $\sigma(A) \cup \sigma(\tilde{A})$. Now we are in a position to formulate the main result of the paper.

THEOREM 1.1. Let conditions (1.2) and (1.3) hold. Let $f(\lambda)$ be holomorphic on a neighborhood of $\operatorname{co}(A, \tilde{A})$. Then with the notations

$$
\psi_{j, k}:=\sup _{z \in \cos (A, \tilde{A})} \frac{\left|f^{(k+j+1)}(z)\right|}{\sqrt{k!j!}(k+j+1)!} \quad(j, k=0,1,2, \ldots),
$$

we have the inequality

$$
N_{2}(f(A) B-B f(\tilde{A})) \leqslant N_{2}(K) \sum_{j, k=0}^{\infty} \psi_{j, k} g_{I}^{j}(A) g_{I}^{k}(\tilde{A})
$$

The proof of this theorem is presented in the next two sections. Theorem 1.1 particularly generalizes the main results from $[6,7]$.

If A and \tilde{A} are normal operators, then Theorem 1.1 implies the inequality.

$$
N_{2}(f(A) B-B f(\tilde{A})) \leqslant N_{2}(K) \sup _{z \in \operatorname{co}(A, \tilde{A})}\left|f^{\prime}(z)\right| .
$$

If $A \in S N_{2}$, then due to [5, Lemma 6.5.2] we have $g_{I}(A)=g(A)$, where

$$
g(A):=\left[N_{2}^{2}(A)-\sum_{k=1}^{\infty}\left|\hat{\lambda}_{k}(A)\right|^{2}\right]^{1 / 2}
$$

Here $\hat{\lambda}_{k}(A) \quad(k=1,2, \ldots)$ are all the eigenvalues of A taken with their multiplicities. In addition,

$$
g^{2}(A) \leqslant N_{2}^{2}(A)-\mid \text { Trace } A^{2} \mid,
$$

since

$$
\sum_{k=1}^{\infty}\left|\hat{\lambda}_{k}(A)\right|^{2} \geqslant \mid \text { Trace } A^{2} \mid
$$

Example 1.2. Let $f(A)=e^{A t}, t \geqslant 0$. Then

$$
\sup _{z \in \cos (A, \tilde{A})}\left|\frac{d^{k+j+1} e^{z t}}{d z^{k+j+1}}\right|=e^{\alpha t} t^{k+j+1} \quad(j, k=0,1,2, \ldots ; t \geqslant 0)
$$

where

$$
\alpha:=\max \{\sup \operatorname{Re} \sigma(A), \sup \operatorname{Re} \sigma(\tilde{A})\}
$$

Thus,

$$
\psi_{j, k}=\frac{e^{\alpha t} t^{k+j+1}}{\sqrt{k!j!}(k+j+1)!} \quad(j, k=0,1,2, \ldots)
$$

Due to Theorem 1.1

$$
N_{2}\left(e^{A t} B-B e^{\tilde{A} t}\right) \leqslant e^{\alpha t} N_{2}(K) \sum_{j, k=0}^{\infty} \frac{t^{k+j+1} g_{I}^{k}(A) g_{I}^{j}(\tilde{A})}{\sqrt{k!j!}(k+j+1)!} \quad(t \geqslant 0)
$$

2. Auxiliary results

In this section our reasonings are valid if \mathscr{H} is considered as a Banach space.
Let $A, \tilde{A}, B \in \mathscr{B}(\mathscr{H})$. Then for any $z \notin \sigma(A) \cup \sigma(\tilde{A})$, we have

$$
\begin{equation*}
(z I-A)^{-1} B-B(z I-\tilde{A})^{-1}=(I z-A)^{-1} K(I z-\tilde{A})^{-1} . \tag{2.1}
\end{equation*}
$$

This well known identity can be checked by multiplying the both sides of (2.1) by $z I-A$ from the left and by $z I-\tilde{A}$ from the right.

Formulas (2.1) and (1.1) imply

$$
\begin{align*}
f(A) B-B f(\tilde{A}) & =-\frac{1}{2 \pi i} \int_{L} f(z)\left(R_{z}(A) B-B R_{z}(\tilde{A})\right) d z \\
& =\frac{1}{2 \pi i} \int_{L} f(z) R_{z}(A) K R_{z}(\tilde{A}) d z \tag{2.2}
\end{align*}
$$

for any $f(z)$ regular on a neighborhood of $\sigma(A) \cup \sigma(\tilde{A})$.

