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NUMERICAL RANGES OF THE PRODUCT OF OPERATORS

HONGKE DU, CHI-KWONG LI, KUO-ZHONG WANG,
YUEQING WANG ∗ AND NING ZUO

(Communicated by I. M. Spitkovsky)

Abstract. We study containment regions of the numerical range of the product of operators A
and B such that W(A) and W(B) are line segments. It is shown that the containment region is
equal to the convex hull of elliptical disks determined by the spectrum of AB , and conditions
on A and B for the set equality holding are obtained. The results cover the case when A and B
are self-adjoint operators extending the previous results on the numerical range of the product of
two orthogonal projections.

1. Introduction

Let B(H) be the algebra of bounded linear operators on a complex Hilbert space
H . We identify B(H) with Mn , the algebra of n -by-n complex matrices, if H has
finite dimension n . The spectrum σ(A) , and the numerical range W (A) of an operator
A ∈ B(H) are defined by

σ(A) = {λ : A−λ I is not invertible} and W (A) = {〈Ax,x〉 : x ∈ H,‖x‖ = 1},
respectively. Here 〈·, ·〉 and ‖ · ‖ are the standard inner product and its associated
norm on H , respectively. The spectrum and the numerical range are useful tools in the
study of matrices and operators; for example, see [4, 5, 6]. It is known that W (A) is a
bounded convex subset of C . When H is finite dimensional, it is compact. In general,
the closure of the numerical range satisfies σ(A) ⊆ W (A) . Especially, for A ∈ M2 ,
W (A) is an elliptical disk with λ1 and λ2 as foci and {tr(A∗A)− |λ1|2 − |λ2|2}1/2 as
minor axis, where λ1 and λ2 are eigenvalues of A .

An operator A ∈ B(H) is an orthogonal projection if A2 = A = A∗ , contraction if
‖A‖≡ sup‖x‖=1 ‖Ax‖� 1, and positive if 〈Ax,x〉� 0 for all x∈H . In [1], it was shown
that if P,Q ∈ B(H) are orthogonal projections and 0 ∈ σ(P)∪σ(Q) , then

W (PQ) = conv{∪λ∈σ(PQ)E (λ )},
where conv{S } is the convex hull of the set S and E (λ ) is the ellipse disc with
foci 0 and λ , and length of minor axis

√
λ (1−λ ) . In general, the following example
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shows that the above equality may not hold for positive contractions A,B ∈ B(H) . Let

A = B =
(

1 0
0 1/2

)
. Then W (AB) = [1/4,1] 
= conv{E (1)∪E (1/4)} .

In this paper, we consider the containment regions for the numerical range of
the product of positive contractions, and extend the result to more general operators,
namely, those operators with numerical ranges equal to line segments.

First of all, for two positive contraction operators A,B ∈ B(H) , it is known that

W (AB) ⊆ {x+ iy : −1/8 � x � 1,−1/4 � y � 1/4};
see [1], [2], [3]. To see this1, we use the positive definite ordering that X � Y , and
show that

(a) −I/8 � (AB+BA)/2 � I and (b) −I/4 � (AB−BA)/(2i) � I/4.
For (a), it is clear that ‖AB+BA‖� 2 so that −2I � AB+BA� 2I for two positive

contractions A and B . Furthermore, note that A+B−A2−B2 � 0, and hence

0 � (A+B− I/2)2 = A2 +B2 +(AB+BA)+ I/4−A−B

= (AB+BA)+ I/4+(A2−A)+ (B2−B) � (AB+BA)+ I/4.

For (b), since ‖A− I/2‖� 1/2 and ‖B− I/2‖� 1/2, we have

‖i(AB−BA)‖ = ‖(A− I/2)(B− I/2)− (B− I/2)(A− I/2)‖
� 2‖(A− I/2)(B− I/2)‖� 1/2.

Moreover, i(AB−BA) is self-adjoint and then condition (b) holds.
Suppose λ ∈ [0,1] . Denote by E (λ ) the elliptical disk with foci 0,λ , minor axis

with end points (λ ± i
√

λ (1−λ ))/2, and major axis with end points (λ ±√
λ )/2.

