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Abstract. Let H and K be two infinite-dimensional complex Hilbert spaces, and fix two
nonzero vectors h0 ∈ H and k0 ∈ K . Let L (H ) (resp. L (K ) ) denote the algebra of
all bounded linear operators on H (resp. on K ), and let F2(K ) be the set of all operators
in L (K ) of rank at most two. We show that a map ϕ from L (H ) into L (K ) such that its
range contains F2(K ) satisfies

σϕ(T )ϕ(S)∗+ϕ(S)∗ϕ(T )(k0) = σTS∗+S∗T (h0), (T, S ∈ L (H )),

if and only if there exist a unitary operator U from H into K and a scalar α ∈ C such that
Uh0 = αk0 and ϕ(T) = λUTU∗ for all T ∈ L (H ) , where λ is a scalar of modulus 1 .

1. Introduction and statement of the main result

Let X and Y be two infinite-dimensional complex Banach spaces, and let B(X ,Y )
denote the space of all bounded linear maps from X into Y . When X = Y , we sim-
ply write B(X) instead of B(X ,X) and denote its identity operator by 1 . The local
resolvent set, ρT (x) , of an operator T ∈ B(X) at a point x ∈ X is the union of all
open subsets U of C for which there is an analytic function φ : U → X such that
(T − λ )φ(λ ) = x , (λ ∈ U) . The local spectrum of T at x is defined by σT (x) :=
C \ρT (x), and is obviously a closed subset (possibly empty) of σ(T ) , the spectrum
of T . In fact, σT (x) �= /0 for all nonzero vectors x in X precisely when T has the
single-valued extension property (SVEP). Recall that T is said to have SVEP provided
that for every open subset U of C , the equation (T −λ )φ(λ ) = 0, (λ ∈U) , has no
nontrivial analytic solution φ . Every operator T ∈ B(X) for which the interior of its
point spectrum, σp(T ) , is empty enjoys this property. Our references are the books by
P. Aiena [2] and by K. B. Laursen, M. M. Neumann [14] which provide an excellent
exposition as well as a rich bibliography of the local spectral theory.

In recent years, there has been considerable interest in studying preserver problems
of local spectra; see [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] and the references therein. In [4],
A. Bourhim and M. Mabrouk described maps from B(X) onto B(Y ) preserving the
local spectrum of the Jordan product of operators, and established the following result.
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THEOREM 1.1. ([4]) Let x0 ∈ X and y0 ∈ Y be two nonzero vectors. A map ϕ
from B(X) onto B(Y ) satisfies

σϕ(T )ϕ(S)+ϕ(S)ϕ(T )(y0) = σTS+ST (x0), (T, S ∈ B(X)), (1.1)

if and only if there exists a bijective bounded linear mapping A from X into Y such
that Ax0 = y0 and ϕ(T ) = ±ATA−1 for all T ∈ B(X) .

In the sequel, let H and K be two infinite-dimensional complex Hilbert spaces,
and let T ∗ denote as usual the adjoint of any operator T ∈L (H ) . The purpose of this
note is to characterize all maps ϕ from L (H ) into L (K ) which preserve the local
spectrum of the skew-Jordan product “TS∗+S∗T ” of operators.

The main result of this article is the following

THEOREM 1.2. Let h0 ∈ H and k0 ∈ K be two nonzero vectors, and let ϕ be
a map from L (H ) into L (K ) such that its range contains F2(K ) , the ideal of all
operators in L (K ) of rank at most two. Then ϕ satisfies

σTS∗+S∗T (h0) = σϕ(T )ϕ(S)∗+ϕ(S)∗ϕ(T )(k0), (T, S ∈ L (H )), (1.2)

if and only if there exist a scalar α and a unitary operator U ∈ L (H ,K ) such that
Uh0 = αk0 and ϕ(T ) = λUTU∗ for all T ∈ L (H ) , where λ is a scalar of modulus
1 .

