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BERNSTEIN FUNCTIONS OF SEVERAL SEMIGROUP GENERATORS

ON BANACH SPACES UNDER BOUNDED PERTURBATIONS

A. R. MIROTIN

(Communicated by V. V. Peller)

Abstract. The paper deals with (multidimensional and one-dimensional) Bochner-Phillips func-
tional calculus. Bounded perturbations of Bernstein functions of (one or several commuting)
semigroup generators on Banach spaces are considered, conditions for Lipschitzness and Frechet-
differentiability of such functions are obtained, estimates for the norm of commutators are
proved, and a generalization of Livschits-Kreı̆n trace formula derived.

1. Introduction

The study of the problem of differentiability of functions of self-adjoint opera-
tors on Hilbert space was initiated By Yu. Daletskiı̆ and S. G. Kreı̆n [10]. Much
work has been done during last decades on the theory of classes of operator Lipschitz
and Frechet-differentiable functions of (self-adjoint, unitary, or normal) operators on
Hilbert space by Birman and Solomyak, Davies, Farforovskaya, Johnson and Williams,
Peller, Aleksandrov, Nazarov, Arazy, Barton, Friedman, Pedersen, Shulman, Sukochev,
Kissin, Potapov, Naboko and others. We refer to [32], [33], [2], [14], [15], [16], [17],
[1] as well as to references quoted there for motivation and bibliography. It should be
stressed that all these work deal with Hilbert spaces only. The case of Banach spaces
was considered in [34].

This paper is devoted to problems in perturbation theory that arise in an attempt
to understand the behavior of the Bernstein function ψ(A) of a semigroup generator A
under perturbations of A . We consider Bernstein functions of several commuting semi-
group generators on Banach spaces (they constitute the subject matter of the so called
multidimensional Bochner-Phillips functional calculus). We give inter alia conditions
for their Lipschitzness and show that such functions are J perturbations preserving
where J is an arbitrary operator ideal; estimates for the norm of commutators are
also obtained. In the one-dimensional case Frechet-differentiability and a trace formula
are proved. So this work could be considered as a contribution to Bochner-Phillips
functional calculus.

One-dimensional Bochner-Phillips functional calculus is a substantial part of the
theory of operator semigroups (see, e.g., [18], [5], [9], [21], [36], [22]) and finds impor-
tant applications in the theory of random processes (see [12, Chap. XIII, Sec. 7], [13,
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Chap. XXIII, Sec. 5], [36, Chap. 13, 14], [35, Chapter 6], and [3]). The foundations
of multidimensional calculus were laid by the author in [23], [24], [25], [26], [27] (see
also [4] where the case of multiparametric C0 -groups is considered). Below we recall
some notions and facts from [8], [23], and [25], which we need for formulating our
results.

DEFINITION 1. [8] We say that a nonpositive function ψ ∈ C∞((−∞;0)n) be-
longs to the class Tn (or is a nonpositive Bernstein function of n variables) if all of
its first partial derivatives are absolutely monotone (a function in C∞((−∞;0)n) is said
to be absolutely monotone if it is nonnegative together with its partial derivatives of all
orders).

Obviously, ψ ∈ Tn if and only if −ψ(−s) is a nonnegative Bernstein function of
n variables on (0,∞)n , and Tn is a cone under the pointwise addition of functions and
multiplication by scalars. As is known [8] (see also [25], [28]), each function ψ ∈ Tn

admits an integral representation of the form (here and in what follows, the dot denotes
inner product in Rn and the expression s →−0 means that s1 →−0, . . . ,sn →−0)

ψ(s) = c0 + c1 · s+
∫

Rn
+\{0}

(es·u −1)dμ(u) (s ∈ (−∞;0)n), (∗)

where c0 = ψ(−0) := lims→−0 ψ(s) , c1 = (c j
1)

n
j=1 ∈ Rn

+ , c j
1 = lims j↓−∞ ψ(s)/s j , and

μ is a positive measure on Rn
+ \ {0} ; μ are determined by ψ .

A lot of examples of Bernstein function of one variable one can fined in [36] (see
also [22], [28]).

Throughout the paper, TA1 , . . . ,TAn denote pairwise commuting one-parameter C0

semigroups (i.e., strongly continuous semigroups on R+ ) on a complex Banach space
X with generators A1, . . . ,An respectively satisfying the condition ‖TAj(t)‖ � MA (t �
0, MA = const) (sometimes we write Tj instead of TAj ). We denote the domain of
Aj by D(Aj) and set A = (A1, . . . ,An) . Hereafter, by the commutation of operators
A1, . . . ,An we mean the commutation of the corresponding semigroups. By Gen(X)
we denote the set of all generators of uniformly bounded C0 semigroups on X and
by Gen(X)n , the set of all n -tuples (A1, . . . ,An) where Aj ∈ Gen(X) . We put M :=
max{MA,MB} for the pare A,B of n -tuples from Gen(X)n . In the following L (X)
denotes the algebra of linear bounded operators on X and I , the identity operator on X .
An operator-valued function TA(u) := TA1(u1) . . .TAn(un) (u∈Rn

+) is an n -parameter
C0 semigroup; therefore, the linear manifold D(A) := ∩n

j=1D(Aj) is dense in X [13,
Sec. 10.10].

