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Abstract. The normalized numerical range of an operator A is defined as the set FN(A) of all
the values 〈Ax,x〉/‖Ax‖ attained by unit vectors x /∈ kerA . We prove that FN(A) is simply
connected, establish conditions for it to be star-shaped with the center at zero, to be open, closed,
and to have empty interior. For some classes of operators (weighted shifts, isometries, essentially
Hermitian) the complete description of FN(A) is obtained.

1. Introduction

Let H be a Hilbert space with the scalar product denoted by 〈., .〉 and the induced
norm ‖x‖= 〈x,x〉1/2 . Denote by S(H ) the unit sphere of H , and by [H ] the algebra
of all bounded linear operators on H . We are not excluding the case dimH = n < ∞ ,
in which H is identified with the column space Cn and [H ] with the algebra Cn×n of
n -by-n matrices with complex entries. For a subspace L of H , the compression of A
onto L is the operator B ∈ [L ] defined by Bx = PAx , where P is the orthoprojection
of H onto L .

We will use the standard notation D and T for the open unit disk {z : |z|< 1} and
the unit circle {z : |z| = 1} , respectively. For any set X in C or H , intX , ∂X and X
denote its interior, boundary, and closure, in this order. In particular, D is the closed
unit disk D∪T .

The (classical) numerical range, also known as the field of values, or the Hausdorff
set of A ∈ [H ] , is defined as

F(A) = {〈Ax,x〉/‖x‖2 : x ∈ H , x �= 0}. (1.1)

Monographs [11] and [13, Chapter 1] are standard references for the properties of F(A)
and history of the subject. We will be recalling the needed facts about F(A) as we go.

Mathematics subject classification (2010): 15A60, 47A12, 47B15.
Keywords and phrases: Numerical range, normalized numerical range, partial isometry, essentially

Hermitian operator, weighted shift.
The first author was supported in part by Faculty Research funding from the Division of Science and Mathematics,

New York University Abu Dhabi, and the Plumeri Award for Faculty Excellence from the College of William and Mary.

c© � � , Zagreb
Paper OaM-11-15

219

http://dx.doi.org/10.7153/oam-11-15


220 I. M. SPITKOVSKY AND A.-F. STOICA

Several generalizations of the numerical range are also known (c-numerical range,
q -numerical range, higher rank numerical range, to name a few). In this paper, we
consider the normalized numerical range, NNR for short, introduced in [1] as

FN(A) =
{ 〈Ax,x〉
‖x‖‖Ax‖ : x ∈ H , Ax �= 0

}
. (1.2)

Since then, several properties of NNR were established by Gevorgyan, see [6]–[10].
Note that FN(A) = /0 if and only if A = 0. So, in what follows we suppose without
saying that A �= 0.

Denote by F(A,θ ) and FN(A,θ ) the intersection of the ray

�θ := {ρeiθ : ρ > 0} (1.3)

with F(A) and FN(A) , respectively. A direct comparison of the definitions (1.1) and
(1.2) reveals that F(A,θ ) and FN(A,θ ) are non-empty only simultaneously. Let

Θ(A) := {eiθ : FN(A,θ ) �= /0} = {eiθ : F(A,θ ) �= /0}. (1.4)

Recall that F(A) is a convex set (the classical Toeplitz-Hausdorff theorem). Therefore,
Θ(A) is either a point, two opposing points, an arc of T with the length not exceeding
π , or the whole T . The latter case occurs if and only if zero lies in the interior of F(A) .
We will denote by Θo(A) the relative interior of Θ(A) . Of course, in the first two cases
Θo(A) = /0 , while for Θ(A) = T , Θo(A) = T as well.

As was already observed in [1], and more explicitly mentioned in [6], the Cauchy-
Schwarz inequality immediately implies the following

PROPOSITION 1.1. For any (0 �=)A ∈ [H ] ,

FN(A) ⊂ D and FN(A)∩T = {sgnλ : 0 �= λ ∈ σp(A)}. (1.5)

Here σp(A) stands for the point spectrum (that is, the set of the eigenvalues) of A ,
and sgnz = z/ |z| for non-zero z ∈ C . Below it will sometimes be convenient to also
use sgn0; by convention we set it equal to one.

Points of FN(A)∩T are associated with the approximate spectrum σap(A) , as was
observed in [7, Proposition 7]. This relation is somewhat more delicate than (1.5).

PROPOSITION 1.2. If λ ∈ σap(A) \ {0} , then sgnλ ∈ FN(A) . Almost (but not
quite) conversely, if eiθ ∈ FN(A) , then {ρeiθ : ρ � 0}∩σap(A) �= /0 .

If dimH = 1, then A = a is just a number, F(a) = {a} , while FN(a) = {sgna}
for a �= 0. We therefore suppose in what follows that dimH � 2.

Another obvious property of the NNR is its unitary invariance: FN(A)= FN(U∗AU)
for any unitary U . This is similar to the F(A) behavior, and is proved in the exactly
same way. On the other hand, FN(cA) = (sgnc)FN(A) for any non-zero scalar c (in
particular, FN(cA) = FN(A) if c > 0), while F(cA) = cF(A) . The translation property
F(A+ cI) = c+F(A) however does not have any obvious analogue for FN .
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Section 2 contains some preliminary results on NNR of operators with non-zero
kernels, rank one operators being the leading particular case. Next two sections deal
with topological properties: the simply connectedness of FN(A) is proved in Section 3,
and a description of its interior and boundary are provided in Section 4. Section 5 is
devoted to some special classes of operators: weighted shifts, isometries, and (essen-
tially) Hermitian operators. As a result, the criterion for FN(A) to have empty interior
is obtained. Simplifications occurring in the finite dimensional setting are discussed in
final Section 6.

2. Non-injective A

Consider A∈ [H ] with a non-trivial kernel kerA . Using the decomposition H =
ImA∗ ⊕kerA , write A in the block matrix form

A =
[
B 0
C 0

]
, (2.1)

and parameterize a unit vector x ∈ H as[ √
tu√

1− tv

]
, where t ∈ [0,1], u ∈ S(ImA∗), and v ∈ S(kerA). (2.2)

Then Ax =
√

t

[
Bu
Cu

]
, ‖Ax‖ =

√
t
√
‖Bu‖2 +‖Cu‖2 , and thus

FN(A) =

⎧⎨
⎩
√

t〈Bu,u〉+√
1− t〈Cu,v〉√

‖Bu‖2 +‖Cu‖2
: 0 < t � 1, ‖u‖ = ‖v‖ = 1

⎫⎬
⎭

=

⎧⎨
⎩
√

t〈Bu,u〉+√
1− t ‖Cu‖ζ√

‖Bu‖2 +‖Cu‖2
: 0 < t � 1, ‖u‖ = 1, ζ ∈ D

⎫⎬
⎭ . (2.3)

Formula (2.3) takes its simplest form if C = 0, that is, when1

ImA = ImA∗, or equivalently, kerA = kerA∗. (2.4)

Namely, if (2.4) holds for a non-injective A , then

FN(A) =
{√

t〈Bu,u〉
‖Bu‖ : 0 < t � 1, ‖u‖ = 1

}
= {τz : 0 < τ � 1, z ∈ FN(B)} . (2.5)

This can be restated as follows.