Then W
((

λ 0√
λ (1−λ ) 0

))
= E (λ ). We have the following result in [4].

THEOREM 1.1. Let P,Q ∈ Mn be non-scalar orthogonal projections. Then

W (PQ) = conv{∪λ∈σ(PQ)E (λ )}.
One can obtain the above result using the following canonical for a product of

projections P,Q ∈ Mn ; see [1, 7] and its references.

PROPOSITION 1.2. Suppose P,Q ∈ Mn are non-scalar projections and U ∈ Mn

is unitary such that U∗(P+ iQ)U is a direct sum of (Ip + iIp)⊕ Iq⊕ iIr⊕0s , and

Cj =
(

c2
j + i c js j

c js j s2
j

)
, j = 1, . . . ,k,

where c j ∈ (0,1),s j =
√

1− c2
j . Then U∗PQU will be a direct sum of Ip⊕0q+r+s and

Ĉj =
(

c2
j 0

c js j 0

)
, j = 1, . . . ,k.

In the next two sections, we will consider containment regions for the numerical
range of the product of a pair of positive contractions, and extend the results to a more
general class of matrices, namely, those matrices with numerical ranges contained in
line segments. We will consider the infinite dimensional version of Theorem 1.1 and its
generalization in Section 4.

1Li would like to thank Professor Fuzheng Zhang for showing him this proof.
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2. Positive contractions

In this section, we extend Theorem 1.1 to obtain a containment region S of
W (AB) for two positive contractions A,B ∈ Mn , and determine the conditions for
S = W (AB) . We begin with some technical lemmas. We will denote by λ1(X) �
· · · � λn(X) the eigenvalues of a Hermitian matrix X ∈ Mn .

LEMMA 2.1. Suppose T = T1⊕ . . .⊕Tm⊕T0 ∈ Mn and μ = μ1 + iμ2 ∈ C satis-
fying T1 = · · · = Tm ∈ M2 are non-scalar matrices,

2μ1 = λ1(T1 +T ∗
1 ) > λ1(T0).

Then up to a unit multiple, there is a unique unit vector x̃ ∈ C2 such that x̃∗T1x̃ =
μ1 + iμ2 . Moreover, if x ∈ Cn such that x∗Tx = μ1 + iμ2 , then

x = v⊗ x̃⊕0n−2m = (v1x̃
t , . . . ,vmx̃t ,0, . . . ,0)t

where v = (v1, . . . ,vm)t ∈ Cm is a unit vector.

Proof. Obviously, μ ∈ ∂W (T1) . Hence there is a unit vector x̃ ∈ C2 such that
x̃∗T1x̃ = μ1 + iμ2 .

Now, suppose x = x1 ⊕·· ·⊕ xm ⊕ x0 , where, x1, . . . ,xm ∈ C2 and x0 ∈ Cn−2m , is
a unit vector such that x∗Tx = μ1 + iμ2 . Then

2μ1 = x∗(T +T ∗)x =
m

∑
j=0

x∗j(Tj +T ∗
j )x j � 2μ1

m

∑
j=1

‖x j‖2 + λ1(T0 +T∗
0 )‖x0‖2.

Thus, x0 = 0 and (Tj +T ∗
j )x j = 2μ1x j for j = 1, . . . ,m . and x j = v jx̃ with v j ∈ C for

j = 1, . . . ,m . Let v = (v1, . . . ,vm)t . Then x = v⊗ x̃⊕ 0n−2m , and ‖v‖ = ‖x‖/‖x̃‖ = 1
as asserted. �

LEMMA 2.2. Let P,Q ∈ Mn be non-scalar orthogonal projections. Suppose that
there is a supporting line L of W (PQ) satisfying L ∩W (PQ) = {μ} ⊆ E (λ̂ ) with
λ̂ ∈ σ(PQ) and λ̂ ∈ (0,1) . Suppose that μ /∈ E (λ ) for all other λ ∈ σ(PQ) and that
〈PQx,x〉 = μ for some unit vector x . Then there is a unitary matrix V ∈ Mn with the
first two columns v1,v2 such that span{v1,v2} = span{x,PQx} , and

V ∗PV =

(
λ̂

√
λ̂ − λ̂ 2√

λ̂ − λ̂ 2 1− λ̂

)
⊕P′ and V ∗QV =

(
1 0
0 0

)
⊕Q′.