DEFINITION 2. [25] The value of a function ψ ∈ Tn of the form (∗ ) at A =
(A1, . . . ,An) applied to x ∈ D(A) is defined by

ψ(A)x = c0x+ c1 ·Ax+
∫

Rn
+\{0}

(TA(u)− I)xdμ(u),

where c1 ·Ax := ∑n
j=1 c j

1Ajx .
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Given ψ ∈ Tn and t � 0, the function gt(s) := etψ(s) is absolutely monotone on
(−∞;0)n . It is also obvious that gt(s) � 1. By virtue of the multidimensional version
of the Bernstein-Widder theorem (see, e.g., [8], [6]), there exists a unique bounded
positive measure νt on Rn

+ , such that, for s ∈ (−∞;0)n , we have

gt(s) =
∫

Rn
+

es·udνt(u).

DEFINITION 3. In the notation introduced above, we set

gt(A)x =
∫

Rn
+

TA(u)xdνt(u) (x ∈ X)

(the integral is understood in the sense of Bochner).

Obviously, ‖gt(A)‖ � Mn
A . The map g(A) : t �→ gt(A) is a C0 semigroup. In the

one-dimensional case, it is called the semigroup subordinate to TA (the terminology is
borrowed from probability theory; see [12, Sec. X.7] and [3]). In [29] it was noticed
that the closure of the operator ψ(A) exists and is the generator of the C0 semigroup
g(A) (cf. [25].) It suggests the following final version of the definition of the operator
ψ(A) .

DEFINITION 4. [25] By the value of a function ψ ∈ Tn at an n -tuple A =
(A1, . . . ,An) of commuting operators in Gen(X) we understand the generator of the
semigroup g(A) , i.e., the closure of the operator defined in the Definition 2. This value
is denoted by ψ(A) .

The functional calculus thus arising is called multidimensional Bochner-Phillips
calculus, or Tn -calculus.

In the sequel unless otherwise stated we assume for the sake of simplicity that
c0 = c1 = 0 in the integral representation (∗ ) of the function ψ ∈ Tn .

The notation and constraints introduced above are used in what follows without
additional explanations.

2. Bounded perturbations of Bernstein functions

THEOREM 1. (Cf. [30, Theorem 1]) Let ψ ∈ Tn . Then for every commuting
families A = (A1, . . . ,An) , and B = (B1, . . . ,Bn) from Gen(X)n such that the operators
Ai −Bi are bounded, D(Ai) = D(Bi) (i = 1, . . . ,n) the operator ψ(A)−ψ(B) is also
bounded and

‖ψ(A)−ψ(B)‖� − 2e
e−1

nMnψ
(
−M

2n
‖A−B‖

)
,

where ‖A−B‖ := (‖A1−B1‖, . . . ,‖An−Bn‖) .
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Proof. We have D(Ai) = D(Bi) (i = 1, . . . ,n) and for all x ∈ D(A)

(ψ(A)−ψ(B))x =
∫

Rn
+\{0}

(TA(u)−TB(u))xdμ(u), (1)

where TA(u) :=
n
∏
i=1

TAi(ui) , TB(u) :=
n
∏
i=1

TBi(ui) .

It is easy to verify that

TA(u)−TB(u) =

(
n−1

∏
i=1

TAi(ui)

)
(TAn(un)−TBn(un))

+

(
n−2

∏
i=1

TAi(ui)

)
(TAn−1(un−1)−TBn−1(un−1))TBn(un)

+ . . .+TA1(u1)(TA2(u2)−TB2(u2))
n

∏
i=3

TBi(ui)

+ (TA1(u1)−TB1(u1))
n

∏
i=2

TBi(ui). (2)

It follows that

‖TA(u)−TB(u)‖ � Mn−1
n

∑
i=1

‖TAi(ui)−TBi(ui)‖. (3)

But for all x ∈ D(A) = D(B)

(TAi(ui)−TBi(ui))x =
ui∫

0

d
ds

(TBi(ui − s)TAi(s)x)ds

=
ui∫

0

TBi(ui− s)(Ai −Bi)TAi(s)xds. (4)

Since
‖TBi(ui− s)(Ai −Bi)TAi(s)‖ � M2‖Ai−Bi‖,

both sides in (4) are bounded, formula (4) holds for all x ∈ X , and

‖TAi(ui)−TBi(ui)‖ � M2‖Ai−Bi‖ui. (5)

Now in view of the obvious estimate ‖TAi(ui)−TBi(ui)‖ � 2M , we have

‖TAi(ui)−TBi(ui)‖ � 2Mmin{1,(M/2)‖Ai−Bi‖ui}.

For reasons of convexity it is clear that

min{1,at}� e
e−1

(1− e−at) (a, t � 0)



BERNSTEIN FUNCTIONS UNDER BOUNDED PERTURBATIONS 203

[36, p. 209]. This implies the inequality

‖TAi(ui)−TBi(ui)‖ � 2M
e

e−1

(
1− e−(M/2)‖Ai−Bi‖ui

)
.

Now we deduce from (3) that

‖TA(u)−TB(u)‖ � 2e
e−1

Mn
n

∑
i=1

(
1− e−(M/2)‖Ai−Bi‖ui

)
.

Since by the Cauchy inequality

n

∑
i=1

(
1− e−ai

)
� n

(
1− e−(1/n)∑n

i=1 ai

)

(ai � 0) , we have

‖TA(u)−TB(u)‖ � 2e
e−1

Mnn
(
1− e−(M/2n)∑n

i=1 ‖Ai−Bi‖ui

)
.