Put $\Omega(r)=\{|z| \leqslant r\}$ and $\partial \Omega(r)=\{|z|=r\}$. In the rest of this section it is assumed that $f(z)$ is regular on $\Omega(r)$ with $r>r_{s}(A, \tilde{A}):=\max \left\{r_{s}(A), r_{s}(\tilde{A})\right\}$. Take into account that

$$
R_{\lambda}(A)=-\sum_{k=0}^{\infty} \frac{A^{k}}{\lambda^{k+1}}\left(|\lambda|>r_{s}(A)\right)
$$

Then by the previous lemma

$$
f(A) B-B f(\tilde{A})=\frac{1}{2 \pi i} \int_{\partial \Omega(r)} f(z) R_{z}(A) K R_{z}(\tilde{A}) d z=\sum_{j, k=0}^{\infty} \frac{1}{2 \pi i} \int_{\partial \Omega(r)} \frac{f(z) d z}{z^{k+j+2}} A^{j} K \tilde{A}^{k}
$$

Or

$$
\begin{equation*}
f(A) B-B f(\tilde{A})=\sum_{j, k=0}^{\infty} f_{j+k+1} A^{j} K \tilde{A}^{k}, \tag{2.3}
\end{equation*}
$$

where f_{j} are the Taylor coefficients of f at zero.
If, in particular, $f(z)=z^{m}$, for an integer $m \geqslant 1$, then $f_{j k}=0$ for $j+k+1 \neq m$ and $f_{j k}=1$ for $j+k+1=m$. Thus we arrive at the identity

$$
\begin{equation*}
A^{m} B-B \tilde{A}^{m}=\sum_{j=0}^{m-1} A^{j} K \tilde{A}^{m-j-1} \tag{2.4}
\end{equation*}
$$

3. Proof of Theorem 1.1

Let A, B and \tilde{A} have n-dimensional ranges $(n<\infty)$. Then by the triangular (Schur) representation

$$
\begin{equation*}
A=D+V(\sigma(A)=\sigma(D)), \tag{3.1}
\end{equation*}
$$

where D is a normal and V is a nilpotent operators having the joint invariant subspaces. Similarly,

$$
\begin{equation*}
\tilde{A}=\tilde{D}+\tilde{V}(\sigma(\tilde{A})=\sigma(\tilde{D})) \tag{3.2}
\end{equation*}
$$

where \tilde{D} is a normal and \tilde{V} is a nilpotent operators having the same invariant subspaces. Let us prove that

$$
\begin{equation*}
N_{2}(f(A) B-B f(\tilde{A})) \leqslant N_{2}(K) \sum_{j, k=0}^{n-1} \psi_{j, k} N_{2}^{j}(V) N_{2}^{k}(\tilde{V}) \tag{3.3}
\end{equation*}
$$

Indeed, by (3.1)

$$
R_{\lambda}(A)=(D+V-I \lambda)^{-1}=\left(I+R_{\lambda}(D) V\right) R_{\lambda}(D)
$$

Note that $R_{\lambda}(D) V$ is a nilpotent matrix and therefore $\left(R_{\lambda}(D) V\right)^{n}=0$. Consequently,

$$
R_{\lambda}(A)=\sum_{k=0}^{n-1}(-1)^{k}\left(R_{\lambda}(D) V\right)^{k} R_{\lambda}(D)
$$

Similarly,

$$
R_{\lambda}(\tilde{A})=\sum_{k=0}^{n-1}(-1)^{k}\left(R_{\lambda}(\tilde{D}) \tilde{V}\right)^{k} R_{\lambda}(\tilde{D})
$$

So by (2.2) we have

$$
\begin{equation*}
f(A) B-B f(\tilde{A})=\sum_{m, k=0}^{n-1} C_{m k} \tag{3.4}
\end{equation*}
$$

where

$$
C_{m k}=(-1)^{k+m} \frac{1}{2 \pi i} \int_{L} f(\lambda)\left(R_{\lambda}(D) V\right)^{m} R_{\lambda}(D) K\left(R_{\lambda}(\tilde{D}) \tilde{V}\right)^{k} R_{\lambda}(\tilde{D}) d \lambda
$$