Our arguments are influenced by ideas from [4] and the approach given therein,
but, besides some known results quoted from [4], the proof of the above result requires
new ingredients which will be established in Section 3. We also would like to mention
that without any restriction on the range of the map ϕ , our result does not hold as
σT⊕T (h⊕ h) = σT (h) for all T ∈ L (H ) and all h ∈ H . We also would like to
point out that if H and K are isomorphic Hilbert spaces, then the statements of our
result can be reduced to the case when H = K and h0 = k0 . But the fact that “H
and K are isomorphic” is a part of the conclusion of this result rather being a part
of its hypothesis. Finally, we would like to point out that the restriction to infinite-
dimensional Hilbert spaces in the statement of A. Bourhim and M. Mabrouk’s result
[4] and our main result are just for the sake of simplicity. These results and their proofs
remain valid for finite-dimensional case. In fact, A. Bourhim and M. Mabrouk showed
in [3] that Theorem 1.1 remains valid when X = Cn is a finite-dimensional Banach
space and without the surjectivity of the map ϕ or any restriction on its range.

2. Preliminaries

In this section, we collect some elementary properties of the local spectra together
with useful results from [4] that will be used in the proof of the main theorem.
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2.1. Elementary properties of the local spectrum

The following lemma summarizes some basic properties of the local spectrum; see
for instance [2, 14].

LEMMA 2.1. For an operator T ∈L (H ) , two vectors x, y ∈ H and a nonzero
scalar α ∈ C , the following statements hold.

(a) If T has SVEP, then σT (x) �= /0 provided that x �= 0 .

(b) σT (αx) = σT (x) and σαT (x) = ασT (x) .

(c) σT (x+ y)⊂ σT (x)∪σT (y) . The equality holds if σT (x)∩σT (y) = /0 .

(d) If T has SVEP, x �= 0 and Tx = λx for some λ ∈ C , then σT (x) = {λ} .

(e) If T has SVEP and Tx = αy, then σT (y) ⊂ σT (x) ⊂ σT (y)∪{0} .

( f ) If R ∈ L (H ) commutes with T , then σT (Rx) ⊂ σT (x) .

(g) σTn(x) = {σT (x)}n for all x ∈ H and n � 1 .

In the sequel, for two vectors x and y in H , let x⊗ y stand for the operator of
rank at most one defined by

(x⊗ y)z := 〈z,y〉x, (z ∈ H ).

Note that every rank one operator in L (H ) has such a form and that every finite rank
operator T ∈ L (H ) can be written as a finite sum of rank one operators in L (H ) .
Let F (H ) denote the ideal of all finite rank operators on H . For a positive integer n ,
let Fn(H ) be the set of all operators of L (H ) of rank at most n . Denote by N1(H )
the set of all rank one nilpotent operators on H , and observe that x⊗ y ∈ N1(H ) if
and only if 〈x,y〉 = 0. For a nonzero h0 ∈ H and an operator T ∈ L (H ) , we use a
useful notation defined by A. Bourhim and J. Mashreghi in [5, 6] by

σ∗
T (h0) :=

⎧⎨
⎩

{0} if σT (h0) = {0}

σT (h0)\ {0} if σT (h0) �= {0}.
(2.3)

The second lemma, quoted from [4], gives a complete description of the local
spectrum at a fixed vector of Jordan product of every rank one operator and arbitrary
operator in L (H ) .

LEMMA 2.2. ([4, Lemma 3.4]) Let x , ho and y be any nonzero vectors in H .
Then, for every operator T ∈ L (H ) , the following statements hold.

1. If 〈h0,y〉 = 〈Th0,y〉 = 0 , then

σ∗
T (x⊗y)+(x⊗y)T (h0) = {0}.
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2. If 〈h0,y〉 �= 0 or 〈Th0,y〉 �= 0 and 〈x,y〉 = 0 or 〈T 2x,y〉 = 0 , then

σ∗
T (x⊗y)+(x⊗y)T (h0) = {〈Tx,y〉}.

The following lemma, quoted from [4], is a useful observation, and together with a
local spectral identity principal and local spectral characterization of rank one nilpotent
operators given below allow us to show that if a map ϕ from L (H ) into L (K ) pre-
serves the local spectrum at a fixed nonzero vector of skew Jordan product of operators
and its range contains F2(K ) , then ϕ is automatically a bijective linear map from
N1(H ) into N1(K ) .

LEMMA 2.3. ([4, Lemma 3.5]) Let h0 be a nonzero vector in H . For every
N ∈ N1(X ) , we have

σ∗
(T+S)N∗+N∗(T+S)(h0) = σ∗

TN∗+N∗T (h0)+ σ∗
SN∗+N∗S(h0)

for all T, S ∈ L (H ) .