Combining this estimate with the formula (1) we get for all x ∈ D(A)

‖(ψ(A)−ψ(B))x‖ � 2e
e−1

Mnn
∫

Rn
+\{0}

(
1− e−(M/2n)∑n

i=1 ‖Ai−Bi‖ui

)
dμ(u)‖x‖

= − 2e
e−1

Mnnψ
(
−M

2n
‖A−B‖

)
‖x‖,

and the result follows. �

EXAMPLE 1. For every A,B∈Gen(X) such that A−B is bounded, D(A) = D(B)
the following inequalities hold

1) (cf. [30, formula (10)])

‖(−A)α − (−B)α‖ � 21−αe
e−1

M1+α‖A−B‖α (0 < α < 1);

2)

‖ log(I−A)− log(I−B)‖ � 2eM
e−1

log

(
1+

M
2
‖A−B‖

)
.

Indeed, the functions ψ(s) = −(−s)α (0 < α < 1) and − log(1− s) belong to T1 .

COROLLARY 1. The multidimensional Bochner-Phillips functional calculus is sta-
ble in a sense that ‖ψ(A(k))−ψ(B)‖ → 0 for every ψ ∈ Tn and for every sequence
A(k) of commuting families from Gen(X)n such that ‖A(k)−B‖→ 0 (k → ∞) for some
commuting family B from Gen(X)n and MA(k) � M, M = const .

The next corollary gives (necessary and) sufficient conditions for Bernstein func-
tion to be operator Lipschitz in the class of generators of semigroups of contractions
(the case M = 1), i.e., in the class of maximally dissipative operators.
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COROLLARY 2. Let ψ ∈Tn be such that ∂ψ
∂ si

|s=−0 	= ∞ for all i = 1, . . . ,n. Then

‖ψ(A)−ψ(B)‖� Mn+1
n

∑
i=1

∂ψ
∂ si

|s=−0 ‖Ai−Bi‖.

Proof. Using formulae (1), (3), and (5) we have for x ∈ D(A)

‖(ψ(A)−ψ(B))x‖ �
∫

Rn
+\{0}

‖TA(u)−TB(u)‖dμ(u)‖x‖

� Mn−1
n

∑
i=1

∫
Rn

+\{0}
‖TAi(ui)−TBi(ui)‖dμ(u)‖x‖

� Mn+1
n

∑
i=1

∫
Rn

+\{0}
uidμ(u)‖Ai−Bi‖‖x‖

= Mn+1
n

∑
i=1

∂ψ
∂ si

|s=−0 ‖Ai−Bi‖‖x‖. �

Recall that a C0 semigroup T is called exponentially stable if (∀t � 0)‖T (t)‖ �
Meωt where ω < 0. In the case of generators of exponentially stable semigroups Corol-
lary 2 can be improved as follows.

COROLLARY 3. Let ψ ∈Tn . For every commuting families A = (A1, . . . ,An) and
B = (B1, . . . ,Bn) from Gen(X)n such that the operators Ai−Bi are bounded, D(Ai) =
D(Bi) , and semigroups TAi and TBi are exponentially stable, ‖TAi(t)‖ � Meωit , and
‖TBi(t)‖ � Meωit , ωi < 0 (i = 1, . . . ,n) , the operator ψ(A)−ψ(B) is also bounded
and

‖ψ(A)−ψ(B)‖� Mn+1
n

∑
i=1

∂ψ(ωiei)
∂ si

‖Ai−Bi‖,

where (ei)n
i=1 stands for the standard orthogonal basis in Rn .

Corollary 3 follows from Corollary 2 applied to the function ψ(s+ ω) := ψ(s1 +
ω1, . . . ,sn + ωn) from Tn and to the family A−ωI := (A1 −ω1I, . . . ,An −ωnI) from
Gen(X)n .

In the case n = 1 the following theorem (for contraction semigroups) was proved
in [36, Corollary 13.9].

THEOREM 2. Let ψ ∈ Tn . Then for every commuting families A = (A1, . . . ,An) ,
and B = (B1, . . . ,Bn) such that operators Ai and Bi belongs to Gen(X) and commute
(i = 1, . . . ,n) the following estimate holds for all x ∈ D(A)∩D(B)

‖(ψ(A)−ψ(B))x‖ � − 2e
e−1

nMnψ
(
−M

2n
‖(A−B)x‖

)
,

where ‖(A−B)x‖ := (‖(A1−B1)x‖, . . . ,‖(An−Bn)x‖) .
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Proof. Since operators Ai and Bi commute, it follows from (4) that for all x ∈
D(A)∩D(B)

‖(TAi(ui)−TBi(ui))x‖ � M2‖(Ai −Bi)x‖ui (i = 1, . . . ,n).

Using this estimate instead of (5) we can proceed exactly as in the proof of Theorem
1. �

COROLLARY 4. (Cf. [26, Theorem 16]) Let ψ ∈Tn . For every commuting family
A = (A1, . . . ,An) from Gen(X) the following inequality holds

‖ψ(A)x‖ � − 2e
e−1

nMnψ
(
−M

2n
‖Ax‖

)
,

where x ∈ D(A) , ‖Ax‖ := (‖A1x‖, . . . ,‖Anx‖) .
In particular ψ(A) is bounded if ψ is bounded.