Proof. Suppose PQ has the canonical form described in Proposition 1.2, and U
is the unitary such that U∗PQU = C1 ⊕ ·· · ⊕Ck ⊕ Ir ⊕ 0s , P = P1 ⊕ ·· · ⊕Pk ⊕ Ir ⊕P′
and Q = Q1 ⊕ ·· ·⊕Qk ⊕ Ir ⊕Q′ , where P′Q′ = 0s and Ci = PiQi for 1 � i � k . We
may further assume that C1, . . . ,Cm satisfy W (C1) = · · · = W (Cm) = E (λ̂ ) such that
μ /∈W (Cj) for all other j ∈ {m+1, . . . ,k} . Thus,

C1 = · · · = Cm =
(

c2 0
cs 0

)
, P1 = · · · = Pm =

(
c2 cs
cs s2

)
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and

Q1 = · · · = Qm =
(

1 0
0 0

)

with λ̂ = c2 and s2 =
√

1− c2 . Because L∩W (PQ) = {μ} , there is t ∈ [0,2π) such
that eit μ + e−itμ is the largest eigenvalue of eitPQ+ e−itQP ; e.g., see [5, Chapter 1].
Now, set P̂+ iQ̂ = U∗(P + iQ)U and x̂ = U∗x so that x̂∗P̂Q̂x̂ = μ . Then T = eit P̂Q̂
will satisfy the hypothesis of Lemma 2.1. It follows that

x̂ = U∗x = v0⊗ x̃⊕0n−2m and P̂Q̂x̂ = (U∗PQU)(U∗x) = v0⊗ ỹ⊕0n−2m ≡ ŷ,

where v0 ∈ Cm with ‖v0‖ = 1 and ỹ = C1x̃ . For any y ∈ span{x̂, ŷ} , we have y =
v0⊗ y0⊕0n−2m for some y0 ∈ span{x̃, ỹ} , and then

(1) P̂Q̂y = v0⊗C1y0⊕0n−2m, P̂y = v0 ⊗P1y0⊕0n−2m, Q̂y = v0⊗Q1y0 ⊕0n−2m.

Let V ′ ∈ Mn be a unitary such that the span of the first two columns of V ′ contains the
set {x,PQx} , and let V̂ = (v̂1, . . . , v̂n) =U∗V ′ . Then V̂ is a unitary and span{v̂1, v̂2} =
span{x̂, ŷ} . From (1) , we obtain that

V̂ ∗P̂Q̂V̂ = C′
1 ⊕C′, V̂ ∗P̂V̂ = P′

1⊕P′, and V̂ ∗Q̂V̂ = Q′
1 ⊕Q′,

where C′
1
∼=C1 and P′

1,Q
′
1 are two 2-by-2 orthogonal projections. Since c2 = λ̂ ∈ (0,1)

and P′
1Q

′
1 = C′

1 , Q′
1 
= 02 , I2 . There is a unitary R̂ ∈ M2 such that

R̂∗Q′
1R̂ =

(
1 0
0 0

)
and R̂∗P′

1R̂ =
(

p11 p12

p12 p22

)
.

Hence

(
p11 0
p12 0

)
= R̂∗C′

1R̂
∼= C1 , and then c2 = p11, p12 = eiθ cs for some θ ∈ [0,2π) .

Let R =
(

R̂

(
1 0
0 eiθ

))
⊕ In−2 , and V = UV̂R . Then

V ∗PV = R∗V̂ ∗P̂V̂R =

(
λ̂

√
λ̂ − λ̂ 2√

λ̂ − λ̂ 2 1− λ̂

)
⊕P′ and V ∗QV = R∗V̂ ∗Q̂V̂R =

(
1 0
0 0

)
⊕Q′

as asserted. �

THEOREM 2.3. Let A,B ∈ Mn be two non-scalar positive contractions. Then

W (AB) ⊆ conv{∪λ∈σ(AB)E (λ )}.
The set equality holds if and only if there is a unitary matrix U such that U∗AU = A′ ⊕
A

′′
,U∗BU = B′ ⊕B

′′
such that A′,B′ are orthogonal projections such that W (A

′′
B

′′
) ⊆

W (A′B′) = W (AB) .

