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F. ŠTAMPACH AND P. ŠŤOVÍČEK
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Abstract. In a recent paper, a class of infinite Jacobi matrices with discrete character of spectra
has been introduced. With each Jacobi matrix from this class an analytic function is associated,
called the characteristic function, whose zero set coincides with the point spectrum of the cor-
responding Jacobi operator. Here it is shown that the characteristic function admits Hadamard’s
factorization in two possible ways – either in the spectral parameter or in an auxiliary parameter
which may be called the coupling constant. As an intermediate result, a formula for the logarithm
of the characteristic function is obtained which is then used to handle the spectral zeta function
of the Jacobi matrix. In a number of examples the characteristic function coincides with a special
function, and hence to those special functions these general results can be directly applied.

1. Introduction

In [33] we have introduced a class of infinite Jacobi matrices characterized by
a simple convergence condition. Each Jacobi matrix from this class unambiguously
determines a closed operator on �2(N) having a discrete spectrum. Moreover, with such
a matrix one associates a complex function, called the characteristic function, which is
analytic on the complex plane with the closure of the range of the diagonal sequence
being excluded, and meromorphic on the complex plane with the set of accumulation
points of the diagonal sequence being excluded. It turns out that the zero set of the
characteristic function actually coincides with the point spectrum of the corresponding
Jacobi operator on the domain of definition (with some subtleties when handling the
poles; see Theorem 2.1 below).

A number of examples are now known where this characteristic function can be
expressed in terms of special functions [33, 35]. Earlier, in several papers, this relation-
ship between the zeros of certain special function and the eigenvalues of an appropriate
Jacobi matrix was proposed as a useful method for numerical computation of the zeros
[17, 20]. On the theoretical level, the study of the zeros of a special function belongs to
principal tasks. Many special functions (or their reciprocals) are entire functions, and
under various circumstances it is convenient to represent such a function as an infinite
product by applying to it the Hadamard (or Weierstrass) factorization.
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As is commonly known, the infinite product representation is available for some
elementary functions like trigonometric functions, Bessel functions and the Gamma
function. But the range of special functions admitting this factorization is much wider
including the Kummer function, Struve functions, Lommel functions of the first kind
and q-Bessel functions, as shown comparatively recently in [4, 3, 26]. Another special
function for which Hadamard’s factorization is known to work is the regular Coulomb
wave function [34]. This particular example demonstrates that the infinite product rep-
resentation may have interesting consequences. By applying logarithmic derivative and
making use of a recurrence relation one can derive the Mittag-Leffler expansion [2].

Hadamard’s factorization of an entire function f is closely related to the values
of the zeta function associated with f for integer arguments. Note that such a zeta
function is defined in terms of the zeros of f . If f coincides with the characteristic
function of an operator T with a discrete spectrum one also speaks about the spectral
zeta function of T .

A particularly widely known and thoroughly studied example is that of the zeta
function associated with the Bessel function which is usually called the Rayleigh func-
tion. Its history goes as far back as the second half of the 19th century but since then its
study continued for many decades with quite a few cases of rediscovering old results;
see [23] on the account of the history as well as of the recent state of the art. The pri-
mary motivation for these studies was localization of the zeros. This old method due to
Euler and Rayleigh and others can be of interest even nowadays [22, 26] and finds its
applications in mathematical physics (see, for instance, [12]).

What is perhaps less expected are some combinatorial aspects of the Rayleigh
function. This feature is related to a recurrence the Rayleigh function obeys [24, 5, 19].
In this connection it is worthwhile pointing out a remarkable property of the Rayleigh
function as well as of other zeta functions associated with various special functions.
They can be explicitly evaluated at integer arguments although the zeros of those special
functions can be evaluated only numerically. As an example one can mention the zeta
function for the q-Bessel equation, the Airy zeta function, the zeta function associated
with the Coulomb wave function and the hypergeometric zeta function [26, 10, 34, 4].
In all these cases the sequence of values of the zeta function at integer arguments is
defined by a linear or quadratic recurrence, and Hadamard’s factorization of the special
function in question plays a crucial role in the derivation of this recurrence rule. As
regards the Rayleigh function itself, the recurrence rules have been studied in great
detail [28, 24, 25, 6, 27].

Special functions frequently depend on a parameter, called the order, and obey a
three-term recurrence with respect to it. Moreover, the dependence of a special function
on the order can be of interest in various applications. For instance, the zeros of Jν(z) in
the order ν , with z > 0 being fixed, are of importance in some combinatorial problems
[15, 13] as well as in the analysis of some birth-and-death processes [31]. Let us note
that the equation Jν(z) = 0 in the order ν started to be studied much later than the
same equation in the variable z [8]. The problem of the asymptotic behavior of the
zeros in ν for z small is addressed in [33, Prop. 30] where an explicit error estimate for
the leading asymptotic term is derived. Furthermore, in [31, Prop. 6], the zeros of the
Bessel function in the order are studied perturbatively while recognizing them as the
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eigenvalues of an appropriate Jacobi matrix. This is basically the same approach as we
are advocating here. In particular, in Example 4.1 below, in equation (39), we derive a
Hadamard-type factorization of Jν(w) in ν as a straightforward application of a more
general result (Theorem 4.3), and to the best of our knowledge this factorization has
not yet been presented elsewhere.

In the current paper we aim to propose a unifying and more abstract approach
to the Hadamard factorization of special functions in those cases when the addressed
special function can be identified with the characteristic function of a suitable Jacobi
matrix. As the main result we show that the characteristic function of a Jacobi matrix
from a rather broad class, as introduced in [33], admits Hadamard’s factorization in two
possible ways – either in the spectral parameter or in an auxiliary parameter which may
be called the coupling constant (see below Theorem 4.3 and 5.2, respectively). Regard-
ing the Bessel function as a typical example these two factorizations correspond to its
Hadamard factorization in the order and in the variable, respectively (see Example 4.1
and 5.1). As an additional auxiliary result which may be of independent interest we
derive a formula for the logarithm of the characteristic function. This formula is then
applied when dealing with the spectral zeta function of the corresponding Jacobi matrix
(or, equivalently, with the zeta function associated with the characteristic function). A
possible recurrence for the values of the zeta function at integer arguments is addressed
as well.