1Note that under an additional requirement that ImA (equivalently, ImA∗ ) is closed, operators satisfying
(2.4) are sometimes called range-Hermitian, or EP operators, see e.g. [4] and references therein.
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PROPOSITION 2.1. Let A be such that kerA = kerA∗ �= {0} . Then the normalized
numerical range of A is obtained from the normalized numerical range of its compres-
sion B onto ImA∗ by connecting each point z of FN(B) with the origin via a line
segment (0,z] . In particular, FN(B)⊂ FN(A) , while 0∈ FN(A) if and only if 0∈ F(B) .

It is worth clarifying that in the setting of Proposition 2.1 the operator B is injec-
tive, and so 0 ∈ FN(B) if and only if 0 ∈ F(B) .

To state our next result, let us denote by G(r1,r2) the subset of C bounded in the
left half-plane by the semicircle (centered at the origin) of the radius r1 and in the right
half-plane by the elliptical arc with the vertical and horizontal semi-axes of the length
r1 and r2 , respectively. More specifically, for 0 < r1 < r2 the elliptical arc is included
in G(r1,r2) while the circular one is not; their common points ±ir1 are not in the set
either. When r1 = 0,r2 > 0, the set G(0,r2) degenerates into the interval (0,r2] of the
real line. Finally, by convention G(r,r) = rD if r > 0, and G(0,0) = {0} .

PROPOSITION 2.2. Let A be a rank one operator. Then

FN(A) = sgn(traceA)G(r,1), where r =
√

1− (|traceA|/‖A‖)2.

Proof. For rank one operators, the block B in (2.1) is actually a scalar, thus equal
traceA , and ‖A‖2 = ‖C‖2 + |B|2 . Consequently, in (2.3)

〈Bu,u〉 = B, ‖Bu‖ = |B| , and ‖Cu‖ = ‖C‖

are in fact independent of u . Thus, in the case under consideration (2.3) simplifies to

FN(A) =

⎧⎨
⎩

√
tB+

√
1− t ‖C‖ζ√

|B|2 +‖C‖2
: 0 < t � 1, ζ ∈ D

⎫⎬
⎭ .

In other words, FN(A) coincides with the NNR of the 2-by-2 matrix

[
B 0

‖C‖ 0

]
. The

result for B �= 0 now follows from [10, Section 3], while the case B = 0 is rather
straightforward (though also mentioned in [9, Proposition 3]). �

Returning to multidimensional ImA , for a unit vector u ∈ ImA∗ set

r1(u) =
‖Cu‖√

‖Bu‖2 +‖Cu‖2
, r2(u) =

√
|〈Bu,u〉|2 +‖Cu‖2

‖Bu‖2 +‖Cu‖2 , (2.6)

and

r(u) =
r1(u)
r2(u)

=
‖Cu‖√

|〈Bu,u〉|2 +‖Cu‖2
if r2(u) �= 0.
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Now observe that ⎧⎨
⎩
√

t〈Bu,u〉+√
1− t ‖Cu‖ζ√

‖Bu‖2 +‖Cu‖2
: 0 < t � 1, ζ ∈ D

⎫⎬
⎭

= r2(u)FN

([〈Bu,u〉 0
‖Cu‖ 0

])
= sgn〈Bu,u〉r2(u)G(r(u),1) (2.7)

= sgn〈Bu,u〉G(r1(u),r2(u)).

Combining (2.3) with (2.7), we immediately arrive at

THEOREM 2.3. Let an operator A with a non-trivial kerA be represented as
(2.1). Then

FN(A) =
⋃

u∈S(ImA∗)
sgn〈Bu,u〉G(r1(u),r2(u)), (2.8)

with r1(u),r2(u) defined by (2.6).

Of course, Proposition 2.1 follows also from Theorem 2.3, since r1(u) ≡ 0, and
so all G(r1(u),r2(u)) turn into line segments stemming from zero.

On the other hand, if ImA �⊥ kerA , then Cu �= 0 for at least one vector u , the
respective value of r1(u) is then positive, and G(r1(u),r2(u)) contains the disk r1(u)D .
Due to (2.8), then

FN(A) ⊃ r(A)D, where r(A) = sup{r1(u) : u ∈ ImA∗}. (2.9)

From (2.6) we easily obtain

r(A) =

{
1 if B is not invertible

ρ/
√

1+ ρ2, where ρ =
∥∥CB−1

∥∥ otherwise.
(2.10)

To provide an alternative characterization of r(A) recall that the minimal angle
∠(M ,N ) between two subspaces of the Hilbert space is defined as cos−1 sup{〈x,y〉 :
x ∈ S(M ), y ∈ S(N )} . A direct computation shows that for M = ImA , N = kerA
the supremum involved equals r(A) , and so

r(A) = cos∠(ImA,kerA).

In particular, r(A) = 1 if and only if the minimal angle between ImA and kerA is zero.

COROLLARY 2.1. Let the minimal angle between ImA and kerA be zero. Then
FN(A) = D∪{sgnλ : 0 �= λ ∈ σp(A)} .

Proof. Due to Proposition 1.1, we only need to show that FN(A)⊃D . This follows
from (2.8), combined with r(A) = 1. �

We will call CA := r(A)T the critical circle of A . Of course, CA = {0} if ImA ⊥
kerA and is a proper circle otherwise. Using Proposition 2.1 for r(A) = 0 and formula
(2.9) for r(A) > 0, we conclude:
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COROLLARY 2.2. If A is not injective, then 0∈ FN(A) . If in addition ImA is not
orthogonal to kerA, then moreover 0 ∈ intFN(A) while CA ⊂ FN(A) .

3. Shape of NNR: simply connectedness

Corollary 2.1 and Proposition 2.2 above show that for some classes of operators
A , FN(A) is convex along with F(A) ; more examples of this kind are available in Sec-
tion 5. Proposition 2.2 implies in particular that FN(A) is convex for all non-invertible
A∈C2×2 . Moreover, convexity of FN(A) persists for some invertible 2-by-2 matrices,
in particular for those with the spectrum σ(A) = {λ} , or {λ ,−λ} , λ �= 0. Indeed, for
such matrices FN(A) is an elliptical disk [9, Propositions 4 and 6], degenerating into
line segments when A is normal.

Nevertheless, in general FN(A) is not convex. The simplest example is delivered
by

A =
[

λ1 0
0 λ2

]
=: diag[λ1,λ2] with λ1,λ2 �= 0, λ1/λ2 /∈ R, (3.1)

considered in [8, 9]. Since this example is important for some other reasons as well, for
convenience of reference we provide here the explicit description of FN(A) for A given
by (3.1). It is a slight rewording of the statement from [8]. The following notation will
be useful.

Given θ1,θ2,k ∈ R , denote by Γ(θ1,θ2,k) the arc of the quadratic

(sin2 θ1 + sin2 θ2− k sinθ1 sinθ2)x2 +(k sin(θ1 + θ2)− sin2θ1− sin2θ2)xy

+(cos2 θ1 + cos2 θ2 − k cosθ1 cosθ2)y2 = sin2(θ1 −θ2), (3.2)

connecting the points eiθ1 and eiθ2 .