Proof. This corollary follows from Theorem 2 with B = O . �

COROLLARY 5. Let ψ ∈ Tn be such that ∂ψ
∂ si

|s=−0 	= ∞ for all i = 1, . . . ,n. If
operators Ai and Bi from Gen(X) commute (i = 1, . . . ,n) the following estimate holds
for all x ∈ D(A)∩D(B)

‖(ψ(A)−ψ(B))x‖ � Mn+1
n

∑
i=1

∂ψ
∂ si

|s=−0 ‖(Ai −Bi)x‖.

This Corollary is proved similarly to Corollary 2.

DEFINITION 5. [38] A closed (with respect to the operator norm) ideal E of the
algebra L (X) of bounded operators on X is defined to have the strong convex compact-
ness property if for every finite measure space (Ω,μ) and every strongly measurable
bounded function U : Ω → L (X) the strong integral

∫
ΩUdμ belongs to E .

Theorems 3 and 4 below show in particular that functions from Tn are J -stable
in the sense of [15].

THEOREM 3. Let E be a closed ideal of the algebra L (X) which has the strong
convex compactness property and ψ ∈Tn . For every commuting families A=(A1, . . .,An)
and B = (B1, . . . ,Bn) from Gen(X)n such that Ai − Bi ∈ E , D(Ai) = D(Bi) (i =
1, . . . ,n) the operator ψ(A)−ψ(B) belongs to E , too.

Proof. Since E is a closed ideal in L (X) , formula (4) implies that TAi(ui)−
TBi(ui) ∈ E for all i (the Bochner integral in the right hand side of (4) exists in the
operator norm). The operator ψ(A)−ψ(B) is bounded by Theorem 1 and therefore for
all x ∈ X

(ψ(A)−ψ(B))x =
∫

Rn
+\[0,δ )n

+
∫

[0,δ )n\{0}
(TA(u)−TB(u))xdμ(u), (6)
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where δ > 0 and both integrals converge in the strong operator topology. Because of
the set Rn

+ \ [0,δ )n has finite μ -measure for every δ > 0 [25, Lemma 3.1], and the
function TA(u)−TB(u) is uniformly bounded, the first summand in the right-hand side
of (6) belongs to E by the strong convex compactness property.

As regards to the second summand in (6), the formula (2) enables us to present it
as the finite sum of strong integrals of the form

∫
[0,δ )n\{0}

Vi(u)
1

∑n
j=1 u j

(TAi(ui)−TBi(ui))Wi(u)x

(
n

∑
j=1

u j

)
dμ(u), (7)

where Vi(u) and Wi(u) are uniformly bounded strongly continuous operator-valued
functions. Moreover, formula (4) implies also that

1

∑n
j=1 u j

‖TAi(ui)−TBi(ui)‖ � M2‖Ai−Bi‖ ui

∑n
j=1 u j

� M2‖Ai−Bi‖,

and so integrands in (7) are bounded and strongly continuous functions in u∈Rn
+ \ {0} .

Since by [25, Lemma 3.1] the measure (∑n
j=1 u j)dμ(u) is bounded on [0,δ )n , all the

operators of the form (7) belongs to E by the strong convex compactness property. �

COROLLARY 6. Let ψ ∈ Tn . For every commuting families A = (A1, . . . ,An)
and B = (B1, . . . ,Bn) from Gen(X)n such that D(Ai) = D(Bi) and Ai−Bi are compact
(i = 1, . . . ,n) the operator ψ(A)−ψ(B) is compact, too.

Indeed, by [38, Theprem 1.3] the ideal of compact operators on X possesses the
strong convex compactness property.

REMARK 1. See [38] for other examples of operator ideals with strong convex
compactness property.

COROLLARY 7. (Cf. [30, Theorem 1]) Let ψ ∈ Tn . For every commuting family
A = (A1, . . . ,An) of compact operators from Gen(X) the operator ψ(A) is compact.

Corollary 7 follows from Corollary 6 (we assumed at the beginning that ψ(0) =
0).

Below we shall assume that a (two sided) operator ideal (J ,‖ · ‖
J

) on X is
symmetrically normed in the sense that ‖ASB‖

J
� ‖A‖‖S‖

J
‖B‖ for A,B∈L (X) and

S ∈ J . The following theorem shows that Bernstein functions are J perturbations
preserving.

THEOREM 4. Let (J ,‖ · ‖
J

) be an operator ideal on X and ψ ∈ Tn be such

that ∂ψ
∂ si

|s=−0 	= ∞ for all i = 1, . . . ,n. For every commuting families A = (A1, . . . ,An)
and B = (B1, . . . ,Bn) from Gen(X)n such that Ai − Bi ∈ J , D(Ai) = D(Bi) (i =
1, . . . ,n) the operator ψ(A)−ψ(B) belongs to J , too, and

‖ψ(A)−ψ(B)‖
J

� Mn+1
n

∑
i=1

∂ψ
∂ si

|s=−0 ‖Ai−Bi‖J
.
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Proof. Since TBi(ui − s)(Ai−Bi)TAi(s) ∈ J and

‖TBi(ui − s)(Ai−Bi)TAi(s)‖J
� M2‖Ai−Bi‖J

for all s , 0 � s � ui (i = 1, . . . ,n) , formulae (4) and (2) entail that TB(u)−TA(u) ∈ J
and

‖TB(u)−TA(u)‖
J

� Mn+1
n

∑
i=1

‖Ai−Bi‖J
ui

for all u ∈ Rn
+ . It follows that

∫
Rn

+\{0}
‖TB(u)−TA(u)‖

J
dμ(u) � Mn+1

n

∑
i=1

‖Ai−Bi‖J

∫
Rn

+\{0}
uidμ(u)

= Mn+1
n

∑
i=1

∂ψ
∂ si

|s=−0 ‖Ai−Bi‖J
.