These general results cover most of the examples discussed above. But the authors
believe that the list of special functions which can be treated in this unified way can be
extended notably in the near future.

Let us outline the organization of the paper and indicate its main results. In Sec-
tion 2, some basic notions and preliminary results needed for the analysis to follow are
summarized. In Section 3, in Theorem 3.1, a formula for the logarithm of the char-
acteristic function is derived. Section 4 deals with Hadamard’s factorization of the
characteristic function in the spectral parameter. As stated in Theorem 4.3, such a fac-
torization actually exists under plausible assumptions. The focus of Section 5 is on the
factorization in the coupling constant and on consequent applications to the spectral
zeta function. In Theorem 5.1, the algebraic multiplicity of eigenvalues of the Jacobi
matrix in question is examined. Then, in Theorem 5.2, the desired factorization is for-
mulated and proved.

2. Preliminaries

Many formulas throughout the paper are expressed in terms of a function, called
F , which is defined on a suitable subset of the linear space of all complex sequences; see
[32] for its original definition. Here we recall the definition and several basic properties
that are referred to in what follows.

Define F : D → C ,

F(x) = 1+
∞

∑
m=1

(−1)m
∞

∑
k1=1

∞

∑
k2=k1+2

· · ·
∞

∑
km=km−1+2

xk1xk1+1xk2xk2+1 · · ·xkmxkm+1, (1)
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where

D =

{
{xk}∞

k=1 ⊂ C;
∞

∑
k=1

|xkxk+1| < ∞

}
. (2)

For a finite number of complex variables we identify F(x1,x2, . . . ,xn) with F(x) where
x = (x1,x2, . . . ,xn,0,0,0, . . .) . By convention, let F( /0) = 1 where /0 is the empty se-
quence.

Notice that �2(N) ⊂ D . For x ∈ D , one has the estimates

|F(x)| � exp

(
∞

∑
k=1

|xkxk+1|
)

, |F(x)−1|� exp

(
∞

∑
k=1

|xkxk+1|
)
−1, (3)

and it is true that
F(x) = lim

n→∞
F(x1,x2, . . . ,xn). (4)

Let us also point out a simple invariance property. For x ∈ D and s ∈ C , s �= 0, it is
true that y ∈ D and

F(x) = F(y), where y2k−1 = sx2k−1, y2k = x2k/s, k ∈ N. (5)

We shall deal with symmetric Jacobi matrices

J =

⎡
⎢⎢⎢⎣

λ1 w1

w1 λ2 w2

w2 λ3 w3
. . .

. . .
. . .

⎤
⎥⎥⎥⎦ , (6)

where λ = {λn}∞
n=1 ⊂ C and w = {wn}∞

n=1 ⊂ C\ {0} . Let us put

γ2k−1 =
k−1

∏
j=1

w2 j

w2 j−1
, γ2k = w1

k−1

∏
j=1

w2 j+1

w2 j
, k = 1,2,3, . . . . (7)

Then γkγk+1 = wk .
For n ∈ N , let Jn be the n×n Jacobi matrix: (Jn) j,k = Jj,k for 1 � j,k � n , and

In be the n×n unit matrix. Then the formula

det(Jn− zIn) =

(
n

∏
k=1

(λk − z)

)
F

(
γ 2
1

λ1− z
,

γ 2
2

λ2− z
, . . . ,

γ 2
n

λn− z

)
. (8)

holds true for all z ∈ C (after obvious cancellations, the RHS is well defined even for
z = λk ; here and throughout RHS means “right-hand side”, and similarly for LHS).

Let us denote
C

λ
0 := C\ {λn; n ∈ N} .

Moreover, der(λ ) designates the set of all accumulation points of the sequence λ . The
following theorem is a compilation of several results from [33, Subsec. 3.3].
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THEOREM 2.1. Let a Jacobi matrix J , as introduced in (6), be real and suppose
that

∞

∑
n=1

∣∣∣∣ w2
n

(λn − z)(λn+1− z)

∣∣∣∣< ∞ (9)

for at least one z ∈ C
λ
0 . Then

(i) J represents a unique self-adjoint operator on �2(N) ,
(ii) spec(J)∩ (C\ der(λ )) consists of simple real eigenvalues with no accumula-

tion points in C\ der(λ ) ,
(iii) the series (9) converges locally uniformly on Cλ

0 and

FJ(z) := F

({
γ 2
n

λn− z

}∞

n=1

)
(10)

is a well defined analytic function on C
λ
0 ,

(iv) FJ(z) is meromorphic on C\ der(λ ) , the order of a pole at z ∈ C\ der(λ ) is
less than or equal to the number r(z) of occurrences of z in the sequence λ ,

(v) z ∈ C\ der(λ ) belongs to spec(J) if and only if

lim
u→z

(z−u)r(z)FJ(u) = 0

and, in particular, spec(J)∩Cλ
0 = specp(J)∩Cλ

0 = F−1
J ({0}) .

We will mostly focus on real Jacobi matrices, except in Section 5. For our purposes
the following particular case, a direct consequence of a more general result derived in
[33, Subsec. 3.3], will be sufficient.

THEOREM 2.2. Let J be a complex Jacobi matrix of the form (6) obeying λn = 0 ,
∀n, and {wn}∈ �2(N) . Then J represents a Hilbert-Schmidt operator, FJ(z) is analytic
on C\ {0} and

spec(J)\ {0}= specp(J)\ {0}= F−1
J ({0}).

REMARK 2.1. Although this is not the principal focus of the current paper let us
remark, for later reference, that there exists a relation of the function F(x) to continued
fractions. Most conveniently, this is demonstrated in the framework of formal power
series. To this end, let us rewrite (1) in terms of formal variables a j standing instead of
x jx j+1 , j = 1,2, . . . . Then instead of F(x) we obtain the formal power series

G(a1,a2, . . .) := 1+
∞

∑
m=1

(−1)m
∞

∑
k1=1

∞

∑
k2=k1+2

. . .
∞

∑
km=km−1+2

ak1ak2 . . .akm . (11)

Here again, G(a1,a2, . . . ,an) , for some n ∈ N , means a polynomial in the indicated
variables obtained as a truncation of (11) by letting an+1 = an+2 = · · ·= 0, and G( /0) :=
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1 by definition. As observed in [32, Rem. 6], the continued fraction

X (a) :=
1

1− a1

1− a2

1− a3

1− . . .