PROPOSITION 3.1. Let A be given by (3.1). Then FN(A) = Γ(θ1,θ2,k) , where
θ j = argλ j and k = |λ1/λ2|+ |λ2/λ1| .

If |λ1|= |λ2| , then k = 2, and Γ(θ1,θ2,k) degenerates into a chord of T ; thus, the
convexity still holds. However, whenever |λ1| �= |λ2| , we have k > 2, and Γ(θ1,θ2,k)
is an arc of a hyperbola. The set FN(A) is then not convex, and not even star-shaped.
Note that for A as in (3.1), 0 /∈ F(A) , and thus also 0 /∈ FN(A) .

The next statement shows that FN(A) is star-shaped with respect to the origin
whenever an obvious necessary condition 0 ∈ FN(A) holds.

THEOREM 3.2. If A ∈ [H ] is such that 0 ∈ FN(A) , then FN(A) is star-shaped
with respect to the origin.

Formally speaking, Theorem 3.2 is a corollary of the following

THEOREM 3.3. For any A ∈ [H ] and any line � passing through the origin, the
intersection FN(A)∩ � is connected.
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Conversely, under condition 0∈ FN(A) the statement of Theorem 3.3 is equivalent
to that of Theorem 3.2. We will thus proceed by proving both theorems in parallel.

Proof. (i) Suppose first that A is injective, and consider any line � passing through
the origin. If FN(A)∩ � is a singleton or empty, it is of course connected. If it contains
more than one point, pick any two arbitrarily, say z0,z1 ∈ FN(A)∩ � , z0 �= z1 . By
definition, there exist unit vectors x0,x1 ∈ H such that

z j = 〈Ax j,x j〉/
∥∥Axj

∥∥ , j = 0,1.

Note that x0,x1 are linearly independent, since otherwise z0 and z1 would coincide.
As was shown in the proof of convexity of the classical numerical range in [12], it is
possible to replace one of the vectors x j by its product with an appropriate unimodular
factor in such a way that

〈Ax(t),x(t)〉 ∈ � for x(t) = tx0 +(1− t)x1 and all t ∈ [0,1]. (3.3)

But then also

φ(t) :=
〈Ax(t),x(t)〉
‖x(t)‖‖Ax(t)‖ ∈ �, t ∈ [0,1]. (3.4)

The function φ defined by (3.4) is continuous on [0,1] – this is the place in the proof
where the injectivity of A is invoked, – and takes the values in FN(A)∩� . Since φ( j) =
z j , j = 0,1, the whole interval [z0,z1] of � lies in FN(A) . This proves Theorem 3.3
(and thus Theorem 3.2 as well) for injective A .

(ii) Let now A be such that kerA �⊥ ImA . Then 0 ∈ FN(A) by Corollary 2.2, and
we need to show that the statement of Theorem 3.2 holds. To this end, observe that the
sets G(r1,r2) are star-shaped with respect to the origin if r1 > 0, become star-shaped
with respect to the origin when joined by 0 if r1 = 0, and remain such under any
rotation around the origin. So, the union in the right hand side of (2.8) in our setting is
also star-shaped.

(iii) It remains to consider the case when kerA = kerA∗ �= {0} . According to
Proposition 2.1, FN(A) has the form

⋃
z∈FN(B)〈0,z] , with B being injective (it is actu-

ally the compression of A onto kerA⊥ , but this detail is not important right now). The
notation indicates that the zero endpoint is included if 0 ∈ FN(B) and excluded other-
wise. The statement of Theorem 3.2 is now immediate. To take care of Theorem 3.3 we
thus only need to consider the case 0 /∈ FN(B) . Equivalently, 0 /∈ F(B) , implying that
for any z1,z2 ∈ F(B) the ratio z1/z2 is not a real negative number. The same is then
true for any two points in FN(B) . Consequently, the intersection of a line � passing
through the origin with FN(A) is either empty, or an interval with an endpoint zero (not
included).

This exhausts all the possibilities, so the proof is complete. �
To illustrate the applicability of Theorem 3.3, here is a useful addition to Proposi-

tion 2.1.

COROLLARY 3.1. Let A satisfy (2.4), and let 0 ∈ F(B) , where B is the compres-
sion of A onto the closure of its range. Then FN(A) = FN(B) .
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Proof. This is a tautology if kerA = {0} . Otherwise, invoke the description of
FN(A) from Proposition 2.1, observing that when 0 ∈ F(B) the line segments connect-
ing it with points in FN(B) all lie in FN(B) . �

It is a simple consequence of Theorem 3.3 that for every point α /∈ FN(A) there is
a ray emanating from α not intersecting FN(A) . Indeed, let �(α) be the line passing
through α and the origin (any of these lines if α = 0). Then �(α) \FN(A) is either
the whole line or the union of two rays, one of which contains α . Such sets, if in
addition connected, were called ray connected in [2]. It was also observed there that
complements of these sets are connected, and therefore the sets themselves are simply
connected. The connectedness (and even path-connectedness) of NNR was established
in [6, Proposition 7]. So, we have

COROLLARY 3.2. For any A ∈ [H ] , the set FN(A) is simply connected.

Theorem 3.3 has another interesting consequence. Recall that a regular numerical
range has the property that F(B) ⊂ F(A) whenever B is a compression of A . If B is
in fact a restriction of A onto its invariant subspace, the inclusion holds for the NNR as
well. This was used in the considerations of Section 2 for A,B as in (2.1). However, it
fails in general. Moreover, the following criterion holds.

THEOREM 3.4. An operator A possesses the property FN(B) ⊂ FN(A) for all its
compressions B if and only if σp(A) intersects with every ray �θ passing through
Θ(A) .

Note that, though we agreed to consider only non-zero operators, the statement is
vacuously correct for A = 0.

Proof. Necessity. For eiθ ∈ Θ(A) , pick any z ∈ F(A,θ ) , a unit vector x such that
〈Ax,x〉= z , and let Bz be the compression of A onto the span of x . Then FN(Bz) = eiθ ,
an so eiθ ∈ FN(A) . By Proposition 1.1, there exists λ ∈ σp(A) with sgnλ = eiθ .

Sufficiency. Let B be the compression of A onto a subspace L . Take a unit vector
x ∈ L for which Bx �= 0; then of course Ax �= 0 as well; moreover, ‖Ax‖ � ‖Bx‖ .
Since 〈Bx,x〉 = 〈Ax,x〉 , the point 〈Bx,x〉/‖Bx‖ of FN(B) lies on the interval with the
endpoints z = 〈Ax,x〉/‖Ax‖ and sgnz . But z ∈ FN(A) , and so we are given that there
exists λ ∈ σp(A) with sgnλ = sgnz . Using Proposition 1.1 again, we conclude that
sgnz ∈ FN(A) . Finally, Theorem 3.3 implies that 〈Bx,x〉/‖Bx‖ ∈ FN(A) . �

COROLLARY 3.3. For a Hermitian A the property FN(B) ⊂ FN(A) holds for all
its compressions B if and only if either A is positive semi-definite with some posi-
tive eigenvalues, or negative semi-definite with some negative eigenvalues, or indefinite
having both positive and negative eigenvalues.