2.2. Local spectral identity principles

In this section, we state two local spectral identity principles that will be exploited
in the proof of Theorem 1.2. The first principle provides necessary and sufficient con-
ditions for two operators to be the same modulo a scalar operator.

LEMMA 2.4. ([4, Theorem 4.1]) Let h0 be a nonzero vector in H . For two
operators A, B ∈ L (H ) , the following statements are equivalent.

1. A = B+ δ1 for some δ ∈ C .

2. σ∗
AN+NA(h0) = σ∗

BN+NB(h0) for all N ∈ N1(H ) .

The following result is the second promised principle that gives necessary and
sufficient conditions for two operators to be the same.

LEMMA 2.5. ([4, Theorem 4.3]) For a nonzero vector h0 in H and two opera-
tors A and B in L (H ) , the following statements are equivalent.

1. A = B.

2. σ∗
AT∗+T ∗A(h0) = σ∗

BT∗+T ∗B(h0) for all T ∈ L (H ) .

3. σ∗
AT∗+T ∗A(h0) = σ∗

BT∗+T ∗B(h0) for all T ∈ F1(H ) .
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2.3. Characterization of rank one nilpotent operators

In term of local spectrum at fixed nonzero vector h0 ∈H of operator Jordan skew
product, the following result characterizes all rank one nilpotent operators N = x⊗ y
for which x is linearly independent with h0 .

LEMMA 2.6. ([4, Theorem 5.3]) For a nonzero vector h0 in H and a nonzero
operator N ∈ L (H ) not of the form γI + h0 ⊗ y, where γ ∈ C and y ∈ H , the
following statements are equivalent.

1. N is a rank one nilpotent operator.

2. σ∗
NT ∗+T ∗N(h0) is a singleton for all T ∈ L (H ) .

3. σ∗
NT ∗+T ∗N(h0) is a singleton for all T ∈ F2(H ) .

The next result shows that there are operators N ∈ L (H ) other than rank one
nilpotent operators for which σ∗

NT ∗+T∗N(h0) is a singleton.

LEMMA 2.7. ([4, Theorem 5.4]) For a nonzero vector h0 in H and a nonzero
operator N ∈ L (H ) , the following statements are equivalent.

1. N = γI +h0⊗ y for some γ ∈ C and y ∈ H for which 2γ + 〈h0,y〉 = 0 .

2. σ∗
NT ∗+T ∗N(h0) is a singleton for all T ∈ L (H ) .

3. σ∗
NT ∗+T ∗N(h0) is a singleton for all T ∈ F2(H ) .

The following lemma describes, in terms of the local spectrum at fixed nonzero
vector h0 ∈H of operator Jordan product, all rank one nilpotent operators of the form
h0⊗ y for which 〈h0,y〉 = 0.

LEMMA 2.8. ([4, Corollary 5.5]) Let h0 be a nonzero vector in H , and N ∈
L (H ) be a nonzero operator. Then the following statements are equivalent.

1. N = h0⊗ y for some y ∈ H for which 〈h0,y〉 = 0 .

2. σN(h0) = {0} , and σNT+TN(h0) is a singleton for all T ∈ L (H ) .

3. σN(h0) = {0} , and σNT+TN(h0) is a singleton for all T ∈ F2(H ) .

3. Auxiliary results

In this section, we establish two more lemmas needed for the proof of our main
result.

LEMMA 3.1. Let h0 ∈ H and k0 ∈ K be two nonzero fixed vectors and A be
a bijective linear operator form H to K , and ϕ : N1(H ) −→ N1(K ) be the map
defined by ϕ(N) := λANA−1 for all N ∈ N1(H ) , for some nonzero scalar λ ∈ C . If
ϕ satisfies Eq. (1.2) for all S and T in N1(H ) , then A = βU where U is a unitary
operator and β > 0 and there exists a nonzero scalar α ∈ C such that Ah0 = αk0 .
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Proof. First, we will show that A is a scalar multiple of a unitary operator. Since
A is invertible, it suffices to show that the operator V := A∗A is a scalar multiple of the
identity 1 . Observe that, for any orthogonal vectors x, y ∈ H , we have

{0} = σ∗
(x⊗y)(x⊗y)+(x⊗y)(x⊗y)(h0)