. (12)

is expressible as

X (a) =
G(a2,a3, . . .)
G(a1,a2, . . .)

. (13)

3. The logarithm of F(x)

F(x1, . . . ,xn) is a polynomial function in n complex variables, with F(0) = 1, and
therefore logF(x1, . . . ,xn) is a well defined analytic function in some neighborhood
of the origin. The goal of the current section is to derive an explicit formula for the
coefficients of the corresponding power series.

For a multi-index m ∈ N� denote by |m| = ∑�
j=1 mj its order and by d(m) = � its

length. For N ∈ N , M (N) denotes the set of all multi-indices of order N , i.e.

M (N) =

{
m ∈

N⋃
�=1

N
�; |m| = N

}
. (14)

Obviously, ∪∞
�=1N

� = ∪∞
N=1M (N) . One has M (1) = {(1)} and

M (N) =
{(

1,m1,m2, . . . ,md(m)
)
; m ∈ M (N−1)

}
∪{(m1 +1,m2, . . . ,md(m)

)
; m ∈ M (N−1)

}
.

Hence |M (N)| = 2N−1 ( | · | standing for the number of elements). Furthermore, for an
multi-index m ∈ N

� put

β (m) :=
�−1

∏
j=1

(
mj +mj+1−1

mj+1

)
, α(m) :=

β (m)
m1

. (15)

THEOREM 3.1. In the ring of formal power series in the variables t1, . . . ,tn , one
has

logF(t1, . . . ,tn) = −
n−1

∑
�=1

∑
m∈N�

α(m)
n−�

∑
k=1

�

∏
j=1

(
tk+ j−1tk+ j

)mj . (16)

For a complex sequence x = {xk}∞
k=1 such that ∑∞

k=1 |xkxk+1| < log2 one has

logF(x) = −
∞

∑
�=1

∑
m∈N�

α(m)
∞

∑
k=1

�

∏
j=1

(
xk+ j−1xk+ j

)mj .
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The proof of Theorem 3.1 is based on some combinatorial notions, and among
them that of a Dyck path is quite substantial. For n ∈ N , n � 2, we may regard the set

Λn = {1,2, . . . ,n}
as a finite one-dimensional lattice. We shall say that a mapping

π : {0,1,2, . . . ,2N}→ Λn

is a loop of length 2N in Λn , N ∈ N , if π(0) = π(2N) and |π( j +1)−π( j)| = 1 for
1 � j � 2N . The vertex π(0) is called the base point of a loop. The loops in Λn with
the base point π(0) = 1 are commonly known as Dyck paths of height not exceeding
n−1. Indeed, if π is such a loop then its graph shifted by 1,

{( j,π( j)−1); j = 0,1, . . . ,2N},
represents a lattice path in the first quadrant leading from (0,0) to (2N,0) whose all
steps are solely (1,1) and (1,−1) . Such a path is called a Dyck path.

For m ∈ N� denote by Ω(m) the set of all loops of length 2|m| in Λ�+1 which
encounter each edge ( j, j+1) exactly 2mj times, 1 � j � � (counting both directions).
Let Ω1(m) designate the subset of Ω(m) formed by those loops which are based at the
vertex 1. In other words, Ω1(m) is the set of Dyck paths with the prescribed numbers
2mj counting the steps at each level j = 1,2, . . . , � . One can call m the specification of
a Dyck path. If π ∈ Ω1(m) then the sequence (π(0),π(1), . . . ,π(2N− 1)) , with N =
|m| , contains the vertex 1 exactly m1 times, the vertices j , 2 � j � � , are contained
(mj−1 +mj) times in the sequence, and the number of occurrences of the vertex �+1
equals m� .

REMARK 3.1. It can be deduced from Theorem 3B in [14] that |Ω1(m)| = β (m) .
Let us recall the well known fact that there exists a bijection between the set of Dyck
paths of length 2N and the set of rooted plane trees with N edges (one can consult, for
instance, §§ I.5 and I.6 in [16]). A rooted plane tree is said to have the specification
m ∈ N� if it has |m| edges and the number of its vertices of height j equals mj , j =
1,2, . . . , � . Using the mentioned bijection one finds that β (m) also equals the number
of rooted plane trees with the specification m [14, 29]. More recently, this result was
rediscovered and described in [7]. For the reader’s convenience we nevertheless include
this identity in the following lemma along with a short proof. The other identity in the
lemma providing a combinatorial interpretation of the number α(m) seems to be, to
the authors’ best knowledge, new.

LEMMA 3.2. For every � ∈ N and m ∈ N� , |Ω1(m)| = β (m) and |Ω(m)| =
2|m|α(m) .

Proof. To show the first equality one can proceed by induction in � . For � = 1
and any m ∈ N one clearly has |Ω1(m)| = 1. Suppose now that � � 2 and fix m ∈ N

� .
Denote m′ = (m2, . . . ,m�) ∈ N�−1 . For any π ′ ∈ Ω1(m′) put

π̃ = (1,π ′(0)+1,π ′(1)+1, . . . ,π ′(2N′)+1,1)
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where N′ = |m′| = |m|−m1 . The vertex 2 occurs in π̃ exactly (m2 +1) times. After
any such occurrence of 2 one may insert none or several copies of the two-letter chain
(1,2) . Do it so while requiring that the total number of inserted couples equals m1−1.
This way one generates all Dyck paths from Ω1(m) , and each exactly once. This
implies the recurrence rule

|Ω1(m1,m2, . . . ,m�)| =
(

m1 −1+m2

m2

)
|Ω1(m2, . . . ,m�)| ,

thus proving that |Ω1(m)| = β (m) .
Let us proceed to the second equality. Put N = |m| . Consider the cyclic group

G = 〈g〉 , g2N = 1. G acts on Ω(m) according to the rule

g ·π = (π(1),π(2), . . . ,π(2N),π(0)), ∀π ∈ Ω(m).