Since D is a diagonal matrix in the orthonormal basis of the triangular representations of $\underset{\tilde{A}}{A}$ (the Schur basis) $\left\{e_{k}\right\}$ of A, and \tilde{D} is a diagonal matrix in the Schur basis $\left\{\tilde{e}_{k}\right\}$ of \tilde{A}, we can write out

$$
R_{\lambda}(D)=\sum_{j=1}^{n} \frac{Q_{j}}{\lambda_{j}-\lambda}, \quad R_{\lambda}(\tilde{D})=\sum_{j=1}^{n} \frac{\tilde{Q}_{j}}{\tilde{\lambda}_{j}-\lambda}
$$

where $\lambda_{j}=\lambda_{j}(A), \tilde{\lambda}_{j}=\lambda_{j}(\tilde{A}), Q_{k}=\left(., e_{k}\right) e_{k}, \tilde{Q}_{k}=\left(., \tilde{e}_{k}\right) \tilde{e}_{k}$. Consequently,

$$
\begin{gather*}
C_{m k}=\sum_{i_{1}=1}^{n} Q_{i_{1}} V \sum_{i_{2}=1}^{n} Q_{i_{2}} V \ldots V \sum_{i_{m+1}=1}^{n} Q_{i_{m+1}} K \sum_{j_{1}=1}^{n} \tilde{Q}_{j_{1}} \tilde{V} \sum_{j_{2}=1}^{n} \tilde{Q}_{j_{2}} \tilde{V} \ldots \tag{3.5}\\
\tilde{V} \sum_{j_{k+1}=1}^{n} \tilde{Q}_{j_{k+1}} J_{i_{1}, i_{2}, \ldots, i_{m+1}, j_{1} j_{2} \ldots j_{k+1}} .
\end{gather*}
$$

Here

$$
\begin{gathered}
J_{i_{1}, i_{2}, \ldots, i_{m+1}, j_{1} j_{2} \ldots j_{k+1}} \\
=\frac{(-1)^{k+m}}{2 \pi i} \int_{L} \frac{f(\lambda) d \lambda}{\left(\lambda_{i_{1}}-\lambda\right) \ldots\left(\lambda_{i_{m+1}}-\lambda\right)\left(\tilde{\lambda}_{j_{1}}-\lambda\right) \ldots\left(\tilde{\lambda}_{j_{k+1}}-\lambda\right)} .
\end{gathered}
$$

Below the symbol $|V|$ means the operator whose entries are absolute values of the entries of V in the basis $\left\{e_{k}\right\}$ and $|\tilde{V}|$ means the operator whose entries are absolute values of the entries of \tilde{V} in the basis $\left\{\tilde{e}_{k}\right\}$. That is, if

$$
V e_{k}=\sum_{j=1}^{k-1} a_{j k} e_{j}, \quad \tilde{V} e_{k}=\sum_{j=1}^{k-1} \tilde{a}_{j k} \tilde{e}_{j}
$$

then $|V|$ and $|\tilde{V}|$ are defined by

$$
|V| e_{k}=\sum_{j=1}^{k-1}\left|a_{j k}\right| e_{j} \quad \text { and } \quad \tilde{V} e_{k}=\sum_{j=1}^{k-1}\left|\tilde{a}_{j k}\right| \tilde{e}_{j}
$$

respectively.

Furthermore, denote $K_{k j}=\left(K \tilde{e}_{j}, e_{k}\right)$ and $c_{k j}^{(m l)}=\left(C_{m l} \tilde{e}_{j}, e_{k}\right)$. Then

$$
K=\sum_{j, k=1}^{n} K_{k j}\left(., \tilde{e}_{j}\right) e_{k} \quad \text { and } \quad C_{m l}=\sum_{j, k=1}^{n} c_{k j}^{(m l)}\left(., \tilde{e}_{j}\right) e_{k} .
$$

Introduce the operators

$$
|K|=\sum_{j, k=1}^{n}\left|K_{k j}\right|\left(., \tilde{e}_{j}\right) e_{k} \text { and }\left|C_{m l}\right|=\sum_{j, k=1}^{n}\left|c_{k j}^{(m l)}\right|\left(., \tilde{e}_{j}\right) e_{k} .
$$

So $|K|$ and $\left|C_{m l}\right|$ are defined as the operators whose entries are absolute values of the entries of $|K|$ and $\left|C_{m l}\right|$ in the corresponding base.

