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Abstract. We consider diffusive systems, regarded as input/output systems with a kernel given
as the Fourier–Borel transform of a measure in the left half-plane. Associated with these are a
family of weighted Hankel integral operators, and we provide conditions for them to be bounded,
Hilbert–Schmidt or nuclear, thereby generalizing results of Widom, Howland and others.

1. Introduction

In this paper we explore various operator-theoretic properties associated with lin-
ear time-invariant systems, beginning with the comparatively simple property of BIBO
stability and then considering properties of weighted integral operators, including Han-
kel operators used in H∞ approximation (see, e.g. [5]) and the Glover operator used in
L2 approximation [6].

The systems we consider will have impulse responses expressible as Laplace trans-
forms of measures, and thus may be discussed using the language of diffusive systems
in the sense of Montsény. In [11], diffusive systems are defined as SISO linear time-
invariant convolution systems of the form

y(t) =
∫ t

0
h(t− τ)u(τ)dτ,

where the impulse reponse h is the Laplace transform of a signed measure (or more
generally a distribution) μ defined on (0,∞) ; i.e.,

h(t) =
∫ ∞

0
e−ξ t dμ(ξ ) (t � 0).

The associated transfer function is the Stieltjes transform of μ , given by the formula

G(s) = (L h)(s) =
∫ ∞

0
e−sth(t)dt =

∫ ∞

0

dμ(ξ )
s+ ξ

for s ∈ C+ , the open right half-plane. As explained in [11] a diffusive system with
measure μ can be realized in terms of the heat equation

Ψt(x,t) = Ψxx(x,t)+ δ (x)u(t)
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with Ψ(x,0) = 0 (x ∈ R) , and

y(t) =
∫ ∞

−∞
4π2xΨ(x,t)dμ(4π2x2).

Some advantages of diffusive representations are that we may represent causal convo-
lutions as classical input/output dynamical systems. This allows the use of a range of
PDE techniques. Diffusive systems are also appropriate for modelling long-memory
systems, fractional integrators, etc.

More recently, in the book [12] and the tutorial article [3], the notion of a diffusive
system has been generalized. The starting point is now a mapping γ ∈W 1,∞(J;C) , the
classical Sobolev space of absolutely continuous functions with γ , γ ′ bounded; here
J is a subset of R , defining a closed (possibly at ∞) contour lying in a sector in the
left-hand complex half-plane C− ; in this case we have the expression

h(t) =
1

2π i

∫
γ
et pG(p)dp =

∫
J
eγ(ξ )tμ(ξ )dξ ,

where G = L h is the transfer function, and μ(ξ ) =
γ ′(ξ )
2π i

G(γ(ξ )) .
In this note we shall work with a more convenient definition, which is also slightly

more general. We take an arbitrary σ -finite Borel measure μ on C− satisfying the
condition ∫

C−
ets d|μ |(s) < ∞ for all t > 0. (1)

This enables us to define h directly as the Fourier–Borel transform of μ , namely,

h(t) =
∫

C−
et p dμ(p), (2)

in which case we also have the Stieltjes transform formula

G(s) =
∫

C−

dμ(p)
s− p

for s ∈ C+.

Since the functionals f �→ f (k)(a) can be expressed using Cauchy integrals for any
a ∈ C− and k = 0,1,2, . . . we see that the impulse responses tke−at , and hence all
finite-dimensional stable systems, can be represented in this way using measures μ
(rather than requiring distributions).

REMARK 1.1. Yet more general definitions in terms of holomorphic distributions
can be found in the thesis [1]. For if we let X denote the Fréchet space of analytic
functions f : C+ → C satisfying the condition that each of the seminorms

‖ f‖n = max
0� j�n

max
0�k� j+1

sup
z∈C−

|(Rez)k f ( j))(z)|

is finite, then we may define the Fourier–Borel and Stieltjes transforms of distributions
in the dual space of X , since X contains the exponentials p �→ ept for t > 0 as well
as the kernels p �→ 1/(s− p) for s ∈ C+ .
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2. Stability and weighted Hankel operators

2.1. Stability

The following result may be seen as a natural generalization of the result of Mont-
seny [11, Thm. 4.4], which applies to measures on R+ .