Clearly, G ·Ω1(m) = Ω(m) . Let us write Ω(m) as a disjoint union of orbits,

Ω(m) =
M⋃

s=1

Os.

For each orbit choose πs ∈ Os ∩Ω1(m) . Let Hs ⊂ G be the stabilizer of πs . Then

|Ω(m)| =
M

∑
s=1

2N
|Hs| .

Denote further by G1
s the subset of G formed by those elements a obeying a · πs ∈

Ω1(m) (i.e. the vertex 1 is still the base point). Then |G1
s | = m1 and Os ∩Ω1(m) =

G1
s ·πs . Moreover, G1

s ·Hs = G1
s , i.e. Hs acts freely from the right on G1

s , with orbits
of this action being in one-to-one correspondence with elements of Os∩Ω1(m) . Hence
|Os ∩Ω1(m)| = |G1

s |/|Hs| and

|Ω1(m)| =
M

∑
s=1

|Os ∩Ω1(m)| =
M

∑
s=1

m1

|Hs| .

This shows that |Ω(m)| = (2N/m1)|Ω1(m)| . In view of the first equality of the propo-
sition and (15), the proof is complete. �

LEMMA 3.3. For N ∈ N ,

∑
m∈M (N)

α(m) =
1

2N

(
2N
N

)
.

Proof. According to Lemma 3.2, the sum

2N ∑
m∈M (N)

α(m) = ∑
m∈M (N)

|Ω(m)|
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equals the number of equivalence classes of loops of length 2N in the one-dimensional
lattice Z assuming that loops differing by translations are identified. These classes
are generated by making 2N choices, in all possible ways, each time choosing either
the sign plus or minus (moving to the right or to the left on the lattice) while the total
number of occurrences of each sign being equal to N . �

REMARK 3.2. The sum CN := ∑m∈M (N) β (m) can readily be evaluated, too, since
this is nothing but the total number of Dyck paths of length 2N . As is well known (see,
for instance [11]), this number equals the Catalan number,

CN =
1

N +1

(
2N
N

)
. (17)

Let us note that, as observed in Example 2.1 in [37], this is also an easy corollary of the
Viennot theory which deals with weighted Motzkin or, more particularly, Dyck paths
and which was originally designed to treat orthogonal polynomials on a unified abstract
level [38, 36]. Giving each individual step in a Dyck path the weight 1 we have

∞

∑
N=0

CNtN ≡ 1+
∞

∑
�=1

∑
m∈N�

β (m)t |m| =
1

1− t

1− t

1− t

1− . . .

,

see [38, §2] and [14]. But the continued fraction equals (1−√
1−4t )/(2t) and (17)

follows immediately.

For m ∈ N� let (|m|
m

)
:=

|m|!
m1!m2! · · · m�!

.

LEMMA 3.4. For every � ∈ N and m ∈ N� ,

α(m) � 1
|m|
(|m|

m

)
,

and equality holds if and only if � = 1 or 2 .

Proof. Put γ(m) = α(m)/
(|m|

m

)
. To show that γ(m) � 1/|m| one can proceed by

induction in � . It is immediate to check the equality to be true for � = 1 and 2. For
� � 3 and m1 > 1 one readily verifies that

γ(m1,m2,m3, . . . ,m�) < γ(m1 −1,m2 +1,m3, . . . ,m�).

Furthermore, if � � 3, m1 = 1 and the inequality is known to be valid for �− 1, one
has

γ(m1,m2,m3, . . . ,m�) =
m2 γ(m2,m3, . . . ,m�)

1+m2 +m3 + · · ·+m�
<

1
|m| .
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The lemma follows. �

Proof of Theorem 3.1. The coefficients in the power series expansion of the func-
tion logF(t1, . . . ,tn) at the origin can be calculated in the ring of formal power series.
As shown in [33], one has

F(t1, . . . ,tn) = det(I +T)

where

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 t1
t2 0 t2

. . .
. . .

. . .
. . .

. . .
. . .

tn−1 0 tn−1

tn 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (18)

Since detexp(A) = exp(TrA) and logdet(I + T ) = Tr log(I + T ) , and noticing that
TrT 2k+1 = 0, one gets

logF(t1, . . . ,tn) = Tr log(I +T ) = −
∞

∑
N=1

1
2N

TrT 2N .

From (18) one deduces that

TrT 2N = ∑
π∈L (N)

2N−1

∏
j=0

tπ( j) (19)

where L (N) stands for the set of all loops of length 2N in Λn . Let

k = min{π( j); 1 � j � 2N}

and put π̃( j) = π( j)−k+1 for 0 � j � 2N . Then π̃ ∈Ω(m) for certain (unambiguous)
multi-index m ∈ M (N) of length d(m) � n− k . Conversely, given m ∈ M (N) of
length d(m) � n− 1 and k , 1 � k � n− d(m) , one defines π ∈ L (N) by π( j) =
k+ π̃( j)−1, 0 � j � 2N . Hence the RHS of (19) equals

∑
m∈M (N)
d(m)<n

n−d(m)

∑
k=1

|Ω(m)|
d(m)

∏
j=1

(
tk+ j−1tk+ j

)mj .

To verify (16) it suffices to apply Lemma 3.2.
Suppose now x is a complex sequence. If ∑k |xkxk+1| < log2 one has, by (3),

|F(x)−1|< 1 and so logF(x) is well defined. Moreover, according to (4),

logF(x) = lim
n→∞

logF(x1, . . . ,xn).
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If ∑k |xkxk+1|< 1 then the RHS of (16) admits the limit procedure, too, as demonstrated
by the simple estimate (replacing t j s by x j s)

|the RHS of (16)| �
∞

∑
N=1

(
max

m∈M (N)

α(m)(N
m

)
)

∑
m∈M (N)

(
N
m

) ∞

∑
k=1

d(m)

∏
j=1

|xk+ j−1xk+ j|mj

�
∞

∑
N=1

1
N

(
∞

∑
k=1

|xkxk+1|
)N

= − log

(
1−

∞

∑
k=1

|xkxk+1|
)

.