Proof. Let

Â =

⎡
⎣ A

√
A−A2 0√

A−A2 In−A 0
0 0 0

⎤
⎦ and B̂ =

⎡
⎣ B 0

√
B−B2

0 0 0√
B−B2 0 In−B

⎤
⎦ .
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Then

T = ÂB̂ =

⎡
⎣ AB 0 A

√
B−B2√

A−A2B 0
√

(A−A2)(B−B2)
0 0 0

⎤
⎦

satisfies σ(ÂB̂) = σ(AB)∪{0} and

W (AB) ⊆W (T ) = conv{∪λ∈σ(ÂB̂)E (λ )}.
Now, suppose that W (AB) = conv{∪λ∈σ(AB)E (λ )} = W (T ) . Then

W (AB) = conv{S∪λ∈σ(AB)\S E (λ )},
where S = σ(AB)∩{0,1} . Obviously, σ(AB)\ S = /0 if and only if W (AB) ⊆ [0,1] .

If W (AB)⊆ [0,1] , then AB is a Hermitian matrix so that AB = B∗A∗ = BA . Hence
A and B commute, and there is a unitary U such that A = U∗Λ1U and B = U∗Λ2U ,
where Λ1 = diag(a1, . . . ,an) and Λ2 = diag(b1, . . . ,bn) . Then W (AB) = W (Λ1Λ2) =
[α0,α1] , where α0 = min1�i�n aibi and α1 = max1�i�n aibi . Hence we have the desired
conclusion.

Next, suppose that W (AB) is not in [0,1] . This is σ(AB) \ S 
= /0 . Let λ1 ∈
σ(AB) \ S be such that ∂E (λ1)∩ ∂W (AB) contains an arc. Then there exists μ ∈
∂E (λ1)∩ ∂W (AB) with μ /∈ E (λ ) for all other λ ∈ σ(AB) . Let x1 ∈ Cn be a unit
vector with x∗1ABx1 = μ . Since ∂W (AB) = ∂W (T ) , there is θ1 ∈ [0,2π) satisfying
2Re(eiθ1 μ) = maxσ(eiθ1T + e−iθ1T ∗) . Let x̂1 = x1 ⊕ 02n . Then x̂1 is an eigenvector
of eiθ1T + e−iθ1T ∗ corresponding to eiθ1T so that

(eiθ1AB+e−iθ1BA)x1 = 2Re(eiθ1 μ)x1, eiθ1
√

A−A2Bx1 = 0, and e−iθ1
√

B−B2Ax1 = 0.

Hence T x̂1 = ABx1⊕02n . By Lemma 2.2, there is a unitary Û1 and Û1 =U1⊕ I2n such
that the span of the first two columns of U1 contains the set {x1,ABx1} ,

Û∗
1 ÂÛ1 =

(
λ1

√
λ1(1−λ1)√

λ1(1−λ1) 1−λ1

)
⊕ Â1 and Û∗

1 B̂Û1 =
(

1 0
0 0

)
⊕ B̂1,

where

Â1 =

⎡
⎣A′

1 C∗
1 0

C1 I−A 0
0 0 0

⎤
⎦ and B̂1 =

⎡
⎣ B′

1 0 D∗
1

0 0 0
D1 0 I−B

⎤
⎦ .