A similar result obviously holds for scalar multiples of Hermitian operators. On
the other hand, in a separable Hilbert space no other operators can possibly satisfy con-
ditions of Theorem 3.4. Indeed, the point spectrum in this setting is at most countable.
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4. Shape of NNR: boundary, interior, closedness

4.1. Auxiliary considerations

Recall the definition of FN(A,θ ) as the intersection of FN(A) with the ray (1.3).
By Theorem 3.3, FN(A,θ ) is an interval, possibly degenerating into a point, for any
eiθ ∈ Θ(A) . Denote its endpoints by γ(θ ) and Γ(θ ) , with |γ(θ )| � |Γ(θ )| . Of course,
|Γ(θ )|> 0 whenever eiθ ∈ Θ(A) , and γ(θ )≡ 0 if 0∈ FN(A) . According to [7, Propo-
sition 5]

0 ∈ FN(A) ⇐⇒ 0 ∈ F(A), (4.1)

and these inclusions hold, in particular, when Θ(A) = T or A is not injective. So, in
these cases we have (0 =) |γ(θ )| < |Γ(θ )| . Our next statement shows that the strict
inequality holds whenever F(A,θ ) is a non-degenerate interval, even if γ(θ ) > 0.

PROPOSITION 4.1. If F(A,θ ) has positive length, then so does FN(A,θ ) .

Proof. We start by slightly modifying the approach of part (i) in the proof of The-
orem 3.3. Namely, we again pick two distinct points z0,z1 , but this time in F(A,θ ) , not
in FN(A) . Then, introduce unit vectors x0,x1 ∈ H for which z j = 〈Ax j,x j〉 , j = 0,1.
Rotate one of the vectors to enforce (3.3). The values of the function φ defined by
(3.4) will then lie in FN(A,θ ) , and we only need to make sure that this function is not
constant on [0,1] . To this end, observe that

‖x(t)‖2 = t2 +(1− t)2 +2t(1− t)Re〈x0,x1〉

is a quadratic polynomial in t with distinct roots, and not a scalar multiple of

〈Ax(t),x(t)〉 = z0t
2 + z1(1− t)2 + t(1− t)(〈Ax0,x1〉+ 〈Ax1,x0〉).

So, φ2 is a rational function of t with a non-empty set of poles, and thus not constant
on any interval. The latter is therefore true for φ as well. �

We now turn to the description of boundary and interior point of FN(A) . For Θ(A)
being a single point or two opposing points, the situation is simple: due to Theorem 3.3,
FN(A) is an interval, and so intFN(A) = /0 , ∂FN(A) = FN(A) . Note that this situation
occurs if and only if A is a scalar multiple of an Hermitian operator. The explicit
location of the endpoints of FN(A) , and criteria for them (not) to lie in FN(A) , follow
from the discussion in Section 5.3 below. The remaining results of this section are
formally correct (though trivial) for such A , and in their proofs we therefore silently
suppose that Θ(A) is an arc of positive length.

LEMMA 4.2. For any A ∈ [H ]:
(i) |Γ| and |γ| are lower (resp., upper) semi-continuous functions of θ for eiθ ∈

Θ(A);
(ii) If FN(A) is closed, then Γ and γ are continuous functions of θ ;
(iii) If eiθ ∈ Θo(A) , then (γ(θ ),Γ(θ )) ⊂ intFN(A) .
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Proof. Given eiθ0 ∈ Θ(A) , choose eiθ1 ∈ Θ(A) different from ±eiθ0 . Pick now
z j ∈ FN(A,θ j) , j = 0,1. Proceeding as in the proof of Proposition 4.1, we generate a
curve η ⊂ FN(A) connecting z0 with z1 and intersecting FN(A,θ ) at exactly one point
η(θ ) for θ lying between θ0 and θ1 . If eiθ0 ∈ Θo(A) this construction can be applied
to both one sided neighborhoods. Either way, we obtain a continuous curve η ⊂ FN(A) ,
with η(θ ) defined correctly on some neighborhood O of eiθ0 in Θ(A) , and such that
η(θ0) = z0 .

Obviously, |Γ(θ )| � |η(θ )| � |γ(θ )| for eiθ ∈ O . Passing to the limit when θ →
θ0 , we thus obtain:

liminf
θ→θ0

|Γ(θ )| � |z0| � limsup
θ→θ0

|γ(θ )| .

Since z0 is an arbitrary point of FN(A,θ0) , the last inequality can be strengthened to

liminf
θ→θ0

|Γ(θ )| � |Γ(θ0)| , limsup
θ→θ0

|γ(θ )| � |γ(θ0)| . (4.2)

This proves statement (i).
To prove (ii), consider again eiθ0 ∈ Θ(A) and suppose that for some sequence

eiθk ∈ Θ(A) converging to eiθ0 we have Γ(θk) → z . Since FN(A) is closed, it con-
tains all the points Γ(θk) , and thus z ∈ FN(A) as well. At the same time z ∈ �θ0 , and
so |z| � |Γ(θ0)| . Comparing this with the first inequality in (4.2), we conclude that
|z| = |Γ(θ0)| , and thus simply z = Γ(θ0) . The proof for γ is similar, using the second
inequality in (4.2).

When proving (iii), we need only to consider the case when γ(θ ) �= Γ(θ ) , since
the interval in question is void otherwise. Let us repeat the construction above using two
distinct points, say z± ∈ (γ(θ0),Γ(θ0)) with |z+| > |z−| , in place of z0 . The resulting
continuous functions η± will therefore satisfy the inequality |η+(θ )| > |η−(θ )| on
some neighborhood (θ ′,θ ′′) of θ0 .

By Corollary 3.2, the domain bounded by the curves η+ , η− and the rays �θ ′ , �θ ′′
lies in FN(A) . Consequently, (z−,z+)⊂ intFN(A) . Due to the freedom in choosing z± ,
the latter inclusion yields (iii). �

4.2. Boundary and interior

Denote γ(A) = {γ(θ ) : eiθ ∈ Θ(A)} and Γ(A) = {Γ(θ ) : eiθ ∈ Θ(A)} . Also, let
eiθ± be the endpoints of Θ(A) when it differs from T .

THEOREM 4.3. For any A ∈ [H ] ,

Γ(A) ⊂ ∂FN(A). (4.3)

If in addition Θ(A) = T , then

intFN(A) = ∪π
θ=0(Γ(θ ),Γ(θ + π)). (4.4)

Otherwise, we also have

FN(A,θ+)∪FN(A,θ−)∪ γ(A) ⊂ ∂FN(A), (4.5)
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while
intFN(A) = ∪eiθ∈Θ0(A)(γ(θ ),Γ(θ )). (4.6)

Proof. We will first treat the statement concerning the boundary points.
If θ is such that γ(θ ) = Γ(θ ) , then FN(A,θ ) collapses to a singleton. This sin-

gleton lies in ∂FN(A) , since it is the only point of FN(A,θ ) .
Let now γ(θ ) �= Γ(θ ) . Since (γ(θ ),Γ(θ )) ⊂ FN(A) , both γ(θ ) and Γ(θ ) lie in

FN(A) . On the other hand, tΓ(θ ) /∈ FN(A) for t > 1, and so Γ(θ ) ∈ ∂FN(A) . This
proves (4.3).