Here we have used Lemma 3.4. �

REMARK 3.3. Digressing a bit from the main topic of the present paper let us
briefly comment on how the used formalism and the obtained results, and Theorem 3.1
in particular, fit into the theory of continued fractions. The continued fraction X (a)
introduced in (12) equals the formal power series [1]

X (a) = 1+
∞

∑
n=1

Sn(a1,a2, . . . ,an) (20)

where the summands are the so called genetic sums (of the lowest level p = 1) whose
definition somewhat resembles that of (1) or (11),

Sn(a1,a2, . . . ,an) :=
2

∑
k2=1

k2+1

∑
k3=1

. . .
kn−1+1

∑
kn=1

a1ak2ak3 . . .akn .

This can be compared to Euler’s continued fraction formula stating that the continued
fraction

Y (b) :=
1

1− b1

1+b1−
b2

1+b2−
b3

1+b3− . . .

(21)

equals the formal power series

Y (b) = 1+
∞

∑
n=1

(
n

∏
j=1

b j

)
(22)

where {b j} is another set of formal variables; see, for instance, [39, Thm. 2.1]. It is
immediate to transform (21) into (12), and then (20), (22), after substitution

a j =
b j

(1+b j−1)(1+b j)
(with b0 = 0), (23)
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imply the identity

∞

∑
n=1

Sn

(
b1

1+b1
,

b2

(1+b1)(1+b2)
, . . . ,

bn

(1+bn−1)(1+bn)

)
=

∞

∑
n=1

(
n

∏
j=1

b j

)
.

Without going into details we remark that relation (23) can be inverted (see (11)),

b1 =
a1

1−a1
, b j =

S(a1,a2, . . . ,a j−2)a j

S(a1,a2, . . . ,a j)
for j � 2,

and this way we arrive at the identity

∞

∑
n=1

∏n
j=1 a j

S(a1,a2, . . . ,an−1)S(a1,a2, . . . ,an)
=

∞

∑
n=1

Sn(a1,a2, . . . ,an).

As far as Theorem 3.1 is concerned, it is straightforward to check that in combination
with (13) it implies an exponential formula for the continued fraction (12),

X (a) = exp

(
∞

∑
�=1

∑
m∈N�

α(m)

(
�

∏
j=1

a
mj
j

))
.

4. Factorization in the spectral parameter

In this section, we introduce a regularized characteristic function of a Jacobi matrix
and show that it can be expressed as a Hadamard infinite product.

Let λ = {λn}∞
n=1 , {wn}∞

n=1 be real sequences such that limn→∞ λn = +∞ and
wn �= 0, ∀n . In addition, without loss of generality, {λn}∞

n=1 is assumed to be positive.
Moreover, suppose that

∞

∑
n=1

w2
n

λnλn+1
< ∞ and

∞

∑
n=1

1
λ 2

n
< ∞. (24)

Under these assumptions, by Theorem 2.1, J defined in (6) may be regarded as a
self-adjoint operator on �2(N) . Moreover, der(λ ) is clearly empty and the character-
istic function FJ(z) is meromorphic on C with possible poles lying in the range of λ .
To remove the poles let us define the function

Φλ (z) :=
∞

∏
n=1

(
1− z

λn

)
ez/λn .

Since ∑n λ −2
n < ∞ , Φλ is a well defined entire function. Moreover, Φλ has zeros at

the points z = λn , with multiplicity being equal to the number of repetitions of λn in
the sequence λ , and no zeros otherwise.

Finally we define (see (10))

HJ(z) := Φλ (z)FJ(z),
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and call HJ(z) the regularized characteristic function of the Jacobi operator J . Note
that for ε � 0, FJ+εI(z) = FJ(z− ε) and so

HJ+εI(z) = HJ(z− ε)Φλ (−ε)−1 exp

(
−z

∞

∑
n=1

ε
λn(λn + ε)

)
. (25)

According to Theorem 2.1, the spectrum of J is discrete, simple and real. Moreover,

spec(J) = specp(J) = H−1
J ({0}).

As is well known, the determinant of an operator I + A on a Hilbert space can
be defined provided A belongs to the trace class. The definition, in a modified form,
can be extended to other Schatten classes Ip as well, in particular to Hilbert-Schmidt
operators; see [30] for a detailed survey of the theory. Let us denote, as usual, the trace
class and the Hilbert-Schmidt class by I1 and I2 , respectively. If A ∈ I2 then

(I +A)exp(−A)− I ∈ I1,

and one defines
det2(I +A) := det((I +A)exp(−A)) .

We shall need the following formulas [30, Chp. 9]. For A,B ∈ I2 one has

det2(I +A+B+AB)= det2(I +A)det2(I +B) exp(−Tr(AB)) . (26)

A factorization formula holds for A ∈ I2 and z ∈ C ,

det2(I + zA) =
N(A)

∏
n=1

(1+ zμn(A))exp(−zμn(A)) , (27)

where μn(A) are all (nonzero) eigenvalues of A counted up to their algebraic multi-
plicity (see Theorem 9.2 in [30] and also Theorem 1.1 ibidem introducing the algebraic
multiplicity of a nonzero eigenvalue of a compact operator). In particular, I + zA is
invertible if and only if det2(I + zA) �= 0. Moreover, the Plemelj-Smithies formula tells
us that for A ∈ I2 ,

det2(I + zA) =
∞

∑
m=0

am(A)
zm

m!
, (28)

where

am(A) = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 m−1 0 . . . 0 0
TrA2 0 m−2 . . . 0 0
TrA3 TrA2 0 . . . 0 0

...
...

...
. . .

...
...

TrAm−1 TrAm−2 TrAm−3 . . . 0 1
TrAm TrAm−1 TrAm−2 . . . TrA2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(29)

for m � 1, and a0(A) = 1 [30, Thm. 5.4]. Finally, there exists a constant C2 such that
for all A,B ∈ I2 ,

|det2(I +A)−det2(I +B)|� ‖A−B‖2 exp
(
C2(‖A‖2 +‖B‖2 +1)2) , (30)
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where ‖ · ‖2 stands for the Hilbert-Schmidt norm.
We write the Jacobi matrix in the form

J = L+W +W ∗

where L is a diagonal matrix while W is lower triangular. By assumption (24), the
operators L−1 and

K := L−1/2(W +W ∗)L−1/2 (31)

are Hilbert-Schmidt. Hence for every z ∈ C , the operator L−1/2(W +W ∗ − z)L−1/2

belongs to the Hilbert-Schmidt class.