PROPOSITION 2.1. Let h be an impulse response given by the diffusive represen-
tation (2), where the associated measure μ satisfies (1). If in addition μ satisfies the
condition ∫

C−

d|μ |(p)
|Re p| < ∞, (3)

then the impulse response h lies in L1(0,∞) , thus defining a BIBO-stable system. For
positive measures supported on (−∞,0) condition (3) is necessary and sufficient for
BIBO stability.

Proof. We have

∫ ∞

0
|h(t)|dt �

∫ ∞

t=0

∫
p∈C−

|et p|d|μ |(p)dt =
∫

p∈C−

d|μ |(p)
|Re p| < ∞,

by Fubini’s theorem, and this implies the BIBO stability.
In the case that μ � 0 and suppμ ⊂ (−∞,0) , we have equality in the above, i.e.,

∫ ∞

0
|h(t)|dt =

∫ ∞

0
h(t)dt =

∫
R−

dμ(p)
|p| .

Hence if (3) fails to hold, the system is not BIBO stable (consider the constant input
u(t) = 1). �

2.2. Weighted Hankel operators

Achievable bounds in model reduction are linked to properties of the Hankel op-
erator Γ , which we can define on L2(0,∞) by

(Γu)(t) =
∫ ∞

0
h(t + τ)u(τ)dτ.

For finite-dimensional systems it is a finite-rank operator, and its rank is the McMillan
degree of the system. If h ∈ L1 the operator Γ is compact. So, defining its singular
values as

σk(Γ) = inf{‖Γ−T‖ : rank(T ) < k},
we have σk → 0. For effective H∞ model reduction by balanced truncation or op-
timal Hankel-norm reduction we require Γ to be nuclear (see [5, 7]); that is, we re-
quire ∑∞

k=1 σk < ∞ . Indeed, the optimal H∞ error Ek for a degree-k approximation is
bounded by

σk+1 � Ek � σk+1 + σk+2 + . . . .
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For L2 model reduction, the weighted Hankel operator Θ introduced by Glover
[6], and defined by

(Θu)(t) =
1√
π

∫ ∞

0
t−1/4h(t + τ)τ−1/4u(τ)dτ

plays a significant role. It satisfies ‖Θ‖HS = ‖h‖L2 , where HS denotes the Hilbert–
Schmidt norm given by

‖Θ‖2
HS =

∞

∑
k=1

σ2
k .

Moreover rank(Θ) is the McMillan degree of the system (as for Hankel operators),
meaning that L2 errors for degree-k approximation are bounded below by

(
σ2

k+1 + σ2
k+2 + . . .

)1/2
.

In order to study these and similar operators in the same framework, we define for
measurable w : (0,∞) → (0,∞) the weighted Hankel operator Γh,w on L2(0,∞) , by

(Γh,wu)(t) =
∫ ∞

0
w(t)h(t + τ)w(τ)u(τ)dτ, (4)

which, if bounded, is self-adjoint whenever h is real-valued.

THEOREM 2.2. Let w satisfy the condition ψp ∈ L2(0,∞) for each p ∈ C− ,
where

ψp(t) = w(t)ept .

If ∫
C−

‖ψp‖2
2d|μ |(p) < ∞, (5)

then the weighted Hankel operator Γh,w given by (2) and (4) is nuclear. In the case
that μ � 0 and μ is supported on R− , Condition (5) is necessary and sufficient for
nuclearity.

Proof. Clearly by using the Hahn–Jordan decomposition of the real and imaginary
parts of μ we may suppose without loss of generality that μ � 0. We now adapt a proof
of Howland [8] and define an operator T0 by

T0u =
∫

C−
〈u,ψp〉ψp dμ(p) (u ∈ L2(0,∞)).

We then have that T0 = T and the nuclear norm of T is bounded by

‖T‖ �
∫

C−
‖ψp‖2

2 dμ(p). (6)

Finally, if μ � 0 and μ is supported on R− , the elementary operators u �→ 〈u,ψp〉ψp

are all positive, and so equality holds in (6). �
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The following corollary contains Howland’s result on nuclearity of Hankel oper-
ators (the case α = 0), as well as a result on the nuclearity of Glover’s operators (the
case α = −1/4).