In particular the operator in the right hand side of the formula (1) belongs to J . Since
by Theorem 1 the operator in the left hand side of this formula is bounded, (1) holds
for all x ∈ X , and the proof is complete. �

Arguing as in the proof of Corollary 3, we get also for generators of exponentially
stable semigroups the following

COROLLARY 8. Let (J ,‖ · ‖
J

) be an operator ideal on X and ψ ∈ Tn . For
every commuting families A = (A1, . . . ,An) and B = (B1, . . . ,Bn) from Gen(X)n such
that Ai −Bi ∈ J , D(Ai) = D(Bi) , and ‖TAi(t)‖ � Meωit , ‖TBi(t)‖ � Meωit , ωi < 0 ,
(i = 1, . . . ,n) , the operator ψ(A)−ψ(B) belongs to J , too, and

‖ψ(A)−ψ(B)‖
J

� Mn+1
n

∑
i=1

∂ψ(ωiei)
∂ si

‖Ai−Bi‖J
.

3. Estimates for the norm of commutators

First recall that an operator H ∈ L (X) is called Hermitian if ‖eisH‖ = 1 for all
s ∈ R . We put VH(s) = eisH for short; this is an automorphism of X for every s ∈ R .
We write [A,B] for the commutator AB−BA . If this operator is dense defined and
bounded we denote by [A,B] its extension to X , too.

LEMMA 1. Let H ∈ L (X) be Hermitian, TA a C0 -semigroup on X with genera-
tor A, and VH(s) maps D(A) into itself for all s ∈ R . Then for all x ∈ D(A) , s ∈ R

[A,VH(s)]x = is

1∫
0

VH(sr)[A,H]VH(s(1− r))xdr.
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Proof. First we prove that

[B,VH(s)] = is

1∫
0

VH(sr)[B,H]VH(s(1− r))dr

for all B ∈ L (X) . Indeed, the integral in the right-hand side of this formula exists in
the sense of Bochner with respect to the operator norm and

B−VH(s)BVH(s)−1 =
1∫

0

d
dr

(−VH(sr)BVH(−sr))dr = is

1∫
0

VH(sr)[B,H]VH(−sr))dr.

Now taking B = TA(t) we obtain that for x ∈ D(A)

1
t
[TA(t),VH(s)]x = is

1∫
0

VH(sr)
1
t
[TA(t),H]VH(s(1− r))xdr (t > 0),

and the result follows as t → 0. �

COROLLARY 9. If, in addition, the operator [A,H] belongs to an operator ideal
J on X , the operator [A,VH(s)] belongs to J , too, and

‖[A,VH(s)]‖
J

� |s|‖[A,H]‖
J

(s ∈ R).

In fact, if [A,H] ∈ J the integral
∫ 1
0 VH(sr)[A,H]VH(s(1− r))dr exists in the

sense of Bochner with respect to the J -norm for every s ∈ R .

THEOREM 5. (Cf. [16, Theorem 3.5]) Let H ∈ L (X) be Hermitian, [Aj,H] be-
longs to an operator ideal J on X , and VH(s) maps D(Aj) into itself for all s ∈ R

( j = 1, . . . ,n) . Then for every ψ ∈Tn such that ∂ψ
∂ s j

|s=−0 	= ∞ ( j = 1, . . . ,n) and ψ(A)
belongs to J , the following inequality holds

‖[ψ(A),H]‖
J

� Mn+1
n

∑
j=1

∂ψ
∂ s j

|s=−0 ‖[Aj,H]‖
J

.

Proof. Let

VH(s)AVH(s)−1 := (VH(s)A1VH(s)−1, . . . ,VH(s)AnVH(s)−1).

Note that VH(s)AjVH(s)−1 ∈ Gen(X) and VH(s)TAVH(s)−1 = TVH(s)AVH(s)−1 (s ∈ R).
Moreover, for t > 0 and x ∈ X we have

gt(VH(s)AVH(s)−1)x =
∫

Rn
+

(TVH(s)AVH(s)−1(u)− I)xdνt(u) = VH(s)gt(A)VH(s)−1x.
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It follows that ψ(VH(s)AVH(s)−1) = VH(s)ψ(A)VH(s)−1 . Now applying Theorem 4
and Corollary 9 we obtain

‖[ψ(A),VH(s)]‖
J

= ‖(ψ(A)−ψ(V(s)AVH(s)−1))VH(s)‖
J

� ‖ψ(A)−ψ(VH(s)AVH(s)−1)‖
J

� Mn+1
n

∑
j=1

∂ψ
∂ s j

|s=−0 ‖Aj −VH(s)AjVH(s)−1‖
J

� Mn+1
n

∑
j=1

∂ψ
∂ s j

|s=−0 ‖[Aj,VH(s)]‖
J

� |s|Mn+1
n

∑
j=1

∂ψ
∂ s j

|s=−0 ‖[Aj,H]‖
J

.

Dividing by |s| , we obtain the desired inequality. �

COROLLARY 10. Let operators [Aj,H] are bounded, the function ψ ∈ Tn is

bounded or each Aj is bounded, ∂ψ
∂ s j

|s=−0 	= ∞ , and VH(s) maps D(Aj) into itself

for all s ∈ R ( j = 1, . . . ,n) . Then

‖[ψ(A),H]‖ � Mn+1
n

∑
j=1

∂ψ
∂ s j

|s=−0 ‖[Aj,H]‖.