LEMMA 4.1. For every z ∈ C ,

HJ(z) = det2
(
I +L−1/2(W +W∗ − z)L−1/2

)
.

In particular,
HJ(0) = FJ(0) = det2(I +K).

Proof. We first verify the formula for the truncated finite rank operator JN =
PNJPN , where PN is the orthogonal projection onto the subspace spanned by the first N
vectors of the canonical basis in �2(N) . Using formula (8) one derives

det
[
(I +PNL−1/2(W +W∗ − z)L−1/2PN)exp

(
−PNL−1/2(W +W∗ − z)L−1/2PN

)]
= det(PNL−1PN)det(JN − zIN) exp

(
zTr(PNL−1PN)

)
=

(
N

∏
n=1

(
1− z

λn

)
ez/λn

)
F

({
γ 2
n

λn− z

}N

n=1

)
.

Sending N to infinity it is clear, by (4) and (24), that the RHS tends to HJ(z) . More-
over, one knows that det2(I +A) is continuous in A in the Hilbert-Schmidt norm, as it
follows from (30). Thus to complete the proof it suffices to notice that A ∈ I2 implies
‖PNAPN −A‖2 → 0 as N → ∞ . �

We intend to apply the Hadamard factorization theorem to HJ(z) ; see, for exam-
ple, [9, Thm. XI.3.4]. For simplicity we assume that FJ(0) �= 0 and so J is invertible.
Otherwise one could replace J by J + εI for some ε > 0 and make use of (25).

As already mentioned, the operator K defined in (31) is Hilbert-Schmidt. At the
same time, this is a Jacobi matrix operator with zero diagonal admitting application of
Theorem 2.1. One readily finds that

FK(z) = F

({
− γ 2

n

zλn

}∞

n=1

)
.

Hence FK(−1) = FJ(0) , and J is invertible if and only if the same is true for (I +K) .
In that case, again by Theorem 2.1, 0 belongs to the resolvent set of J , and

J−1 = L−1/2(I +K)−1L−1/2. (32)
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LEMMA 4.2. If J is invertible then J−1 is a Hilbert-Schmidt operator and

det2
(
I− z(I +K)−1L−1)= det2

(
I− zJ−1) (33)

for all z ∈ C .

Proof. By assumption (24), L−1/2 belongs to the Schatten class I4 . Since the
Schatten classes are norm ideals and fulfill IpIq ⊂ Ir whenever r−1 = p−1 + q−1

[30, Thm. 2.8], one deduces from (32) that J−1 ∈ I2 .
Furthermore, one knows that Tr(AB) = Tr(BA) provided A ∈ Ip , B ∈ Iq and

p−1 +q−1 = 1 [30, Cor. 3.8]. Hence

Tr
(
(I +K)−1L−1)k = Tr

(
L−1/2(I +K)−1L−1/2

)k
= Tr(J−k), ∀k ∈ N, k � 2.

It follows that the coefficients am defined in (29) fulfill

am((I +K)−1L−1) = am(J−1) for m = 0,1,2, . . . .

The Plemelj-Smithies formula (28) then implies (33). �

THEOREM 4.3. Using the notation introduced in (6), suppose a real Jacobi matrix
J obeys (24) and is invertible. Denote by λn(J) , n ∈ N , the eigenvalues of J (all of
them are real and simple). Then L−1 − J−1 ∈ I1 ,

∞

∑
n=1

λn(J)−2 < ∞, (34)

and for the regularized characteristic function of J one has

HJ(z) = FJ(0)ebz
∞

∏
n=1

(
1− z

λn(J)

)
ez/λn(J) (35)

where

b = Tr
(
L−1− J−1)=

∞

∑
n=1

(
1
λn

− 1
λn(J)

)
.

Proof. Recall equation (32). Since L−1/2 ∈ I4 and K ∈ I2 one has, after some
straightforward manipulations,

L−1 − J−1 = L−1/2K(I +K)−1L−1/2 ∈ I1. (36)

By Lemma 4.2, the operator J−1 is Hermitian and Hilbert-Schmidt. This implies (34).
Furthermore, by Lemma 4.1, formula (26) and Lemma 4.2,

HJ(z) = det2(I +K− zL−1)
= det2(I +K)det2

(
I− z(I +K)−1L−1)exp

[
zTr
(
K(I +K)−1L−1)]

= FJ(0)ebz det2
(
I− zJ−1) .
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Here we have used (36) implying

Tr
(
K(I +K)−1L−1)= Tr

(
L−1/2K(I +K)−1L−1/2

)
= Tr

(
L−1 − J−1)= b.

Finally, by formula (27),

det2
(
I− zJ−1)=

∞

∏
n=1

(
1− z

λn(J)

)
ez/λn(J).

This completes the proof. �

COROLLARY 4.4. For each ε > 0 there is Rε > 0 such that for |z| > Rε ,

|HJ(z)| < exp
(
ε|z|2) . (37)

Proof. Theorem 4.3, and particularly the product formula (35) implies that HJ(z)
is an entire function of genus one. In that case the growth property (37) is known to be
valid; see, for example, Theorem XI.2.6 in [9]. �

EXAMPLE 4.1. Put λn = n and wn = w �= 0, ∀n ∈ N . As shown in [32], the
Bessel function of the first kind can be expressed as

Jν(2w) =
wν

Γ(ν +1)
F

({
w

ν + k

}∞

k=1

)
, (38)

as long as w,ν ∈ C , ν /∈ −N . Using (38) and that

Γ(z) =
e−γz

z

∞

∏
n=1

(
1+

z
n

)−1
ez/n,

where γ is the Euler constant, one gets HJ(z) = eγzwzJ−z(2w) . In particular, the zeros
of J−z(2w) in z are exactly the eigenvalues of the corresponding Jacobi matrix J .
Applying Theorem 4.3 one reveals an infinite product formula for the Bessel function
considered as a function of its order. Assuming J0(2w) �= 0, the formula reads

wzJ−z(2w)
J0(2w)

= ec(w)z
∞

∏
n=1

(
1− z

λn(J)

)
ez/λn(J) (39)

where

c(w) =
1

J0(2w)

∞

∑
k=0

(−1)kψ(k+1)
w2k

(k!)2 ,

ψ(z) = Γ′(z)/Γ(z) is the digamma function, and the expression for c(w) is obtained
by comparison of the coefficients at z on both sides.
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5. Factorization in the coupling constant

Let x = {xn}∞
n=1 be a sequence of nonzero complex numbers belonging to the

domain D defined in (2). Our goal in this section is to prove a factorization formula for
the entire function

f (w) := F(wx), w ∈ C.