Thus,

U∗
1 AU1 =

(
λ1

√
λ1(1−λ1)√

λ1(1−λ1) 1−λ1

)
⊕A′

1, U∗
1 BU1 =

(
1 0
0 0

)
⊕B′

1,

and U∗
1 ABU1 = C1 ⊕A′

1B
′
1 , where C1 =

(
λ1 0√

λ1(1−λ1) 0

)
. Then A′

1,B
′
1 are positive

contractions, Â1, B̂1 are orthogonal projections, and

conv{∪λ∈σ(AB)\SE (λ )} = conv{E (λ1)∪λ∈σ(A1B1)\S E (λ )}.
Now, suppose W (AB) = W (T ) = conv{S∪k

j=1 W (Cj)} for k distinct matrices
C1, . . . ,Ck ∈M2 such that for j = 1, . . . ,k , λ j ∈ σ(AB)\S , ∂E (λ j)∩∂W (AB) contains
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an arc, and W (Cj) = E (λ j) . Since the argument in the preceding paragraph is true
for any E (λ j) for j = 1, . . . ,k , there is an orthonormal set {v1, . . . ,v2k} ⊆ Cn and a
unitary V = V1 ⊕V2 ∈ M3n , where the first 2k columns of V1 equals v1, . . . ,v2k , such
that V ∗TV =C1⊕·· ·⊕Ck⊕T0 . Thus, V ∗ÂV = A1⊕·· ·⊕Ak⊕ Ã0 , V ∗B̂V = B1⊕·· ·⊕
Bk ⊕ B̃0 . Consequently, V ∗

1 AV1 = A1⊕·· ·⊕Ak ⊕A0 , and V ∗BV = B1⊕·· ·⊕Bk ⊕B0 .
Evidently, 0 ∈ σ(A1B1)∩{0,1} ⊆ S . If 1 /∈ S , then W (AB) = W (A1B1) so that

the conclusion of the theorem holds with (A′,B′) = (A1,B1) . Suppose that 1∈ S . Then
1 ∈ σ(A0B0) because σ(Cj) = {0,λ j} with λ j ∈ (0,1) . Because A0,B0 are positive
contractions, there is a unitary U0 satisfying U∗

0 A0U0 = [1]⊕A′
0 and U∗

0 B0U0 = [1]⊕
B′

0 . Let U = (V1(I2k ⊕U0))⊕V2 . Then (U∗AU,U∗BU) = (A′ ⊕ A′′,B′ ⊕ A′′) with
(A′,B′) = (A1 ⊕ [1],A2⊕ [1]) , and the desired conclusion follows. �

3. Essentially Hermitian matrices

Recall that a matrix A∈Mn is an essentially Hermitian matrix if eit(A−(trA)In/n)
is Hermitian for some t ∈ [0,2π) .

It is known and not hard to show that the following conditions are equivalent for
A ∈ Mn .

(a) A is essentially Hermitian
(b) W (A) is a line segment in C joining two complex numbers a1,a2 .
(c) A is normal and all its eigenvalues lie on a straight line.

The results in the previous section can be extended to essentially Hermitian matri-
ces. We begin with the following result which follows readily from Proposition 1.2.

PROPOSITION 3.1. Suppose A,B∈Mn are normal matrices with σ(A)= {a1,a2}
and σ(B) = {b1,b2} . Then A = (a1−a2)P+a2In and B = (b1 −b2)Q+b2In , where
P and Q are orthogonal projections, and there is a unitary matrix U such that U∗(P+
iQ)U is a direct sum of (Ip + iIp)⊕ Iq⊕ iIr ⊕0s , and(

c2
j + i c js j

c js j s2
j

)
, j = 1, . . . ,k,

where c j ∈ (0,1),s j =
√

1− c2
j . Consequently, U∗ABU is a direct sum of a diagonal

matrix D with σ(D) ⊆ {a1b1,a1b2,a2b1,a2b2} and

Cj =
(

a1c2
j +a2s2

j (a1 −a2)c js j

(a1−a2)c js j a1s2
j +a2c2

j

)(
b1 0
0 b2

)
, j = 1, . . . ,k.

Suppose A,B ∈ Mn satisfy the hypotheses of the above proposition. Then

W (AB) = conv{∪k
j=1W (Cj)∪W (D)}.

Evidently, W (D) is the convex hull of the diagonal entries of D . Here note that some or
all of the entries a1b1,a1b2,a2b1,a2b2 may absent in D . By the result on the numerical
range of 2×2 matrix, we have the following proposition.
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PROPOSITION 3.2. Let a1,a2,b1,b2 ∈ C with a1 
= a2,b1 
= b2 , c ∈ (0,1) , s =√
1− c2 , and

C =
(

a1c2 +a2s2 (a1−a2)cs
(a1 −a2)cs a1s2 +a2c2

)(
b1 0
0 b2

)
.