COROLLARY 2.3. Suppose that α > − 1
2 and let w(t) = tα for t > 0 . Then the

weighted Hankel operator Γh,w is nuclear provided that

∫
C−

d|μ |(p)
|Re p|2α+1 < ∞. (7)

In the case that μ � 0 is supported on R− , condition (7) is necessary and sufficient for
nuclearity.

Proof. This follows directly from Theorem 2.2, noting that

‖ψp‖2
2 =

∫ ∞

0
t2αe2(Re p)t dt =

∫ ∞

0

( u
2x

)2α
e−u du

2x
,

where x = −Re p and u = 2xt . �
Note that nuclearity of the unweighted Hankel operator implies BIBO stability of

the associated linear system [5], so that Corollary 2.3 directly implies Proposition 2.1.

REMARK 2.4. The example dμ(p) = (sin p)dp for p < 0 leads to h(t) = 1/(t2+
1) and a nuclear Hankel operator (as seen from [8, Thm 2.1]), showing that for signed
measures condition (7) is not always necessary for nuclearity. There are further details
and examples in [1, Chap. 3].

The Hilbert–Schmidt condition is rather easier to test, but we include the following
specimen result for completeness.

PROPOSITION 2.5. Suppose that w(t)= tα with α >−1/2 . Then Γh,w is Hilbert-
Schmidt if and only if ∫ ∞

0
u4α+1|h(u)|2 du < ∞.

If μ � 0 is supported on R− , then this holds if and only if

∫
R−

∫
R−

dμ(x)dμ(y)
|x+ y|4α+2 < ∞.

Proof. It is well known (see e.g. [4, Chap. 2]) that an integral operator on a
space L2(X) , given by a measurable kernel K(s,t) , is Hilbert–Schmidt if and only
K ∈ L2(X ×X) . Since

∫ ∞

t=0

∫ ∞

τ=0
w(t)2|h(t + τ)|2w(τ)2 dt dτ =

∫ ∞

u=0

∫ u

τ=0
(u− τ)2ατ2α |h(u)|2 dudτ

=
∫ ∞

u=0

∫ 1

λ=0
u4α |h(u)|2(1−λ )2αλ 2αududλ ,
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we have the first expression; then, using the formula (2) for h , we arrive at

C1

∫ ∞

0
u4α+1

∫
R−

∫
R−

eu(x+y) dμ(x)dμ(y)du = C2

∫
R−

∫
R−

dμ(x)dμ(y)
|x+ y|4α+2 ,

where C1 and C2 are constants depending only on α . �
A far more difficult question is the boundedness of Γh,w . For unweighted Han-

kel operators, much is known: for example, the reproducing kernel thesis holds [2],
meaning that it is sufficient (and clearly also necessary) that sups∈C− ‖Γks‖/‖ks‖ < ∞ ,
where ks(t) = est (these act as reproducing kernels in H2(C+)). However, it is not
known whether this result generalises to weighted Hankel operators.

We shall take an approach based on results in [13] for unweighted Hankel opera-
tors, combined with very recent results from [10] on Carleson embeddings.

LEMMA 2.6. Suppose that μ � 0 is supported on R− , and that h is given by (2).
Let w be a non-negative weight on (0,∞) . Define Zμ : L2(0,∞) → L2(C−,μ) by

Zμ f (s) =
∫ ∞

0
w(t)est f (t)dt.

Then Γh,w is bounded if and only if Zμ is bounded, and this holds if and only if the
reversed Laplace transform R given by

(R f )(s) =
∫ ∞

0
est f (t)dt

is a bounded operator from L2(0,∞;dt/w(t)2) into L2(C−,μ) .