= σ∗
(x⊗y)(y⊗x)∗+(y⊗x)∗(x⊗y)(h0)

= σ∗
ϕ(x⊗y)ϕ(y⊗x)∗+ϕ(y⊗x)∗ϕ(x⊗y)(k0)

= |λ |2σ∗
(Ax⊗yA−1(A−1)∗x⊗yA∗+(A−1)∗x⊗yA∗Ax⊗yA−1)(k0)

= |λ |2σ∗
A[(x⊗y)(A∗A)−1x⊗yA∗A+(A∗A)−1x⊗yA∗A(x⊗y)]A−1(k0)

= |λ |2σ∗
(x⊗y).(A∗A)−1x⊗y(A∗A)+(A∗A)−1x⊗y(A∗A).(x⊗y)(A

−1k0)

= |λ |2σ∗
(x⊗y).V−1x⊗yV+V−1x⊗yV.(x⊗y)(A

−1k0).

It follows that

σ∗
(x⊗y).V−1x⊗yV+V−1x⊗yV.(x⊗y)(A

−1k0) = {0}. (3.4)

Now, suppose to the contrary that V is not a scalar multiple of the identity. Then there
exists x ∈ H such that Vx and x are linearly independent. Observe, without loss of
generality, that we may and shall assume that x and A−1k0 are linearly independent.
By keeping in mind that V−1x and x are also linearly independent, then there exists
a ∈ H so that

〈x,a〉 = 0, 〈Vx,a〉 = 1 and 〈V−1x,a〉 �= 0.

Pick up a vector b ∈ H so that

〈x,b〉 = 0, 〈A−1k0,b〉 �= 0 and max(|〈Vx,b〉|, |〈V−1x,b〉|) < min(1, |〈V−1x,a〉|).
Set

y =

{
a+b if 〈A−1k0,a〉+ 〈A−1k0,b〉 �= 0

a−b if 〈A−1k0,a〉+ 〈A−1k0,b〉 = 0

We have 〈A−1k0,y〉 = 〈A−1k0,a〉 ± 〈A−1k0,b〉 �= 0. Then Lemma 2.2 and Eq. (3.4)
entail that {0} = {|λ |2〈V−1x,y〉} . Which is impossible since |λ |2〈V−1x,y〉 is non
zero. This contradiction shows that V = A∗A is a scalar multiple of the identity; as
claimed. Accordingly, A∗A = β 21 where β > 0. In the sequel, we may and shall
assume that A is a unitary operator.

Next, we show that Ah0 = αk0 for some nonzero scalar α . To that end, suppose to
the contrary that h0 and A−1k0 are linearly independent and take two vectors h1,h2 ∈
H such that h1 , h2 , h0 and A−1k0 are linearly independent. Pick up two vectors h3

and h4 in H such that

〈h0,h3〉 = 〈h2,h3〉 = 1, 〈h1,h3〉 = 〈A−1k0,h3〉 = 0,

and
〈h1,h4〉 = 1, 〈h2,h4〉 = 〈A−1k0,h4〉 = 0.
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By Lemma 2.2, we have

{1} = {〈h2,h3〉〈h1,h4〉} = σ∗
(h2⊗h4)(h3⊗h1)∗+(h3⊗h1)∗(h2⊗h4)(h0)

= σ∗
ϕ(h2⊗h4)ϕ(h3⊗h1)∗+ϕ(h3⊗h1)∗ϕ(h2⊗h4)(k0)

= |λ |2σ∗
A(h2⊗h4)(h1⊗h3)A∗+A(h1⊗h3)(h2⊗h4)A∗(k0)

= |λ |2σ∗
(h2⊗h4)(h1⊗h3)+(h1⊗h3)(h2⊗h4)(A

∗k0) = {0}.

This contradiction shows that A∗k0 = αh0 for some nonzero scalar α ∈ C .
The proof is thus complete. �

LEMMA 3.2. Let h0 ∈ H and k0 ∈ K be two nonzero fixed vectors and A :
H → K be a bijective bounded linear transformation, and ϕ be a map on N1(H )
defined for all N ∈ N1(H ) by

ϕ(N) := λAN∗A−1,

for some fixed λ ∈C . Then there are rank one nilpotent operators S,T ∈N1(H ) such
that

σTS∗+S∗T (h0) �= σϕ(T )ϕ(S)∗+ϕ(S)∗ϕ(T)(k0).