Then W (C) is the elliptical disk E (a1,a2,b1,b2;γ) with foci γ ±
√

γ2 −a1a2b1b2 and
length of minor axis

{2|γ̂|2 +(|b1|2 + |b2|2)|a1−a2|2c2s2 −2|γ̂2 +b1b2(a1 −a2)2c2s2|}1/2,

where γ = trC = [(a1b1 + a2b2)c2 + (a1b2 + a2b1)s2] and γ̂ = [(a1b1 − a2b2)c2 +
(a2b1−a1b2)s2]/2 .

Several remarks in connection to Proposition 3.2 are in order.

1. If (a1,a2) = (b1,b2) = (1,0) , then E (a1,a2,b2,b2;γ) = E (γ) defined in Section
2.

2. The center of W (C) in Proposition 3.2 always lies in the line segment with end
points a1b1 +a2b2 and a1b2 +a2b1 , and these two points are different if a1 
= a2

and b1 
= b2 .

3. Suppose a1,a2,b1,b2 are given such that a1 
= a2,b1 
= b2 . Every γ in the inte-
rior of the line segment with end points a1b1 + a2b2 and a1b2 + a2b1 uniquely
determine c ∈ (0,1) and s =

√
1− c2 so that one can construct the matrix C

(based on a1,a2,b1,b2,γ ) such that W (C) = E (a1,a2,b1,b2;γ) .

4. Let A,B ∈ Mn satisfy the hypothesis of Proposition 3.1. Then for every λ ∈
(σ(AB)\S) with S = σ(AB)∩{a1b1,a1b2,a2b1,a2b2} , there is λ̃ ∈σ(AB) such
that λ λ̃ = a1a2b1b2 and λ + λ̃ = (a1b1 + a2b2)c2

j + (a1b2 + a2b1)s2
j . Such

a pair of eigenvalues correspond to the eigenvalues of Cj . If a1a2b1b2 = 0,
then λ ∈ (σ(Cj) \ S) will ensure that λ 
= 0 so that λ̂ = 0. Otherwise, λ̂ =
a1a2b1b2/λ . As a result, we can always assume that λ̂ = a1a2b1b2/λ and
γ = λ +a1a2b1b2/λ .

By the above remarks and Propositions 3.1, 3.2, we have the following.

THEOREM 3.3. Suppose A,B∈Mn are non-scalar normal matrices with σ(A) =
{a1,a2} and σ(B) = {b1,b2} . Let S = σ(AB)∩{a1b1,a1b2,a2b1,a2b2} . Then

W (AB) = conv{∪λ∈(σ(AB)\S)E (a1,a2,b1,b2;λ +(a1a2b1b2)/λ )∪S}.
We can use the dilation technique to study the numerical range of the product of

essentially Hermitian matrices. Let Ã be an essentially Hermitian matrix such that
W (Ã) is a line segment joining a1,a2 ∈ C . Then Ã = a2In +(a1−a2)A for a positive
contraction A . Then Ã has a dilation of the form P̃ = a2I2n +(a1−a2)P with

P =
[

A
√

A−A2√
A−A2 I−A

]
.
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Then P̃ is normal with σ(P̃) = {a1,a2} so that W (P̃) = W (A) . Now, if B̃ = b2In +
(b1 −b2)B is another essentially Hermitian matrix, then B̃ has a dilation Q̃ = b2I2n +
(b1−b2)Q , where

Q =
[

B
√

B−B2√
B−B2 I−B

]
,

such that Q̃ is normal with σ(Q̃) = {b1,b2} and W (B̃) = W (Q̃) .
Using this observation and arguments similar to those in the proof of Theorem 2.3,

we have the following.