By [5, Lemma 1.5.1],

$$
\left|J_{i_{1}, i_{2}, \ldots, i_{m+1}, j_{1} j_{2} \ldots j_{k+1}}\right| \leqslant \tilde{\psi}_{m, k}:=\sup _{z \in \operatorname{co}(A, \tilde{A})} \frac{\left|f^{(k+m+1)}(z)\right|}{(m+k+1)!}
$$

Now (3.5) implies

$$
\left|C_{m k}\right| \leqslant \tilde{\psi}_{m, k} \sum_{i_{1}=1}^{n} Q_{i_{1}}|V| \sum_{i_{2}=1}^{n} Q_{i_{2}}|V| \ldots|V| \sum_{i_{m+1}=1}^{n} Q_{j_{m+1}}|K| \sum_{j_{1}=1}^{n} \tilde{Q}_{j_{2}}|\tilde{V}| \ldots|\tilde{V}| \sum_{j_{k+1}=1}^{n} \tilde{Q}_{j_{k+1}}
$$

But

$$
\sum_{i=1}^{n} Q_{i}=I
$$

Thus,

$$
\begin{equation*}
\left|C_{m k}\right| \leqslant \tilde{\psi}_{m, k}|V|^{m}|K||\tilde{V}|^{k} . \tag{3.6}
\end{equation*}
$$

Note that

$$
N_{2}^{2}(|K|)=\sum_{k=1}^{n}\left\||K| \tilde{e}_{k}\right\|^{2}=\sum_{k=1}^{n} \sum_{j=1}^{n}\left|K_{j k}\right|^{2}=N_{2}^{2}(K)
$$

Hence (3.6) yields the inequality

$$
N_{2}\left(C_{m k}\right) \leqslant \tilde{\Psi}_{m, k}\left\||V|^{m}\right\| N_{2}(K)\left\||\tilde{V}|^{k}\right\|
$$

By [5, Corollary 2.5.2] we have

$$
\left\||V|^{m}\right\| \leqslant \frac{N_{2}^{m}(|V|)}{\sqrt{m!}}
$$

But obviously,

$$
N_{2}^{2}(|V|)=\sum_{k=2}^{n} \sum_{j=1}^{k-1}\left|a_{j k}\right|^{2}=N_{2}^{2}(V)
$$

Recall that $a_{j k}$ are the entries of V in the Schur basis. Thus,

$$
\left\||V|^{m}\right\| \leqslant \frac{N_{2}^{m}(V)}{\sqrt{m!}}
$$

So

$$
N_{2}\left(C_{m k}\right) \leqslant \tilde{\Psi}_{m, k} N_{2}(K) \frac{N_{2}^{m}(V) N_{2}^{k}(\tilde{V})}{\sqrt{m!} \sqrt{k!}}
$$

Now (3.4) implies the required inequality (3.3).
Furthermore, taking into account the equality $N_{2}(V)=g_{I}(A)$, cf. [5, Lemma 7.7.2], from (3.3) we have

$$
\begin{equation*}
N_{2}(f(A) B-B f(\tilde{A})) \leqslant N_{2}(K) \sum_{j, k=0}^{n-1} \psi_{j, k} g_{I}^{j}(A) g_{I}^{k}(\tilde{A}) \tag{3.7}
\end{equation*}
$$