Proof. If Zμ is bounded, we have

〈Zμ f ,Zμg〉 =
∫

s∈R−

∫ ∞

0
w(t)est f (t)dt

∫ ∞

0
w(τ)esτg(τ)dτ dμ(s) = 〈Γh,w f ,g〉,

so that Γh,w is also bounded. Conversely, putting f = g , we see that the boundedness
of Γh,w implies the boundedness of Zμ . The mapping f �→ f w is an isometry between
L2(0,∞) and L2(0,∞;dt/w(t)2) , and so the last assertion follows. �

The case w(t) = 1 is due to Widom, and is equivalent to the condition that μ is a
Carleson measure in the space H2(C−) , so that μ(−x,0) = O(x) as x → 0 and x → ∞
(see [13, 14]). We are able to extend this result to the class of power weights as follows.

THEOREM 2.7. Let w(t) = tα for α ∈ R , and let μ � 0 be a measure supported
on R− .

(i) If −1/2 < α < 0 , then Γh,w is bounded if and only there is a γ > 0 such that
μ(−2x,−x) � γx1+2α for all x > 0 .

(ii) If α = 0 , then Γh,w is bounded if and only if there is a γ > 0 such that if
μ(−x,−0) � γx for all x > 0 .

(iii) If α > 0 , then Γh,w is bounded if and only if there is a γ > 0 such that if
μ(−x,−0) � γx1+2α for all x > 0 .
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Proof. (i) By Lemma 2.6, boundness of Γh,w is equivalent to boundedness of the
reversed Laplace transform R : L2(0,∞;dt/w(t)2) into L2(C−,μ) . By [10, Thm. 3.11]
this is equivalent to the condition μ(−2x,−x) � γx1+2α .

(ii) This is Widom’s result [14]. See also [13, Thm. 2.5]. It can also be shown as
in (iii) below.

(iii) Again, by Lemma 2.6, boundness of Γh,w is equivalent to boundedness of the
reversed Laplace transform R : L2(0,∞;dt/w(t)2) into L2(C−,μ) . We have 1/w(t)2 =
t−2α , and since for β > −1 we have

∫ ∞

0
e−2rt rβ dr =

∫ ∞

0
e−u

( u
2t

)β du
2t

=
Γ(β +1)
2β+1tβ+1

,

it follows from [9, Prop. 2.3] that with 2α = β + 1 the space L2(0,∞;dt/w(t)2) is
isomorphic under the Laplace transform to a Zen space, which in this case is a weighted
Bergman space with weight |x|2α−1 dxdy . Then [9, Theorem 2.4] implies that R is
bounded if and only if

μ(−x,0) � γx
∫ x

0
r2α−1 dr = γ ′x1+2α

for constants γ,γ ′ > 0. �

EXAMPLE 2.8. (i) Take dμ(x) = dx , Lebesgue measure. Thus h(t) = 1/t . This
μ satisfies the condition (ii) of Theorem 2.7, but not Condition (i) with α = −1/4.
Therefore the Hilbert–Hankel operator defined by

Γu(t) =
∫ ∞

0

u(τ)
t + τ

dτ

is bounded on L2(0,∞) (as is well-known), whereas the corresponding Glover operator
defined by

Θu(t) =
∫ ∞

0
t−1/4 u(τ)

t + τ
τ−1/4 dτ

is unbounded.
(ii) Next take dμ(x) = |x|−1/2 dx so that

h(t) =
∫ ∞

0
e−tx√xdx =

√
πt−1/2.

Now μ satisfies Condition (i) with α = −1/2, but not Condition (ii). Therefore we
conclude that the Hankel operator defined by

Γu(t) =
∫ ∞

0

u(τ)
(t + τ)1/2

dτ

is unbounded on L2(0,∞) but the Glover operator defined by

Θu(t) =
∫ ∞

0
t−1/4 u(τ)

(t + τ)1/2
τ−1/4 dτ
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is bounded. However Θ is not Hilbert–Schmidt, since h �∈ L2(0,∞) , which incidentally
provides an example asked for by K. Glover in conversation.

REMARK 2.9. Lemma 2.6 and Theorem 2.7 have partial extensions to sectorial
measures supported on C− . The key observation is that we now have

〈Zμ f ,Zμg〉 = 〈Γh,w f ,g〉,
so that boundedness of the Laplace–Carleson embedding is sufficient (although possi-
bly not always necessary) for the boundedness of the integral operator. We leave the
details to the interested reader.
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