Indeed, since ψ(A) is bounded (see Theorem 1 and Corollary 4), one can apply
Theorem 5 to the operator ideal L (X) .

In the case of exponentially stable semigroups Theorem 5 can be improved, as
well.

In the following we consider the case n = 1.

4. Differentiability

DEFINITION 6. (Cf. [17]) Let (J ,‖ · ‖
J

) be an operator ideal on X , ψ ∈ T1 ,

A ∈ Gen(X) . We call the bounded linear operator ψ∇
A on J (transformator) the J -

Frechet derivative of the operator function ψ : Gen(X)→Gen(X) at the point A , if for
every operator ΔA ∈ J such that A+ ΔA∈ Gen(X) we have

‖ψ(A+ ΔA)−ψ(A)−ψ∇
A (ΔA)‖

J
= o(‖ΔA‖

J
) as ‖ΔA‖

J
→ 0.

Evidently, the Frechet derivative at the point A is unique.
Before we formulate the next theorem recall that if ψ ′(−0) 	= ∞ the derivative

ψ ′(s) of a function ψ ∈ T1 equals to
∫
(0,∞) e

svvdμ(v) (s � 0) and absolutely mono-
tonic on (−∞,0] . So for every A ∈ Gen(X) the operator

ψ ′(A) :=
∫

(0,∞)

TA(v)vdμ(v)
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(here TA denotes the C0 -semigroup generated by A) exists in the sense of the Hille-
Phillips functional calculus [13, Definition 15.2.2] and belongs to L (X) .

THEOREM 6. Let ψ ∈T1 , ψ ′(−0) 	= ∞ , A∈Gen(X) . The L (X)-Frechet deriva-
tive for the operator function ψ at the point A exists and equals to ψ ′(A) in a sense
that ψ∇

A (B) = ψ ′(A)B for every B ∈ L (X) .

Proof. For the proof we need the following

LEMMA 2. [28, Theorem 5] Let the function ψ ∈ T1 has the integral represen-
tation (∗ ), and ψ ′(−0) 	= ∞ . Then the function

ϕ(s1,s2) :=

{
ψ(s1)−ψ(s2)

s1−s2
−ψ ′(−0) if s1 	= s2,

ψ ′(s1)−ψ ′(−0) if s1 = s2

belongs to T2 and has the integral representation

ϕ(s1,s2) =
∫

R2
+\{0}

(es1u1+s2u2 −1)dμ1(u1,u2), (8)

where dμ1(u1,u2) is the image of the measure 1/2dμ(v)dw under the mapping u1 =
(v+w)/2 , u2 = (v−w)/2 .

Now we claim that for every A1,A2 ∈ Gen(X) , such that A1 −A2 ∈ L (X) the
following equality holds for x ∈ D(A1) = D(A2)

ϕ(A1,A2)(A1−A2)x = (ψ(A1)−ψ(A2))x−ψ ′(−0)(A1−A2)x. (9)

For the proof first note that in view of (8) for x ∈ D(A1) we have

ϕ(A1,A2)(A1 −A2)x =
∫

R2
+\{0}

(T1(u1)T2(u2)− I)(A1−A2)xdμ1(u1,u2)

(for simplicity we write Ti instead of TAi , i = 1,2). Let Ω be the angle in the (v,w)
plane bounded by the bisectors of the first and fourth quadrants. If we put in the last
integral v = u1 +u2 , w = u1−u2 , then (v,w) runs over Ω\ {0} and we get

ϕ(A1,A2)(A1 −A2)x =
1
2

∫
(0,∞)

dμ(v)
v∫

−v

(
T1

(
v+w

2

)
T2

(
v−w

2

)
− I

)
(A1−A2)xdw

=
∫

(0,∞)

dμ(v)
1
2

v∫
−v

T1

(
v+w

2

)
T2

(
v−w

2

)
(A1−A2)xdw

−ψ ′(−0)(A1−A2)x. (10)
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Consider the identity (x ∈ D(A1))

1
2

v∫
−v

T1

(
v+w

2

)
T2

(
v−w

2

)
(A1−A2)xdw

=
1
2

v∫
−v

T1

(
v+w

2

)
T2

(
v−w

2

)
A1xdw− 1

2

v∫
−v

T2

(
v−w

2

)
T1

(
v+w

2

)
A2xdw.

(11)

Because of

1
2

v∫
−v

T1

(
v+w

2

)
T2

(
v−w

2

)
A1xdw

=
1
2

v∫
−v

T2

(
v−w

2

)
A1T1

(
v+w

2

)
xdw =

v∫
−v

T2

(
v−w

2

)
dwT1

(
v+w

2

)
x

= T2

(
v−w

2

)
T1

(
v+w

2

)
x

∣∣∣∣
w=v

w=−v
−

v∫
−v

T1

(
v+w

2

)(
−1

2

)
A2T2

(
v−w

2

)
xdw

= T1(v)x−T2(v)x+
1
2

v∫
−v

T2

(
v−w

2

)
T1

(
v+w

2

)
A2xdw,

the formula (11) implies that

1
2

v∫
−v

T1

(
v+w

2

)
T2

(
v−w

2

)
(A1−A2)xdw = (T1(v)−T2(v))x,

and (9) follows from (10).
Now putting A2 =A , A1−A2 = ΔA in the formula (9) (A∈Gen(X) , ΔA∈L (X)),

we have for x ∈ D(A1)

(ψ(A+ ΔA)−ψ(A))x = ϕ(A+ ΔA,A)ΔAx+ ψ ′(−0)ΔAx. (12)

By Theorem 1 the operator

α(ΔA) := ϕ(A+ ΔA,A)−ϕ(A,A)

is bounded and

‖α(ΔA)‖ � −4eM2

e−1
ϕ
(
−M

4
‖ΔA‖,0

)
→−4eM2

e−1
ϕ(0,0) = 0 as ‖ΔA‖→ 0.