Proof. Assume by the way of contradiction that

σTS∗+S∗T (h0) = σϕ(T )ϕ(S)∗+ϕ(S)∗ϕ(T )(k0)

for all S, T ∈ N1(H ) . Just as in the proof of the previous lemma, one can show that

A is unitary operator (Otherwise we could just take the function ψ(N) =
λ
β 2 AN∗A∗

instead of ϕ where β is such that A = βU ). So, ϕ reads as ϕ(N) = λAN∗A∗ for all
N ∈ N1(H ) . Now take two nonzero vectors x1 and x2 ∈ {A∗(k0)}⊥ such that h0,x1

and x2 are linearly independent. Then there exists two vectors y1 and y2 ∈ H such
that

〈x2,y1〉 = 〈h0,y1〉 = 1,〈x1,y1〉 = 0 and 〈x2,y2〉 = 0,〈x1,y2〉 = 1.

For N1 := x1⊗ y1 and N2 := x2 ⊗ y2 , we have (N∗
1N∗

2 +N∗
2N∗

1 )(A∗(k0)) = 0 and

{1} = {〈x1,y2〉.〈x2,y1〉}
= σ∗

(x2⊗y2)(x1⊗y1)+(x1⊗y1)(x2⊗y2)(h0)

= σ∗
ϕ(x2⊗y2)ϕ(y1⊗x1)∗+ϕ(y1⊗x1)∗ϕ(x2⊗y2)(k0)

= |λ |2σ∗
A(x2⊗y2)∗A∗A(x1⊗y1)∗A∗+A(x1⊗y1)∗A∗A(x2⊗y2)∗A∗(k0)

= |λ |2σ∗
A[N∗

2 N∗
1 +N∗

1 N∗
2 ]A∗(k0)

= |λ |2σ∗
N∗

2 N∗
1 +N∗

1 N∗
2
(A∗k0) = {0}.

This is a contradiction, and thus the proof of this lemma is complete. �
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4. Proof of the main result ‘Theorem 1.2’

Assume that there exists unitary operator U from H into K such that Uh0 =
αk0 for some scalar α ∈ C and ϕ(T ) = λUTU∗ for all T ∈ L (H ) where |λ | = 1.
We have

σϕ(S)ϕ(T )∗+ϕ(T)∗ϕ(S)(k0) = λ λ σUSU∗UT ∗U∗+UT ∗U∗USU∗ (k0) = σST ∗+T∗S(x0)

for all operators T and S in L (H ) . This establishes the ’if’ part, and we now move
to prove the ’only if’ part. So, assume that ϕ satisfies (1.2), and let us proceed to show
that ϕ takes the desired form. The proof breaks down into several claims.

CLAIM 1. ϕ is injective and ϕ(0) = 0 .

If ϕ(A) = ϕ(B) for some operators A, B ∈ L (H ) , then by (1.2) we get

σAT∗+T ∗A(h0) = σϕ(A)ϕ(T)∗+ϕ(T )∗ϕ(A)(k0)
= σϕ(B)ϕ(T)∗+ϕ(T )∗ϕ(B)(k0)
= σBT∗+T ∗B(h0)

for all T ∈ L (H ) . By Lemma 2.5, we see that A = B and thus ϕ is injective. In a
similar way, we show that ϕ(0) = 0. Indeed, let S ∈ L (K ) be a rank one operator
and note that, since the range of ϕ contains all rank one operators, there is T ∈L (H )
such that ϕ(T ) = S . We have

σϕ(0)S∗+S∗ϕ(0)(k0) = σϕ(0)ϕ(T )∗+ϕ(T )∗ϕ(0)(k0)
= σ0.T ∗+T ∗.0(h0) = {0}
= σ0.ϕ(T )∗+ϕ(T )∗.0(k0)
= σ0.S∗+S∗.0(k0).

Since S is an arbitrary rank one operator in L (K ) , Lemma 2.5 entails that ϕ(0) = 0.

CLAIM 2. ϕ preserves rank one nilpotent operators in both directions.

Let N = x⊗ y ∈ L (H ) be a nonzero rank one nilpotent operator, where x and y
are two vectors in H . We distinguish two cases.