provided A and \tilde{A} are n-dimensional.
Now let us recall that there is a sequence of n-dimensional operators A_{n}, strongly converging to A, such that $\sigma\left(A_{n}\right) \subseteq \sigma(A)$, cf. [5, Section 7.11]. In addition, $g_{I}\left(A_{n}\right) \rightarrow$ $g_{I}(A)$ as $n \rightarrow \infty$. Indeed, according to [8, Theorem I.5.2], the nonreal spectrum of A under conditions (1.2) consists of no more countable number of points which are normal eigenvalues (that is, isolated and having finite multiplicities). Denote by \mathscr{E} the linear closed convex hall of all the root vectors of A corresponding to non-real eigenvalues. Choice in each root subspace a Jordan basis. Then we obtain vectors ϕ_{k} for each of which either $A \phi_{k}=\lambda_{k}(A) \phi_{k}$, or $A \phi_{k}=\lambda_{k}(A) \phi_{k}+\phi_{k+1}$. Orthogonalizing the system $\left\{\phi_{k}\right\}$, we obtain the (orthonormal) Schur basis $\left\{e_{k}\right\}$ of the triangular representation:

$$
\begin{equation*}
A e_{k}=a_{1 k} e_{1}+a_{2 k} e_{2}+\ldots+a_{k k} e_{k} \quad(k=1,2, \ldots) \tag{3.8}
\end{equation*}
$$

with $a_{k k}=\lambda_{k}(A)($ see $[8$, Section II.6])). Besides, \mathscr{E} is an invariant subspace of A. Let P be the orthogonal projection of \mathscr{H} onto \mathscr{E} and $C=A P=P A P$. So $\sigma(C)$ consists of the nonreal spectrum of A. Denote $P_{1}=I-P, M=P_{1} A P_{1}$ and $W=P A P_{1}$. We have

$$
A=\left(P+P_{1}\right) A\left(P+P_{1}\right)=C+M+W,
$$

since $P_{1} A P=P_{1} P A P=0$. Take into account that

$$
(C+M-\lambda)^{-1}=(C-P \lambda)^{-1}+\left(M-P_{1} \lambda\right)^{-1}
$$

where the inverse $(C-P \lambda)^{-1}$ is understood in $P \mathscr{H}$ and the inverse $\left(M-P_{1} \lambda\right)^{-1}$ is understood in $P_{1} \mathscr{H}$. Hence,

$$
(C+M-\lambda)^{-1} W=(C+M-\lambda)^{-1} P A P_{1}=P(C-P \lambda)^{-1} P A P_{1}
$$

and therefore, $\left((C+M-\lambda)^{-1} W\right)^{2}=0$. Consequently, for sufficiently large λ,

$$
\left.\left(I+(C+M-\lambda)^{-1} W\right)^{-1}=\sum_{k=0}^{\infty}(-1)^{k}(C+M-\lambda)^{-1} W\right)^{k}=I-(C+M-\lambda)^{-1} W
$$

So for all regular λ,

$$
\begin{aligned}
(A-\lambda)^{-1} & =(C+M+W-\lambda)^{-1}=\left(I+(C+M-\lambda)^{-1} W\right)^{-1}(C+M-\lambda)^{-1} \\
& =(C+M-\lambda)^{-1}+(C+M-\lambda)^{-1} W(C+M-\lambda)^{-1}
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
\sigma(A)=\sigma(C) \cup \sigma(M) \tag{3.9}
\end{equation*}
$$

Moreover,

$$
\begin{aligned}
\left(A P_{1}-\lambda\right)^{-1}=(W+M-\lambda)^{-1} & =\left(I+(M-\lambda)^{-1} W\right)^{-1}(M-\lambda)^{-1} \\
& =(M-\lambda)^{-1}+(M-\lambda)^{-1} W(M-\lambda)^{-1}
\end{aligned}
$$

Thus $\sigma\left(A P_{1}\right)=\sigma(M)$ and it is real. Let $C_{n}(n=1,2, \ldots)$ be the sequence of n dimensional operators, defined by

$$
C_{n} e_{k}=a_{1 k} e_{1}+a_{2 k} e_{2}+\ldots+a_{k k} e_{k}(k=1, \ldots, n)
$$

Then according to (3.8) $\lambda_{k}\left(C_{n}\right)=\lambda_{k}(A)(k=1, \ldots, n)$ and $C_{n} \rightarrow C$ at least strongly. Let Q_{n} be a sequence of n-dimensional orthogonal projections strongly converging to I. Then $Q_{n} A P_{1} \rightarrow A P_{1}$ strongly. Since $C_{n}=C_{n} P$, according to (3.9),

$$
\sigma\left(Q_{n} A P_{1}+C_{n}\right)=\sigma\left(Q_{n} A P_{1}\right) \cup \sigma\left(C_{n}\right)
$$