THEOREM 3.4. Suppose A,B ∈ Mn are essentially Hermitian matrices such that
A = a2In+(a1−a2)A1 and B = b2In+(b1−b2)B1 for two positive contractions A1,B1 .
Let Ã = a2I3n +(a1−a2)P and B̃ = b2I3n +(b1−b2)Q

P =

⎡
⎢⎢⎣

A1

√
A1−A2

1 0√
A1−A2

1 In−A1 0

0 0 0

⎤
⎥⎥⎦ and Q =

⎡
⎢⎢⎣

B1 0
√

B1−B2
1

0 0 0√
B1 −B2

1 0 In−B1

⎤
⎥⎥⎦ .

Then W (AB) ⊆ W (ÃB̃) , where W (ÃB̃) can be determined by Theorem 3.3. The set
equality holds if and only if there is a unitary U such that UAU∗ = A1 ⊕A2,UBU∗ =
B1 ⊕B2 satisfying σ(A1) = {a1,a2} , σ(B1) = {b1,b2} , and W (A2B2) ⊆W (A1B1) =
W (AB) .

4. Extension to infinite dimensional spaces

We can extend the results in the previous sections to B(H) , where H is infinite
dimensional. Note that for a pair of non-scalar orthogonal projections P,Q ∈ B(H) ,
there is a unitary U such that U∗(P+ iQ)U is a direct sum of (1+ i)I⊕ I⊕ iI⊕0, and[

C2 + iI C
√

I−C2

C
√

I−C2 I−C2

]
,

where C is a positive contraction; see [1, 7] and their references. Consequently, PQ is
a direct sum of I⊕0 and

T =
[

C2 0
C
√

I−C2 0

]
.

Note that T can be approximated by a sequence of operators of the form

Tm =
[

C2
m 0

Cm
√

I−C2
m 0

]
, m = 1,2, . . . ,

where Cm has finite spectrum and therefore can be assumed to be the direct sum of
c2

j IHj on some subspace Hj for j = 1, . . . ,c2
km

with c j ∈ (0,1) . It is easy to see that

W (Tm) = conv{∪λ∈σ(Cm)E (λ )}.
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In fact, the same conclusion holds if σ(C)= σ(T ) is a discrete set, equivalently, σ(PQ)
is a discrete set. In other words, if P,Q ∈ B(H) are non-scalar orthogonal projections
such that σ(PQ) is a finite or countably infinite, then

W (PQ) = conv{∪λ∈σ(PQ)E (λ )}.
This result was proved in [1, Theorem 1.3], for separable Hilbert spaces. One readily
sees that the proof works for general Hilbert space. In general, one can approximate
T by Tm and obtain the following result concerning the closure of W (PQ) ; see [1,
Theorem 1.2].

PROPOSITION 4.1. Let P,Q ∈ B(H) be non-scalar orthogonal projections. Then

W (PQ) = conv{∪λ∈σ(PQ)E (λ )}.
The closure signs on both sides can be removed if σ(PQ) is a discrete set.

One can show that the results in Sections 2-3 hold in the infinite dimension setting.

THEOREM 4.2. Let A,B ∈ B(H) be non-scalar positive semi-definite contrac-
tions. Then

W (AB) ⊆ conv{∪λ∈σ(AB)E (λ )}.
The closure signs can be removed if σ(AB) is a discrete set. The set equality holds if
A,B are orthogonal projections.

THEOREM 4.3. Let A,B ∈ B(H) be such that W (A) is the line segment joining
a1,a2 , and W (B) is the line segment joining b1,b2 , where a1 
= a2 and b1 
= b2 . Then

W (AB) ⊆ conv{∪λ∈(σ(AB)\S)E (a1,a2,b1,b2;λ + λ̂)∪S},

where S = σ(AB)∩{a1b1,a1b2,a2b1,a2b2} , λ̂ = a1a2b1b2/λ , and E (a1,a2,b1,b2;λ +
λ̂ ) is defined as in Theorem 3.3. The closure signs can be removed if σ(AB) is a dis-
crete set. The set equality holds if σ(A) = {a1,a2} and σ(B) = {b1,b2} .

In Theorems 4.2 and 4.3, we only have sufficient conditions for the set inclusions
become set equalities. The problems of characterizing the set equality cases are open.
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