Case 1: If x and h0 are linearly independent, then obviously N is not of the form
γ1+ h0 ⊗ y with 2γ + 〈h0,y〉 = 0. Thus Lemma 2.7 tells us that ϕ(N) is not of this
form either. Now, note that σ∗

NT ∗+T∗N(h0) is a singleton for all T ∈ L (H ) , and so
does σ∗

ϕ(N)ϕ(T )∗+ϕ(T )∗ϕ(N)(k0) for all T ∈ L (H ) . Since ϕ(N) �= 0, by Lemma 2.6
and the fact that the range of ϕ contains F2(K ) , we see that ϕ(N) is a rank one
nilpotent operator too.

Case 2: If x = αh0 for some nonzero scalar α ∈ C , then N = h0 ⊗ (αy) . So
N∗ = (αy)⊗ h0 is a nonzero rank one nilpotent operator. Since y and h0 are lin-
early independent, then N∗ is not of the form γ1+ h0 ⊗αh0 with 2γ + α‖h0‖2 = 0.
By Lemma 2.7, we see that ϕ(N)∗ is not of this form either. Since σTN∗+N∗T (h0) =
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σϕ(T )ϕ(N)∗+ϕ(N)∗ϕ(T )(k0) is a singleton for all T ∈ L (H ) and since ϕ(N)∗ �= 0, and
the range of ϕ contains all operators of rank at most 2, Lemma 2.6 tells us that ϕ(N)∗
is a rank one nilpotent operator and so is ϕ(N) .

Conversely let ϕ(N) = y⊗ z be a nonzero rank one nilpotent operator of L (K ) ,
where y and z are two vectors in K . Firstly, let us suppose that y and k0 are
linearly independent, and then obviously ϕ(N) is not of the form γ1 + k0 ⊗ z with
2γ + 〈ko,z〉 = 0. Thus, by Lemma 2.7, N is not of this form either. Now, note that
σ∗

ϕ(N)ϕ(T )∗+ϕ(T )∗ϕ(N)(k0) is a singleton for all T ∈ L (H ) , and so is σ∗
NT ∗+T∗N(h0)

for all T ∈ L (H ) . Since N �= 0, by Lemma 2.6 and the fact that the range of ϕ
contains F2(K ) , we see that N is a rank one nilpotent operator. In order to finish the
proof of claim, let us consider the case where y and k0 are linearly dependent. That is
ϕ(N) = k0⊗ z for some nonzero vector z ∈ K . Then by Eq. (1.2) one can sees easily
that σN(h0) = {0} , and σNT+TN(h0) is a singleton for all T ∈ L (H ) . By Lemma
2.8, we infer that N is of the form h0 ⊗ y for some nonzero vector y ∈ H such that
〈h0,y〉 = 0. This ends the proof of Claim 2.

CLAIM 3. ϕ is homogeneous.

For every λ ∈ C and S, T ∈ L (H ) , we have

σϕ(T )(λ ϕ(S))∗+(λ ϕ(S))∗ϕ(T )(k0) = λ σϕ(T )ϕ(S)∗+ϕ(S)∗ϕ(T)(k0)

= λ σTS∗+S∗T (h0)
= σT (λS)∗+(λS)∗T (h0)
= σϕ(T )ϕ(λS)∗+ϕ(λS)∗ϕ(T)(k0).

Since the range of ϕ contains all rank one operators, Lemma 2.5 shows that ϕ(λS)∗ =
(λ ϕ(S))∗ for all λ ∈ C and S ∈ L (H ) . Accordingly, ϕ(λS) = λ ϕ(S) for all λ ∈ C

and S ∈ L (H ) .

CLAIM 4. ϕ(1) = α1 where |α| = 1 , and thus upon replacing ϕ by αϕ , there
is no loss of generality in assuming that α = 1 .

For any rank one nilpotent operator N , we have from (1.2) that

σϕ(N)ϕ(1)∗+ϕ(1)∗ϕ(N)(k0) = 2σN(h0) = {0} = σϕ(N)0∗+0∗ϕ(N)(k0).

Since ϕ preserves nilpotent rank one operators in both directions, Lemma 2.4 implies
that ϕ(1) = α1 for some scalar α ∈ C . Since

{2} = σ1+1(h0) = σϕ(1)ϕ(1)∗+ϕ(1)∗ϕ(1)(k0) = {2αα},

we see that |α| = 1 and thus ϕ(1) = α1 with |α| = 1.