Let us remark that f (w) is even.
To this end, let us put vk =

√
xk , ∀k , (any branch of the square root is suitable)

and introduce the auxiliary Jacobi matrix

A =

⎡
⎢⎢⎢⎢⎢⎣

0 a1 0 0 · · ·
a1 0 a2 0 · · ·
0 a2 0 a3 · · ·
0 0 a3 0 · · ·
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎦ , with ak = vkvk+1, k ∈ N. (40)

Then A represents a Hilbert-Schmidt operator on �2(N) with the Hilbert-Schmidt norm

‖A‖2
2 = 2

∞

∑
k=1

|ak|2 = 2
∞

∑
k=1

|xkxk+1|.

The relevance of A to our problem comes from the equality

FA(z) = F

({
xk

z

}∞

k=1

)
= f
(
z−1) ,

which can be verified with the aid of (5) and (10). Hence FA(z) is analytic on C\ {0} .
By Theorem 2.2, the set of nonzero eigenvalues of A coincides with the zero set of
FA(z) . It even turns out that the algebraic multiplicity of a nonzero eigenvalue ζ of
A equals the multiplicity of ζ as a root of the function FA(z) , as one infers from the
following theorem extending the conclusions of Theorem 2.2. For the definition of the
algebraic multiplicity of a nonzero eigenvalue of a compact operator see, for instance,
[30, Thm. 1.1].

THEOREM 5.1. Assume that a complex Jacobi matrix J of the form (6) fulfills
λn = 0 , ∀n, and {wn} ∈ �2(N) . Then the algebraic multiplicity of any nonzero eigen-
value ζ of J is equal to the multiplicity of the root ζ−1 of the entire function ϕ(z) =
FJ(z−1) = F

({zγ 2
n }∞

n=1

)
(see (7) and (10)).

Proof. Recall that γnγn+1 = wn and therefore, by our assumptions, {γ 2
n } ∈ D .

Denote again by PN , N ∈ N , the orthogonal projection onto the subspace spanned by
the first N vectors of the canonical basis in �2(N) . From formula (8) we deduce that

F
({zγ 2

n }N
n=1

)
= det(I− zJN) = det

(
(I− zJN)ezJN

)
,
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where JN = PNJPN . Since PNJPN tends to J in the Hilbert-Schmidt norm, as N → ∞ ,
and by continuity of the generalized determinant as a functional on the space of Hilbert-
Schmidt operators (see (30)) one immediately gets

ϕ(z) = F
({zγ 2

n }∞
n=1

)
= det

(
(I− zJ)ezJ)= det2(I− zJ).

From (27) it follows that ϕ(z) = (1− ζ z)m ϕ̃(z) where m is the algebraic multiplicity
of ζ , ϕ̃(z) is an entire function and ϕ̃(ζ−1) �= 0. �

The zero set of f (w) is at most countable and symmetric with respect to the origin.
One can split C into two half-planes so that the border line passes through the origin
and contains no nonzero root of f . Fix one of the half-planes and enumerate all nonzero

roots in it as {ζk}N( f )
k=1 , with each root being repeated in the sequence according to its

multiplicity. The number N( f ) may be either a non-negative integer or infinity. Then

specp(A)\ {0}=
{±ζ −1

k ; k ∈ N, k � N( f )
}

.

Since A2 is a trace class operator one has, by Theorem 5.1 and Lidskii’s theorem,

N( f )

∑
k=1

1

ζ 2
k

=
1
2

TrA2 =
∞

∑
k=1

xkxk+1. (41)

Moreover, the sum on the LHS converges absolutely, as it follows from Weyl’s inequal-
ity [30, Thm. 1.15].

THEOREM 5.2. Let x = {xk}∞
k=1 be a sequence of nonzero complex numbers such

that
∞

∑
k=1

|xkxk+1| < ∞.

Then the zeros of the entire even function f (w) = F(wx) can be arranged into se-
quences

{ζk}N( f )
k=1 ∪{−ζk}N( f )

k=1 ,

with each zero being repeated according to its multiplicity, and

f (w) =
N( f )

∏
k=1

(
1− w2

ζ 2
k

)
. (42)

Proof. Equation (42) can be deduced from Hadamard’s factorization theorem; see,
for instance, [9, Chp. XI]. In fact, the absolute convergence of the series ∑ζ −2

k in (41)
means that the rank of f is at most 1. Furthermore, (3) implies

| f (w)| � exp

(
|w|2

∞

∑
k=1

|xkxk+1|
)

,
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and therefore the order of f is less than or equal to 2. Hadamard’s factorization the-
orem tells us that the genus of f is at most 2. Taking into account that f is even and
f (0) = 1, this means nothing but

f (w) = exp(cw2)
N( f )

∏
k=1

(
1− w2

ζ 2
k

)

for some c ∈ C . Equating the coefficients at w2 one gets

−
∞

∑
k=1

xkxk+1 = c−
N( f )

∑
k=1

1

ζ 2
k

.