Similarly, tγ(θ ) /∈ FN(A) for t < 1, and so γ(θ ) ∈ ∂FN(A) if γ(θ ) �= 0. For
γ(θ ) = 0 this reasoning is not applicable. But Θ(A) �= T implies that FN(A) lies to one
side of some line passing through the origin, and 0 /∈ intFN(A) because of that. Since
the inclusions FN(A,θ±) ⊂ ∂FN(A) are obvious, (4.5) also holds.

Consider now the interior of FN(A) . If Θ(A) is a proper subarc of T , (4.5) im-
plies that the left hand side of (4.6) is contained in its right hand side. The converse
follows from part (iii) of Lemma 4.2. Finally, for Θ(A) = T we have γ(θ ) ≡ 0,
and so ∪2π

θ=0(γ(θ ),Γ(θ )) equals the right hand side of (4.4) with the origin deleted.
Since Γ(A) lies in the boundary, to complete the proof we only need to show that
0 ∈ intFN(A) . But 0 ∈ FN(A) by Theorem 3.3, while the positive-valued function
|Γ(θ )| , being lower semi-continuous due to part (i) of Lemma 4.2, attains its infimum
and thus is bounded away from zero by some ρ > 0. So, ρD ⊂ FN(A) , and we are
done. �

Comparing formulas (4.4) and (4.6) we see that 0∈ intFN(A) if and only if Θ(A)=
T . Since the latter, in turn, is equivalent to 0 ∈ intF(A) , we arrive at the following

COROLLARY 4.1. For any A ∈ [H ] , 0 ∈ intFN(A) if and only if 0 ∈ intF(A) .

Recalling (4.1), we conclude from Corollary 4.1 that also

0 ∈ ∂FN(A) ⇐⇒ 0 ∈ ∂F(A). (4.7)

Theorem 4.3 when combined with part (ii) of Lemma 4.2 easily yields a complete
description of ∂FN(A) provided that FN(A) is closed.

THEOREM 4.4. Let FN(A) be closed. Then

∂FN(A) =

{
Γ(A) if 0 ∈ intF(A),
Γ(A)∪ γ(A)∪FN(A,θ+)∪FN(A,θ−) otherwise.

(4.8)

Proof. The right hand side of (4.8) always lies in ∂FN(A) according to (4.3) and
(4.5). When FN(A) is closed, due to Lemma 4.2(ii), it is actually a simple closed curve.
Moreover, intFN(A) coincides with its interior region due to (4.4),(4.6). By the Jordan
curve theorem, it implies the equality in (4.8). �

For 0 ∈ ∂F(A) due to (4.7) we have γ(A) = {0} . If in addition FN(A) is closed,
then also 0 ∈ FN(A,θ±) . So, in this case γ(A) can be dropped in the right hand side of
(4.8).
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4.3. (Non)closedness

Prompted by Theorem 4.8 in particular, it is natural to seek verifiable tests for
FN(A) to be closed. A necessary condition follows immediately from Corollary 2.2.
Namely:

LEMMA 4.5. Let A ∈ [H ] be non-injective and such that FN(A) is closed. Then
CA ⊂ FN(A) .

We will show in Section 6 that in finite dimensional setting this condition is also suffi-
cient. For now, we will use it to single out a class of operators with non-closed FN(A) .

THEOREM 4.6. Let in representation (2.1) of A the block C be non-zero while
0 /∈ intF(B) . Then FN(A) is not closed.

Proof. We will use the description of FN(A) provided by (2.8). The intersection
of the sets sgn〈Bu,u〉G(r1(u),r2(u)) with the critical circle CA is an open arc of CA

centered at sgn〈Bu,u〉ρ/
√

ρ2 +1 and of radian measure not exceeding π . Due to the
condition imposed on F(B) , their union will not cover the whole CA . �

EXAMPLE 1. Let in (2.1) B =
[
1 0
0 i

]
, C �= 0.

Figure 1: The normalized numerical range obtained for C = [1,−1] . The black lines are the
elliptical arcs corresponding to the G-sets, and the red circle is the critical circle.

Then ρ = ‖C‖ , and the portion of CA located in the third quadrant lies in ∂FN(A)
but not in FN(A) . The set FN(A) is neither open nor closed.
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5. Special classes of operators

5.1. Weighted shifts

In this subsection we suppose that H is infinite dimensional but separable. Sup-
pose that for some choice of an orthonormal basis {e j} of H and α j ∈ C we have
Te j = α je j+1 . Then T extends to a linear bounded operator on H if and only if the
sequence α j is bounded; it is called a right (resp. bilateral) weighted shift if the basis
is labeled by N (resp., Z). An operator is a left weighted shift if its adjoint is a right
weighted shift; right and left shifts are also called unilateral.

It is a well known and simple observation that the shifts with the weight sequences
{α j} and {∣∣α j

∣∣} are unitarily similar. An immediate (and also known) consequence
of this observation is that T and ωT are unitarily similar for any ω ∈ T , and so the
spectra (along with their point, approximate, and residual parts) of weighted shifts, as
well as the numerical ranges, are circularly symmetric. The same is of course true for
NNR.

For any shift T both F(T ) and FN(T ) are therefore circular disks, open or closed,
and centered at the origin. For F(T ) it follows from its a priori convexity, while for
FN(T ) Theorem 3.3 does the job.

Computing the radius of F(A) and deciding whether this set is open or closed is a
non-trivial task, see e.g. [17, 16], or more recent [19]. For FN(T ) the situation is often
simpler. To describe it, recall that the spectral radius of a weighted shift T with the
weight sequence {α j} equals

r(T ) = lim
n→∞

sup
k
|αk+1 · · ·αk+n|1/n .

Denote also
r1(T ) = liminf

n→∞
|αm+1 · · ·αm+n|1/n ,

with m being the smallest index for which α j �= 0 if j > m . By convention, r1(T ) = 0
if such m does not exist.

THEOREM 5.1. Let T be a unilateral weighted shift for which either r(T ) > 0 or
at least one zero weight is preceded by non-zero ones. Then FN(T ) is the open unit disk
D if T is a left shift or r1(T ) = 0 , and the closed unit disk D otherwise.