CLAIM 5. When restricted on N1(H ) , the map ϕ takes one of the following
forms:



142 A. ACHCHI, M. MABROUK AND R. MARZOUKI

(1) There exists a bijective bounded linear or conjugate linear transformation A :
H → K such that

ϕ(N) = τNANA−1 (4.5)

for all N ∈ N1(H ) , where τN is a scalar depending on N .

(2) There exists a bijective bounded linear or conjugate linear transformation A :
H → K such that

ϕ(N) = τNAN∗A−1 (4.6)

for all N ∈ N1(H ) , where τN is a scalar depending on N .

Let us begin by showing that for N1, N2 ∈N1(H ) for which N1 +N2 ∈N1(H ) ,
we have

ϕ(N1 +N2) = ϕ(N1)+ ϕ(N2). (4.7)

Since ϕ preserves rank one nilpotent operators in both directions, it suffices to show
that for every operators S, T ∈ L (H ) , there is δS, T such that

ϕ(S+T) = ϕ(S)+ ϕ(T)+ δS, T 1. (4.8)

To that end, pick two operator S, T ∈ L (H ) and N ∈ N1(H ) . By Lemma 2.3 and
condition (1.2), we have

σ∗
ϕ(T+S)ϕ(N)∗+ϕ(N)∗ϕ(S+T )(k0) = σ∗

(S+T )N∗+N∗(S+T )(h0)
= σ∗

TN∗+N∗T (h0)+ σ∗
SN∗+N∗S(h0)

= σ∗
ϕ(T )ϕ(N)∗+ϕ(N)∗ϕ(T )(k0)+ σ∗

ϕ(S)ϕ(N)∗+ϕ(N)∗ϕ(S)(k0)
= σ∗

(ϕ(T )+ϕ(S))ϕ(N)∗+ϕ(N)∗(ϕ(T )+ϕ(S))(k0).

Since ϕ preserves rank one nilpotent operators, Lemma 2.4 entails that there is δS, T

such that ϕ(T +S) = ϕ(T )+ ϕ(S)+ δS, T 1 ; as desired.
So far it has been shown that ϕ is a bijective map from N1(H ) into N1(K ) ,

and thus (4.7) applied to both ϕ and ϕ−1 shows that

N1 +N2 ∈ N1(H ) ⇐⇒ ϕ(N1 +N2) ∈ N1(K )

for all N1, N2 ∈ N1(H ) . By [13, Lemma 2.2], ϕ when restricted on N1(H ) takes
either the form (4.5) or the form (4.6); as claimed.

CLAIM 6. There exist a unitary operator U ∈L (H ,K ) and two scalars α and
λ in C such that |λ | = 1 , Uh0 = αk0 and

ϕ(N) = λUNU∗

for all N ∈ N1(H )).
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Based on Claim 5, we know that ϕ takes either the form (4.5) or the (4.6). By
Lemma 3.2, we have that ϕ can not take the second form(4.6) and therefore ϕ takes
only the form (4.5). Accordingly there exists a bijective bounded linear or conjugate
linear transformation A : H → K such that ϕ(N) = τNANA−1 for all N ∈ N1(H ) .
Firstly, we show that A must be linear and τN is a nonzero scalar free of N ∈ N1(H ) ,
say λ . Indeed, for any x ∈ H ,y ∈ H and z ∈ H with 〈x,y〉 = 0 and 〈x,z〉 = 0,
there exists a scalars τx,y , τx,z and τx,y,z such that

ϕ(x⊗ y) = τx,yA(x⊗ y)A−1

ϕ(x⊗ z) = τx,zA(x⊗ z)A−1

and
ϕ(x⊗ (y+ z)) = τx,y,zA(x⊗ (y+ z))A−1.

Since
ϕ(x⊗ (y+ z)) = ϕ(x⊗ y)+ ϕ(x⊗ z),

we infer that that τx,y = τx,z = τx,y,z = λ is a nonzero constant. That is τx,y is constant
with respect to y . A similar reasoning shows that τx,y is also constant with respect to
x and therefore τN is a nonzero scalar free of N ∈ N1(H ) . Next let us show that A
must be linear. To that end, take an arbitrary vectors x , z and y ∈ H such that

〈x,y〉 = 0 and 〈z,y〉 = 1.