Thus the formula (12) entails the equality

(ψ(A+ ΔA)−ψ(A))x = ϕ(A,A)ΔAx+ ψ ′(−0)ΔAx+ α(ΔA)ΔAx,
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and Theorem 6 will be proved if we establish that

ϕ(A,A) = ψ ′(A)−ψ ′(−0)I.

To this end note that the Definition 2 implies in view of formula (8) that for x ∈ D(A1)

ϕ(A,A)x =
∫

R2
+\{0}

(T2(u1 +u2)− I)xdμ1(u1,u2).

If we put here v = u1 +u2 , w = u1−u2 as in the proof of the formula (10), we get

ϕ(A,A)x =
∫

Ω\{0}
(T2(v)− I)x

1
2
dμ(v)dw =

1
2

∫
(0,∞)

dμ(v)
v∫

−v

(T2(v)− I)xdw

=
∫

(0,∞)

T2(v)xvdμ(v)−
∫

(0,∞)

vdμ(v)x = ψ ′(A)x−ψ ′(−0)x.

This completes the proof. �
Note that the condition ψ ′(−0) 	= ∞ is also necessary for the Frechet differentia-

bility of the function ψ at every point A ∈ Gen(X) (take A = O) but the following
corollary holds.

COROLLARY 11. Let ψ ∈ T1 , A ∈ Gen(X) , and ‖TA(t)‖ � Meωt , ω < 0 . Then
the L (X)-Frechet derivative for the operator function ψ at the point A exists and
equals to ψ ′(A) .

Proof. To use Theorem 6 we need the condition ψ ′(−0) 	= ∞ . To bypass it we
apply Theorem 6 to the function ψ(s+ ω) from T1 and to the operator A−ωI from
Gen(X) . �

THEOREM 7. Let (J ,‖·‖J ) be an operator ideal on X , ψ ∈T1 , and ψ ′(−0) 	=
∞ , ψ ′′(−0) 	= ∞ . For every A ∈ Gen(X) the J -Frechet derivative for the operator
function ψ at the point A exists and equals to ψ ′(A) in a sense that ψ∇

A (B) = ψ ′(A)B
for every B ∈ J .

Proof. Indeed, if in the proof of Theorem 6 we put ΔA ∈ J , Theorem 4 implies
that the operator α(ΔA) belongs to J , too and

‖α(ΔA)‖
J

� M2 ∂ϕ(−0,−0)
∂ s1

‖ΔA‖
J

= M2 1
2

ψ ′′(−0)‖ΔA‖
J

,

since, by Taylor’s formula (below ξ lies between s1 and s2 ),

∂ϕ(−0,−0)
∂ s1

= lim
(s1,s2)→(−0−0)

∂ϕ(s1,s2)
∂ s1

= lim
(s1,s2)→(−0,−0)

ψ ′(s1)(s1−s2)−(ψ(s1)−ψ(s2))
(s1−s2)2

= lim
(s1,s2)→(−0,−0)

1
2

ψ ′′(ξ ) =
1
2

ψ ′′(−0).
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The remaining part of the proof is the same as in Theorem 6. �
In context of Theorem 7 there is an analog of Corollary 11 for exponentially stable

semigroups, as well.

COROLLARY 12. Let (J ,‖ · ‖
J

) be an operator ideal on X , ψ ∈ T1 . Let A ∈
Gen(X) , and ‖TA(t)‖� Meωt , ω < 0 . Then the J -Frechet derivative for the operator
function ψ at the point A exists and equals to ψ ′(A) .

REMARK 2. The map A �→ ψ ′(A) is analytic in the sense of Hille and Phillips
[13, Theorem 15.5.2].

5. Trace formula

The trace formula for a trace class perturbation of a self-adjoint operator was
proved in a special case in [20] (where its physical applications were also discussed)
and in the general case in [19]. A survey of farther developments (in context of Hilbert
spaces) and bibliography one can fined in [7] and [32].

In this section we introduce a spectral shift function and prove a Livschits-Kreı̆n
trace formula for a trace class perturbation of a generator of bounded holomorphic
semigroup in Banach space. Recall that if the Banach space X has the approximation
property there is a continuous linear functional tr of norm 1 (a trace) on the operator
ideal (S1,‖ · ‖S1) of nuclear operators on X (see, e. g., [11, p. 64]).

THEOREM 8. Let the Banach space X has the approximation property. Let A
and B be generators of C0 -semigroups TA and TB respectively on X holomorphic in
the half plane {Re(z) > 0} and satisfying ‖TA(z)‖ , ‖TB(z)‖ � M (Re(z) > 0) . If
A−B ∈ S1 there exists a unique tempered distribution ξ supported in R+ such that
for every ψ ∈ T1 with ψ ′(−0) 	= ∞ we have

tr(ψ(A)−ψ(B)) =
∫

(0,∞)

〈ξ (t),e−ut〉udμ(u),

where (as above) μ stands for the representing measure of ψ and 〈ξ (t),ϕ(t)〉 denotes
the action of a distribution on a test function.