Proof. If say αm = 0 while not all α1, . . . ,αm−1 are zeros, then the span L
of {e1, . . . ,em} is invariant under T , and the restriction T0 of T onto L is nilpo-
tent but non-zero. But then kerT ∩ ImT �= {0} , by Corollary 2.1 FN(T0) = D , and
so FN(T ) ⊃ D . (See Corollary 6.1 for some additional information on the finite-
dimensional nilpotent case.) If r(T ) > 0 (that is, the operator T is not quasinilpotent),
the same inclusion holds by Proposition 1.2 since the circle {z : |z| = r(T )} lies in
σap(T ) . Due to Proposition 1.1, FN(T ) is therefore the open or closed unit disk, de-
pending on whether or not the set σp(T ) \ {0} is empty. It remains to recall that the
right weighted shift never has non-zero eigenvalues, while for the left weighted shift
they exist if and only if r2(T ) > 0. �



232 I. M. SPITKOVSKY AND A.-F. STOICA

Passing to bilateral shifts, observe first of all that in case of at least one zero weight
T splits into the direct sum of two unilateral shifts. So, the description of FN(T ) in
this case can be easily derived from Theorem 5.1 when applicable. We will therefore
concentrate on the situation of non-zero weights only. Denote

r+ = limsup
n→∞

|α1 · · ·αn|1/n , r− = liminf
n→∞

|α−1 · · ·α−n|1/n .

THEOREM 5.2. Let T be a bilateral weighted shift with all non-zero weights α j

and r(T ) > 0 . Then FN(T ) is the closed unit disk if
(i) r+ < r− , or
(ii) r+ = r− := r0 > 0 and

∞

∑
n=1

|α1 · · ·αn|2
r2n
0

+
∞

∑
n=1

r2n
0

|α−1 · · ·α−n|2
< ∞, (5.1)

and the open unit disk otherwise.

Proof. As in the setting of Theorem 5.1, condition r(T ) > 0 guarantees non-
emptyness of σap(T ) . Due to its circularity, Proposition 1.2 implies that FN(T )⊃D . In
addition, (i)∨(ii) is equivalent to σp(T )\{0} being non-empty, and so Proposition 1.1
finishes the job. �

Consider in particular the unweighted right shift S and bilateral shift B , for which
α j ≡ 1. We then have r = r1 = r0 = r+ = r− = 1, while convergence condition (5.1)
fails. So, FN(S) = FN(B) = D and FN(S∗) = D . The latter equality was established in
[6].

5.2. Isometries

If A ∈ [H ] is an isometry, then by definition ‖Ax‖ = ‖x‖ for all x ∈ H , and so
FN(A) = F(A) . In order to describe this set explicitly, recall now the Wold decompo-
sition (see e.g. [18, Theorem 1.1]). According to the latter, A is unitarily similar to
the direct sum of several (possibly, none) unweighted right shifts S and (also, possibly
missing) unitary U . More specifically, there are no S -summands if and only if A itself
is unitary; on the other hand, absence of U corresponds to a pure isometry A , that is,
the case

⋂∞
k=1 ImAk = {0} .

THEOREM 5.3. (i) For a unitary operator U ,

FN(U) = intconvσ(U)∪σp(U)∪Δ(U),

where conv denotes the convex hull and Δ(U) stands for the union of the line segments
connecting the points of σp(U) , if any, the arcs of T between which are disjoint with
σ(U);

(ii) If an isometry A is not unitary, then FN(A) = D∪σp(A) .
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Proof. Part (i) follows directly from the description of numerical ranges for nor-
mal operators from [5]. For (ii), we utilize the fact that A has an invariant subspace on
which it coincides with S , and so FN(A) ⊃ FN(S) = D . Also, σp(A) ⊂ T . It remains
to invoke (1.5). �

Note that in the finite dimensional case any isometry is unitary, so the second
option does not materialize, and FN(A) = convσ(A) is closed. At another extreme,
pure isometries do not have eigenvectors, and so for them FN(A) = D is open. Of
course, there are plenty of unitary operators with the empty point spectrum, for which
therefore the NNR is open as well.

5.3. Hermitian operators

Let A ∈ [H ] be Hermitian, that is, A = A∗ . The spectrum of A is real; denote

m = minσ(A) and M = maxσ(A). (5.2)

Then F(A) is the interval with the endpoints m and M , and so FN(A) also is an interval
in R . Next statement provides its explicit description.

THEOREM 5.4. For a Hermitian A, in the notation (5.2) we have:
(i) The interval FN(A) has the endpoints 1 and 2

√
mM

m+M if A is positive semi-definite

(that is, m � 0 ); −1 and − 2
√

mM
m+M if A is negative semi-definite (that is, M � 0 ), and

±1 if A is indefinite (mM < 0 ).
Moreover:
(ii) The endpoint ±1 belongs to FN(A) if and only if A has at least one positive

(resp., negative) eigenvalue,
while

(iii) ± 2
√

mM
m+M ∈ FN(A) if and only if mM > 0 and m,M ∈ σp(A) .

Proof. For Hermitian operators σ(A) = σap(A) , and so by Proposition 1.2 one is
an endpoint of FN(A) if and only if M > 0, while by (1.5) this endpoint belongs to
FN(A) if and only if (0,M]∩σp(A) �= /0 . Similarly, −1 is an endpoint of FN(A) if
and only if m < 0, and −1 ∈ FN(A) if and only if [m,0)∩σp(A) �= /0 . This proves
(ii) and the portion of (i) concerning the indefinite case and the outmost endpoint in the
semi-definite case mM � 0. It remains thus to prove (iii) and the formula in (i) for the
second endpoint when mM � 0. It suffices to consider a positive semi-definite A only;
the negative semi-definite case will then follow by passing from A to −A .

So, we need only to establish that, when 0 � m � M ,

inf
〈Ax,x〉
‖Ax‖‖x‖ =

2
√

mM
m+M

, (5.3)

and this infimum is attained if and only if 0 < m,M ∈ σp(A) .
If A is uniformly positive, that is, m > 0, the equality (5.3) appears as Problem 33

in [3], with a reference to [14] (for the latter, see also its English translation [15]). For
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the sake of self-containment note that the method of [14, 15] amounts to invoking the
spectral decomposition A =

∫
σ(A) λ dEλ of A , due to which 〈Ax,x〉

‖Ax‖‖x‖ can be rewritten as

(∫
σ(A)

λ d〈Eλ x,x〉
)/(∫

σ(A)
λ 2 d〈Eλ x,x〉

∫
σ(A)

d〈Eλ x,x〉
)1/2

, (5.4)

and further construction of a sequence {xk} ⊂ H minimizing (5.4).
It is not hard to see that the requirement m �= 0 is redundant, and equality (5.3)

holds for M > m = 0 as well. Moreover, if m,M ∈ σp(A) , fm, fM are eigenvectors
corresponding to m(> 0) and M , respectively, then the infimum is attained on vectors
collinear to

√
M fm +

√
mfM , and is not attained in all other cases. �

5.4. Essentially Hermitian operators

By definition, and operator A is essentially Hermitian if it is a linear combination
of a Hermitian operator and the identity: A = aH + bI , where H = H∗ , a,b ∈ C .
Essentially Hermitian operators are in fact normal, with the spectrum lying in a straight
line: σ(A) ⊂ � . Equivalently, A is essentially Hermitian if and only if F(A) ⊂ � , that
is, intF(A) = /0 . If 0∈ � , then A is just a scalar multiple of some Hermitian operator B :
A = cB . Consequently, FN(A) = (sgnc)FN(B) , and Theorem 5.4 suffices to describe it
fully. So, only the case 0 /∈ � needs to be investigated further.