Since ϕ is homogeneous we have:

αλA(x⊗ y)A−1 = αϕ(x⊗ y)
= ϕ(α(x⊗ y))

= λA(α(x⊗ y))A−1.

It follows that

αAx = αA(x⊗ y)A−1Az = A(α(x⊗ y))A−1Az = A(αx)

and A is linear; as desired. Therefore we have

ϕ(N) = λANA−1

for all N ∈ N1(H ). Since ϕ satisfies (1.2), Lemma 3.1 shows that we may assume and
shall that A := U is a unitary operator and Uh0 = αk0 .

Finally, let us verify that |λ | = 1. Take two vectors x3, x4 ∈ H such that x3, x4

and h0 are linearly independent. Then there exist two vectors y3 and y4 in H such
that

〈h0,y3〉 = 〈x4,y3〉 = 1,〈x3,y3〉 = 0

and
〈x3,y4〉 = 1,〈x4,y4〉 = 〈h0,y4〉 = 0.
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By Lemma 2.2 and (1.2), we have

{1} = {〈x3,y4〉.〈x4,y3〉}
= σ∗

(x4⊗y4)(x3⊗y3)+(x3⊗y3)(x4⊗y4)(h0)

= σ∗
ϕ(x4⊗y4)ϕ(y3⊗x3)∗+ϕ(y3⊗x3)∗ϕ(x4⊗y4)

(k0)

= |λ |2σ∗
U[(x4⊗y4)(x3⊗y3)+(x3⊗y3)(x4⊗y4)]U∗(k0)

= |λ |2σ∗
(x4⊗y4)(x3⊗y3)+(x3⊗y3)(x4⊗y4)

(U∗k0).

Since U∗k0 = 1
α h0 , Lemma (2.1)-(b) entails that

{1} = |λ |2σ∗
(x4⊗y4)(x3⊗y3)+(x3⊗y3)(x4⊗y4)(h0) = {|λ |2}.

Accordingly |λ | = 1. This completes the proof of this claim.

CLAIM 7. ϕ takes the desired form.

Observe first that the map λ ϕ satisfies (1.2), and thus we may and shall assume
that ϕ(N) =UNU∗ for all N ∈N1(H ) . Now, for every N ∈N1(H ) and T ∈L (H )
we have

σUTU∗ϕ(N)∗+ϕ(N)∗UTU∗(k0) = σUTU∗UN∗U∗+UN∗U∗UTU∗(k0)

= σU(TN∗+N∗T )U∗(k0)

= σTN∗+N∗T (U∗k0)
= σTN∗+N∗T (h0)
= σϕ(T )ϕ(N)∗+ϕ(N)∗ϕ(T )(k0).

By Lemma 2.4, we deduce that ϕ(T ) = UTU∗ + αT 1 , where αT is scalar depending
on T .

Now, we show that ϕ(R) = URU∗ for all rank one operator R ∈ L (H ) . By
keeping in mind that ϕ(1) = 1 and using (1.2), we have

σ∗
R(h0) = σ∗

R
2 1∗+1∗ R

2
(h0)

= σ∗
ϕ( R

2 )ϕ(1)∗+ϕ(1)∗ϕ( R
2 )(k0)

= σ∗
ϕ(R)(k0)

= σ∗
URU∗+αR

(k0)

= σ∗
URU∗(k0)+{αR}

= σ∗
R(h0)+{αR}
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As σ∗
R(h0) is a nonempty set containing at most one nonzero number, we have αR = 0.

To finish the proof, take an arbitrary operator T ∈ L (H ) and observe that

σ∗
ϕ(R)UT ∗U∗+UT ∗U∗ϕ(R)(k0) = σ∗

URU∗UT ∗U∗+UT ∗U∗URU∗(k0)

= σ∗
URT ∗U∗+UT ∗RU∗(k0)

= σ∗
U(RT∗+T ∗R)U∗ (k0)

= σ∗
RT∗+T ∗R(U∗k0)

= σ∗
RT∗+T ∗R(h0)

= σ∗
ϕ(R)ϕ(T)∗+ϕ(T )∗ϕ(R)(k0).

By Lemma 2.5, we have ϕ(T )∗ = UT ∗U∗ for all T ∈ L (H ) , and the proof is there-
fore complete.
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