Proof. Consider the function

F(z) =
1
z
(TA(z)−TB(z)) (Re(z) > 0).

Theorem 4 implies that F : {Re(z) > 0}→ S1 . Arguing as in the proof of the formula
(4) we have

F(z) =
1
z

∫
[0,z]

TB(z− s)(A−B)TA(s)ds (13)
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where the integral exists in the sense of Bochner with respect to the trace norm (and with
respect to the operator norm) because the norm of the integrand in (13) does not exceed
M2‖A−B‖S1 . It follows that F is bounded, since for each z ∈ C with Re(z) > 0

‖F(z)‖S1 � 1
|z| max

s∈[0,z]
‖TB(z− s)(A−B)TA(s)‖S1 |z| � M2‖A−B‖S1.

We clame that F is continuous. In fact, let g(z) := TA(z)−TB(z) . For every complex z
with Re(z) > 0 and sufficiently small Δz we have in view of (13)

g(z+ Δz)−g(z) =
∫

[0,z+Δz]

TB(z+ Δz− s)(A−B)TA(s)ds−
∫

[0,z]

TB(z− s)(A−B)TA(s)ds

=
∫

[0,z]

TB(z+ Δz− s)(A−B)TA(s)ds−
∫

[0,z]

TB(z− s)(A−B)TA(s)ds

+
∫

[z,z+Δz]

TB(z+ Δz− s)(A−B)TA(s)ds

=
(
TB

( z
2

+ Δz
)
−TB

( z
2

)) ∫
[0,z]

TB

( z
2
− s
)

(A−B)TA(s)ds

+
∫

[z,z+Δz]

TB(z+ Δz− s)(A−B)TA(s)ds.

It follows that

‖g(z+ Δz)−g(z)‖S1 �
∥∥∥TB

( z
2

+ Δz
)
−TB

( z
2

)∥∥∥M2‖A−B‖S1

+M2‖A−B‖S1|Δz| → 0 (Δz → 0).

Therefore the function f (z) := trF(z) is bounded and continuous, too. Moreover, since
F is analytic in the right half plane with respect to the operator norm, we have for every
closed path C located at this half plane that∮

C

f (z)dz = tr
∮
C

F(z)dz = 0.

So by the Morera’s Theorem f is analytic in the right half plane, as well. By the well
known theorem of L. Schwartz there is a unique tempered distribution ξ supported
in R+ such that f (z) = 〈ξ (t),e−zt〉 , the Laplace transform of ξ . Since ‖TA(u)−
TB(u)‖S1 � const ·u and

∫
(0,∞) udμ(u) = ψ ′(−0) 	= ∞ , the formula (1) implies that

tr(ψ(A)−ψ(B)) =
∫

(0,∞)

tr(TA(u)−TB(u))dμ(u)

=
∫

(0,∞)

f (u)udμ(u) =
∫

(0,∞)

〈ξ (t),e−ut〉udμ(u),
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and the proof is complete. �
Let us consider the following space of test functions

SR+ := {ϕ ∈C∞(R+) : ‖ϕ‖ j,m := sup
t∈R+

|tmϕ( j)(t)| < ∞∀ j,m ∈ Z+},

endowed with the family of seminorms ‖ · ‖ j,m , j,m ∈ Z+ . It is known that the dual
space (SR+)′ equals to the space S ′(R+) of tempered distributions supported in R+
[37, Chapter I, 1.3].

COROLLARY 13. If, in addition to the conditions mentioned in Theorem 8, ψ ′(−t)
belongs to the space SR+ , then

tr(ψ(A)−ψ(B)) = 〈ξ (t),ψ ′(−t)〉.

Proof. For every u > 0 consider the function exp−u(t) := e−ut from SR+ . We
claim that the function u �→ ‖exp−u ‖ j,m is integrable with respect to the measure
udμ(u) ( j,m ∈ Z+) . Indeed, since ‖exp−u ‖ j,m = (m/e)mu j−m (supremum is reached
at the point t = m/u ), it suffices to prove that all functions ul , l ∈ Z , are integrable
with respect to the measure μ . To this end note that since the function

ϕ(t) := ψ ′(−t) =
∫

(0,∞)

e−utudμ(u)

belongs to SR+ , we have for all j,m ∈ Z+

‖ϕ‖ j,m = sup
t∈R+

∫
(0,∞)

tmu j+1e−utdμ(u) < ∞.

If we choose the sequence of reals tk such that tk ↑ m/u , then tmk e−utk ↑ (m/e)mu−m

(k → ∞) and for all j,m ∈ Z+(m
e

)m ∫
(0,∞)

u j+1−mdμ(u) = lim
k→∞

∫
(0,∞)

tmk u j+1e−utk dμ(u) � ‖ϕ‖ j,m.

Therefore

〈ξ ,ϕ〉 = 〈ξ ,
∫

(0,∞)

exp−u udμ(u)〉 =
∫

(0,∞)

〈ξ ,exp−u〉udμ(u) = tr(ψ(A)−ψ(B))

by Theorem 8. �

COROLLARY 14. If, in addition to the conditions mentioned in Theorem 8, ξ is a
measure, then

tr(ψ(A)−ψ(B)) =
∫

R+

ψ ′(−t)dξ (t).
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It follows from Theorem 8 and Tonelli’s Theorem.
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