Besides, $A_{n}:=Q_{n} A P_{1}+C_{n} \rightarrow A$ strongly. Due to the upper semicontinuity of the spectrum [9, p. 56, Problem 103], $\lim _{n \rightarrow \infty} \sigma\left(A_{n}\right) \subseteq \sigma(A)$. Hence, since $\sigma\left(A P_{1}\right)$ is real, we can write

$$
\lim _{n \rightarrow \infty} \Im \sigma\left(Q_{n} A P_{1}\right)=0
$$

and therefore, under condition (1.2),

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left|\mathfrak{J} \lambda_{k}\left(A_{n}\right)\right|^{2}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left|\mathfrak{J} \lambda_{k}\left(C_{n}\right)\right|^{2}=\sum_{k=1}^{\infty}\left|\mathfrak{J} \lambda_{k}(C)\right|^{2}=\sum_{k=1}^{\infty}\left|\mathfrak{J} \lambda_{k}(A)\right|^{2} \tag{3.10}
\end{equation*}
$$

Since, $A_{n} \rightarrow A$ strongly, we have $A_{n}-A_{n}^{*} \rightarrow A-A^{*}$ strongly, but $A-A^{*} \in S N_{2}$, and therefore, $N_{2}\left(A_{n}-A_{n}^{*}\right) \rightarrow N_{2}\left(A-A^{*}\right)$. This and (3.10) implies that really $g_{I}\left(A_{n}\right) \rightarrow$ $g_{I}(A)$ as $n \rightarrow \infty$. Moreover, due to the relation $\sigma\left(A_{n}\right) \subseteq \sigma(A)$ we have $\lim _{n} c o\left(A_{n}\right) \subseteq$ $c o(A)$. So replacing in (3.7) A and \tilde{A} by A_{n} and \tilde{A}_{n}, respectively, we get the required result by passing to the limit $n \rightarrow \infty$ in that inequality.

Acknowledgement. I am very grateful to the referee of this paper for his (her) really helpful remarks.

REFERENCES

[1] R. Bhatia and F. Kittaneh, Some inequalities for norms of commutators, SIAM J. Matrix Anal. Appl. 18 (1997), 258-263.
[2] M. Birman, and M. Solomyak, Double operator integrals in a Hilbert space, Integral Equations Operator Theory 47, no. 2, (2003), 131-168.
[3] K. N. Boyadzhiev, Some inequalities for generalized commutators, Publ. RIMS, Kyoto University, 26, no. 3 (1990), 521-527.
[4] K. N. Boyadzhiev, Norm estimates for commutators of operators, J. London Math. Soc. 57 (2) (1998), 739-745.
[5] M. I. GiL', Operator Functions and Localization of Spectra, Lecture Notes In Mathematics, vol. 1830, Springer-Verlag, Berlin, 2003.
[6] M. I. GIL', Perturbations of functions of operators in a Banach space, Math. Phys. Anal. Geom. 13, no. 1, (2010) 69-82.
[7] M. I. GIL', Perturbations of operator functions in a Hilbert Space, Communications in Mathematical Analysis 13, no. 2, (2012) 108-115.
[8] I. C. Gohberg, and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Trans. Mathem. Monographs, v. 18, Amer. Math. Soc., Providence, R. I, 1969.
[9] P. Halmos, Hilbert Space Problem Book, Second edition, Springer Verlag, New York, 1982.
[10] F. Kittaneh, Norm Inequalities for commutators of G_{1} operators, Complex Anal. Oper. Theory 10, (2016) 109-114.
[11] V. Peller, Hankel operators in perturbation theory of unbounded self-adjoint operators, in the book Analysis and Partial Differential Equations, Lecture Notes in Pure and Appl. Math. 122, Marcel Dekker, New York, 1990, pp. 529-544.
(Received April 1, 2016)

[^0]: Mathematics subject classification (2010): 47B47, 47A30, 47B10, 47A56, 47A55.
 Keywords and phrases: Generalized commutator, inequality, nonself-adjoint operators, operator function, Hilbert-Schmidt norm.