Denote the endpoints of σ(A) by λ0 and μ0 . The set [λ0,μ0]\σ(A) is relatively
open in � , and thus consists of at most countably many disjoint open intervals. Label
them (λ j,μ j) , j ∈ J for some J ⊂ N . Recall also the notation Γ(θ1,θ2,k) introduced
in Section 3 for an arc of the curve (3.2).

THEOREM 5.5. Let A∈ [H ] be essentially Hermitian, with the spectrum σ(A) =
[λ0,μ0]\⋃

j∈J(λ j,μ j) as described above. Then:
(i) The boundary of FN(A) is described by the formula

∂FN(A) = ∪ j∈J∪{0}Γ(argλ j,argμ j,k j)
⋃
{sgnζ : ζ ∈ σ(A)}, (5.5)

where k j =
∣∣λ j/μ j

∣∣+ ∣∣μ j/λ j
∣∣ . Moreover,

(ii) The points of Γ(argλ j,argμ j,k j) \T belong to FN(A) if and only if λ j,μ j ∈
σp(A) , while sgnζ ∈ FN(A) if and only if ζ ∈ σp(A) .

Proof. Recall the notation γ(θ ),Γ(θ ) for the endpoints of the intersection FN(A,θ )
of FN(A) with the ray (1.3). To prove (i) we just need to show that

γ(θ ) ∈ Γ(argλ0,μ0,k0), (5.6)

while

Γ(θ ) ∈
{

Γ(argλ j,argμ j,k j)
T

if �θ intersects with

{
(λ j,μ j)
σ(A).

(5.7)
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Since the statement of the theorem is invariant under scaling of A by any non-zero
number, we may without loss of generality suppose that the line � containing σ(A) is
{z : Imz = 1} , that is, A = H + iI for some Hermitian H . Then for ‖x‖ = 1 we have

〈Ax,x〉
‖Ax‖ =

〈Hx,x〉+ i

(1+‖Hx‖2)1/2
,

and γ(θ ) , Γ(θ ) can be found by maximizing (resp., minimizing) ‖Hx‖ under the
constraint 〈Hx,x〉 = cotθ .

Invoking the spectral decomposition H =
∫

σ(H) λ dEλ of H , this becomes an ex-

tremal problem for
∫

σ(H) λ 2 d〈Eλ x,x〉 under the constraint

∫
σ(H)

λ d〈Eλ x,x〉 = cotθ
(∫

σ(H)
d〈Eλ x,x〉

)1/2

.

An approach similar to the one outlined in the proof of Theorem 5.4 reveals that
the maximizing sequence of vectors is achieved by concentrating the measure 〈dEλ x,x〉
at the endpoints of σ(H) , while for the minimizing sequence the concentration occurs
as close to cotθ as the geometry of σ(H) = σ(A)− i allows.

So, γ(θ ) is the same as the intersection of �θ with FN(diag[λ0,μ0]) . Due to
Proposition 3.1, this proves (5.6). If cotθ ∈ σ(H) , then �θ intersects σ(A) at the
point cotθ + i , and the bottom line of (5.7) follows from Proposition 1.2. Finally, for
cotθ /∈ σ(H) the ray �θ passes through one of the intervals (λ j,μ j) . Consequently,
Γ(θ ) is the intersection of �θ with FN(diag[λ j,μ j]) , and another use of Proposition 3.1
proves the upper line of (5.7).

Statement (ii) concerning point of T follows from (1.5). As for the points of the
arcs Γ(argλ j,argμ j,k j) , we just need to observe that the extrema of

∫
σ(H) λ 2 d〈Eλ x,x〉

are attained if and only if λ j,μ j ∈ σp(A) . �

5.5. Empty interior

Combining several already obtained results, we can now settle the question when
FN(A) has empty interior.

THEOREM 5.6. The interior of FN(A) is empty if and only if A is either
(i) a scalar multiple of a Hermitian operator, or
(ii) essentially Hermitian, with the spectrum consisting of two points.

Proof. Sufficiency. For Hermitian A , according to Theorem 5.4, the set FN(A)
is an interval in R . For scalar multiples of Hermitian operators, the result follows by
rotation. In particular, it applies to essentially Hermitian operators with the spectrum
σ(A) = {λ1,λ2} if one of λ j is zero or λ1/λ2 ∈ R . In the remaining cases, the set
FN(A) is the same as for A given by (3.1), which can also be seen from (5.5), and so
coincides with an hyperbolic arc described by (3.2).

Necessity. We need only to consider the case when A is not a scalar multiple of
an Hermitian operator, that is, Θ(A) is a non-trivial arc. By Theorem 4.3, in order
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Figure 2: The normalized numerical range of the essentially Hermitian 5 by 5 matrix:
diag(−6+3i,−0.5+3i,5.2+3i,8+3i,32+3i)

for intFN(A) to be empty we then must have Θ(A) �= T and γ(θ ) = Γ(θ ) for all θ ∈
Θo(A) , that is, intF(A) = /0 . But then A is essentially Hermitian. It remains to observe
that, by Theorem 5.5, the curve (5.5) is a boundary of a non-empty domain as long as
σ(A) contains at least one point besides λ0,μ0 . �

6. Finite dimensional case

Naturally, things simplify in a finite dimensional setting.

6.1. Unit disk containment

Recall Corollary 2.1, according to which FN(A) ⊃ D if A is not injective and
the minimal angle between ImA and kerA is zero. This condition is by no means
necessary, as examples of weighted shifts and non-unitary isometries show. However,
these examples are typically infinite-dimensional. In finite dimensions the zero angle
condition holds only if ImA∩kerA �= {0} , and actually becomes necessary for FN(A)
to contain D . Even more can be said.

THEOREM 6.1. For A ∈ Cn×n , the following statements are equivalent:
(i) FN(A) ⊃ D ,
(ii) the closure of FN(A) contains at least one point of T\FN(A) ,
(iii) ImA∩kerA �= {0} .

Proof. Due to (1.5), the set T∩FN(A) is (at most) finite, and so the implication
(i) =⇒ (ii) is obvious. As was already discussed, (iii) =⇒ (i) always holds. It remains
therefore to show that (ii) =⇒ (iii).
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Suppose λ ∈ T is a limit point of FN(A) . By definition, there exists a sequence of
unit vectors xn such that 〈Axn,xn〉/‖Axn‖ → λ . Denote yn = Axn and zn = yn/‖yn‖ .
Passing to subsequences if needed, we may without loss of generality suppose that
xn → x and zn → z . Then of course 〈z,x〉 = λ and, since ‖z‖ = ‖x‖ = 1, z = λx . On
the other hand, Axn = yn = zn ‖Axn‖ , and so Ax = z‖Ax‖ = λ ‖Ax‖x . This means that
λ ‖Ax‖ is an eigenvalue of A , while x is the respective eigenvector. But then λ ∈FN(A)
if ‖Ax‖ �= 0, and x ∈ kerA otherwise. Since at the same time x(= λ−1z) ∈ ImA , this
completes the proof. �

COROLLARY 6.1. For A ∈ C
n×n , the following statements are equivalent:

(i) FN(A) = D ,
(ii) FN(A) is open,
(iii) A is nilpotent but different from 0 .