According to (41), c = 0. �

COROLLARY 5.3. For any n ∈ N (and recalling (14), (15)),

N( f )

∑
k=1

1

ζ 2n
k

= n ∑
m∈M (n)

α(m)
∞

∑
k=1

d(m)

∏
j=1

(
xk+ j−1xk+ j

)mj . (43)

Proof. Using Theorem 3.1, one can expand log f (w) into a power series at w = 0.
Applying log to (42) and equating the coefficients at w2n yields (43). �

If the sequence {xk} in Theorem 5.2 is positive one has some additional informa-
tion about the zeros of f (w) . In that case the vk s in (40) can be chosen positive, and so
A is a self-adjoint Hilbert-Schmidt operator. The zero set of f is countable and all roots
are real, simple and have no finite accumulation points. Enumerating positive zeros in
ascending order as ζk , k ∈ N , factorization (42) and identities (43) hold true. Since the
first positive root ζ1 is strictly smaller than all other positive roots, one has

ζ1 = lim
N→∞

(
∑

m∈M (N)
α(m)

∞

∑
k=1

d(m)

∏
j=1

(
xk+ j−1xk+ j

)mj

)−1/(2N)

.

REMARK 5.1. Still assuming the sequence {xk} to be positive let g(z) be an
entire function defined by

g(z) = 1+
∞

∑
n=1

gnz
n =

∞

∏
k=1

(
1− z

ζ 2
k

)
,

i.e. g(w2) = f (w) . Put

σ(2n) =
∞

∑
k=1

1

ζ 2n
k

, n ∈ N.

These are particular values of a function σ which is usually called the zeta function
associated with f . If A is invertible in �2(N) , and this happens if and only if

∞

∑
k=1

1
x2k−1

< ∞
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(as observed in [33, Eq. (51)]), σ is also called the spectral zeta function of A−1 . In
some cases of interest the coefficients gn are known explicitly and then these values of
the spectral zeta function can be evaluated recursively. Taking the logarithmic derivative
of g(z) and equating coefficients at the same powers of z leads to the recurrence rule

σ(2) = −g1, σ(2n) = −ngn−
n−1

∑
k=1

gn−k σ(2k) for n > 1. (44)

EXAMPLE 5.1. Put xk = (ν + k)−1 , with ν > −1. Recalling (38) and letting
z = w/2, the factorization of the Bessel function [40],

( z
2

)−ν
Γ(ν +1)Jν(z) =

∞

∏
k=1

(
1− z2

j2
ν,k

)
,

is obtained as a particular case of Theorem 5.2. The positive zeros of Jν(z) , called jν,k ,
occur also in the definition of the so called Rayleigh function [24],

σν (s) =
∞

∑
k=1

1
j s
ν,k

, Res > 1.

Corollary 5.3 implies the formula

σν(2N) = 2−2NN
∞

∑
k=1

∑
m∈M (N)

α(m)
d(m)

∏
j=1

(
1

( j + k+ ν −1)( j + k+ ν)

)mj

, N ∈ N.

According to (44) one has the linear recurrence [24, Eq. (14)]

σν(2n) =
(−1)n+1 2−2n

(n−1)!(ν +1)n
−

n−1

∑
k=1

(−1)k 2−2k

k!(ν +1)k
σν (2n−2k), n = 1,2,3, . . . .

EXAMPLE 5.2. This examples is perhaps less commonly known and concerns the
Ramanujan function, also interpreted as the q -Airy function by some authors [21, 41],
and defined by

Aq(z) := 0φ1( ;0;q,−qz) =
∞

∑
n=0

qn2

(q;q)n
(−z)n, (45)

where 0φ1( ;b;q,z) is the basic hypergeometric series (q -hypergeometric series) and
(a;q)k is the q -Pochhammer symbol (see, for instance, [18]). In (45), we suppose that
0 < q < 1 and z ∈ C . It has been shown in [32] that

Aq(w2) = qF
({

wq(2k−1)/4
}∞

k=1

)
.

Denote by 0 < ζ1(q) < ζ2(q) < ζ3(q) < .. . the positive zeros of w �→ Aq(w2) and put
ιk(q) = ζk(q)2 , k ∈ N . Then Theorem 5.2 tells us that the zeros of Aq(z) are exactly
0 < ι1(q) < ι2(q) < ι3(q) < .. . , all of them are simple and

Aq(z) =
∞

∏
k=1

(
1− z

ιk(q)

)
.
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One has
{

ιk(q)−1/2; k ∈ N
}

= spec(AAA(q))\{0} where AAA(q) is the Hilbert-Schmidt op-
erator in �2(N) whose matrix is of the form (40), with ak = qk/2 . Corollary 5.3 yields
a formula for the spectral zeta function DN(q) associated with Aq(z) , namely

DN(q) :=
∞

∑
k=1

1
ιk(q)N =

NqN

1−qN ∑
m∈M (N)

α(m)qε1(m), N ∈ N,

where, ∀m ∈ N� , ε1(m) = ∑�
j=1( j− 1)mj . In accordance with (44), from the power

series expansion of Aq(z) one derives the recurrence rule

Dn(q) = (−1)n+1 nqn2

(q;q)n
−

n−1

∑
k=1

(−1)k qk2

(q;q)k
Dn−k(q), n = 1,2,3, . . . .

Consider now a real Jacobi matrix J of the form (6) such that the diagonal se-
quence {λn} is semibounded. Suppose further that the off-diagonal elements wn de-
pend on a real parameter w as wn = wωn , n ∈ N , with {ωn} being a fixed sequence
of positive numbers. Following physical terminology one may call w the coupling
constant. Denote λinf = infλn . Assume that

∞

∑
n=1

ω 2
n

(λn− z)(λn+1− z)
< ∞

for some and hence any z < λinf . For z < λinf , Theorem 5.2 can be applied to the
sequence xn(z) = κ 2

n /(λn − z) , n ∈ N , where {κn} is defined recursively by κ1 = 1,
κnκn+1 = ωn . Comparing to (7) one has κ2k−1 = γ2k−1 , κ2k = γ2k/w . Let

FJ(z;w) = F

({
γ 2
n

λn− z

}∞

n=1

)
= F

({
wκ 2

n

λn− z

}∞

n=1

)

be the characteristic function of J = J(w) . We conclude that for every z < λinf fixed,
the equation FJ(z;w) = 0 in the variable w has countably many positive simple roots
ζk(z) , k ∈ N , enumerated in ascending order, and

FJ(z;w) =
∞

∏
k=1

(
1− w2

ζk(z)2

)
.
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