Proof. Implication (i) =⇒ (ii) is obvious. The contrapositive of (ii) =⇒ (iii) is
seen from (1.5): every non-zero eigenvalue of A yields a point of FN(A) which lies in T

and thus on the boundary of FN(A) . Finally, if A is non-zero and nilpotent, then claim
(iii) of Theorem 6.1 holds and, according to implication (iii) =⇒ (i) of this theorem,
FN(A) ⊃ D . Combining this with (1.5) yields FN(A) = D . �

For Jordan blocks J with zero eigenvalue the equality FN(J) = D was observed in
[9].

6.2. When is FN(A) closed?

It is well known (and obvious) that for A ∈ Cn×n the set F(A) is closed, simply
because it is the range of a continuous function x �→ 〈Ax,x〉 on the unit sphere of Cn .
If A is invertible, then x �→ 〈Ax,x〉/‖Ax‖ is also continuous, and FN(A) is closed, for
exactly the same reason. This is in complete agreement with Theorem 5.5, the finite
dimensional version of which can be stated as follows.

THEOREM 6.2. Let A ∈ Cn×n be essentially Hermitian, with the spectrum lying
on the line � not passing through the origin and the eigenvalues λ1, . . . ,λn labeled in
the order of appearance on � . Then FN(A) is a closed domain bounded by the curve⋃n

j=1 Γ(argλ j,argλ j+1,k j) .
Here k j =

∣∣λ j/λ j+1
∣∣+ ∣∣λ j+1/λ j

∣∣ , and by convention λn+1 = λ1 .

For non-invertible A , Proposition 2.2 shows that FN(A) may not be closed. More-
over, it is easy to see from there that for n = 2 the set FN(A) is closed if and only if A
is invertible.

The situation is slightly more complicated if n > 2. Let us first settle the case
ImA ⊥ kerA .

THEOREM 6.3. Let A∈Cn×n be range-Hermitian, with kerA �= {0} . Then FN(A)
is closed if and only if 0 ∈ F(B) , where B is the compression of A onto its range.
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Proof. By Proposition 2.1, 0 ∈ ∂FN(A) , and 0 ∈ FN(A) if and only if 0 ∈ F(B) .
This proves necessity. For sufficiency just observe that by Corollary 3.1 we have
FN(A) = FN(B) , and in finite dimensional setting B is invertible. �

So, already for n = 3 it is easy to construct non-invertible A with closed FN(A) .
Consider, in particular,

A =

⎡
⎣0 0 0

0 1 k
0 0 1

⎤
⎦ .

Then B =
[
1 k
0 1

]
, and FN(A) = FN(B) is thus closed whenever 0∈F(B) , that is |k|� 2.

In fact, FN(B) in this case is a closed elliptical disk a complete description of which
is given in [9, Proposition 4]. Even simpler examples of this kind are delivered by
singular Hermitian matrices having at least one positive and one negative eigenvalue;
once again, the smallest size for which this is possible is n = 3. On the other hand, for
semi-definite singular Hermitian matrices A , as well as scalar multiples thereof, FN(A)
is a half open interval of length one with an endpoint zero (not included).

Finally, let ImA �⊥ kerA .

THEOREM 6.4. Let A∈ Cn×n be represented as (2.1) with C �= 0 . Then FN(A) is
closed if and only if it contains the circle CA of A.

Proof. Necessity follows from Lemma 4.5.
To prove sufficiency, we need only to establish that FN(A) contains all its limit

points with absolute value bigger than ρ/
√

ρ2 +1. Suppose z is such a point, and
〈Axn,xn〉/‖Axn‖ → z for some sequence of unit vectors xn . Formulas (2.3) and the
definition of r(A) then imply that in the representations (2.2) of xn the respective values
of tn must be bounded away from zero. Selecting a subsequence of {xn} converging to
some unit vector x , we then conclude that Ax �= 0. Consequently, z = 〈Ax,x〉/‖Ax‖ ∈
FN(A) . �

COROLLARY 6.2. If in (2.8) B is such that 0 ∈ intF(B) , then for sufficiently
small C the set FN(A) is closed.

Indeed, according to (2.6) the sets G(r1(u),r2(u)) depend continuously on C .
Since 0 is an interior point of FN(A)(= FN(B)) for C = 0, this property persists for
sufficiently small C . On the other hand, the radius of the critical circle also is a contin-
uous function of C , equal zero at C = 0. Consequently, CA ⊂ FN(A) for all C in some
neighborhood of 0.

EXAMPLE 2. Let in (2.1) B =
[
1 0
b 1

]
, C = [c 0] for b > 2 and sufficiently small

c > 0.
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Figure 3: The normalized numerical range obtained for b = 5 , c = 3 . It is closed and thus
contains the critical circle, depicted with red.

6.3. Boundary of FN(A)

In Section 4 we introduced Γ(θ ) and γ(θ ) as the endpoints of the interval FN(A,θ )
and proved their continuity as functions of θ provided that FN(A) was closed. We will
show here that in finite dimensional setting the latter restriction is redundant, which in
turn yields the complete description of ∂FN(A) .

THEOREM 6.5. Let A ∈ Cn×n . Then Γ and γ are continuous functions of θ , and
the boundary of FN(A) is given by (4.8).

Proof. Due to Lemma 4.2 and Theorem 4.3, we need only consider the case when
FN(A) is not closed, and thus kerA �= {0} . Then of course 0 ∈ F(A) , due to (4.1)
implying that 0 ∈ FN(A) . So, γ(A) = {0} , and the function γ is continuous in θ in a
trivial way.

When proving the continuity of Γ , let us make use of the representation (2.1). If A
is range Hermitian, we may in addition suppose that 0 /∈ F(B) , since otherwise FN(A)
is closed by Theorem 6.3. From Proposition 2.1 we see that the Γ functions for A and
B coincide, thus implying the desired continuity. Moreover, ∂FN(A) is indeed given
by the second line of (4.8).

Finally, let kerA �⊥ ImA . By Corollary 2.2, 0∈ intFN(A) , and so for any sequence
θk → θ0 with Γ(θk) → z we have |z| � r(A) , with r(A) given by (2.9). From the
definition of Γ it follows that we can find zk ∈ FN(A,θk) converging to z . As in the
proof of Theorem 6.4, we then conclude that z ∈ FN(A) , and so |Γ(θ0)| � lim |Γ(θk)| .
As in the proof of Lemma 4.2, from here and the first inequality in (4.2) it follows that
Γ(θ0) = limΓ(θk) . So, Γ is a continuous function of θ in this case as well, and the
closed curve Γ(A) is indeed the boundary of FN(A) . �

6.4. Compressions

In finite dimensions, σ(A) = σp(A) . So, Theorem 3.4 and its Corollary 3.3 im-
mediately yield
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THEOREM 6.6. Given A ∈ Cn×n , the inclusion FN(B) ⊂ FN(A) holds for all its
compressions B if and only if A is a scalar multiple of a Hermitian matrix.
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