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A GENERALIZED MATHARU–AUJLA INEQUALITY

SIYUAN SHEN, JUNMIN HAN AND JIAN SHI

(Communicated by T. Ando)

Abstract. In this paper, we will show a generalized Matharu-Aujla log majorization inequality
via an operator order preserving inequality, which extends the related results.

1. Introduction and main results

Thoughout this paper, a capital letter, such as T , stands for an n×n matrix.

DEFINITION 1.1. ([1]) For two positive semidefinite matrices A and B , if

k

∏
i=1

λi(A) �
k

∏
i=1

λi(B), k = 1,2, · · · ,n−1;

and
n

∏
i=1

λi(A) =
n

∏
i=1

λi(B), i.e. det(A) = det(B),

we call the relationship log majorization (denoted by A �
(log)

B), where λ1(A) � λ2(A) �

· · · � λn(A) and λ1(B) � λ2(B) � · · · � λn(B) are the eigenvalues of A and B , respec-
tively.

DEFINITION 1.2. ([4]) For two positive semidefinite matrices A and B , if α ∈
[0,1] , α -power mean of A and B is defined by

A�αB =

⎧⎨
⎩

A
1
2 (A− 1

2 BA− 1
2 )αA

1
2 , A,B > 0;

lim
ε→0+

(A+ εI)�α(B+ εI), A,B � 0.

Similarly, if s /∈ [0,1] , A�sB is defined by

A�sB =

⎧⎨
⎩

A
1
2 (A− 1

2 BA− 1
2 )sA

1
2 , A,B > 0;

lim
ε→0+

(A+ εI)�s(B+ εI), A,B � 0.

In 2012, J. S. Matharu and J. S. Aujla obtained the following log majorization
inequality.
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THEOREM 1.1. ([5]) If A,B > 0 , then

A
1−α

2 BαA
1−α

2 �
(log)

A�αB (1.1)

holds for α ∈ [0,1] .

Immediately after, T. Furuta extended Matharu and Aujla’s result and proved the
following inequality.

THEOREM 1.2. ([3]) If A > 0 and B � 0 , then for 0 � α � 1 , t ∈ [0,1] and
r � t ,

[A
1−t
2 (At�αB)A

1−t
2 ]s �

(log)
A

w
2 (Ar�αBs)A

w
2 (1.2)

holds for (1−α)(r−t)
1−αt +1 � s � 1 , where w = (1−α)(s− r)+ α(1− t)s.

As a continuation, in this paper, we will prove the following generalized Matharu
and Aujla’s log majorization inequality.

THEOREM 1.3. If A > 0 and B � 0 , p,q,s � 1 , 0 � α � 1 , t ∈ [0,1] and r � t ,
then

[A
1−t
2 (At�αB)A

1−t
2 ]psq �

(log)
A

w
2 [Ar�α(At�sB

p)q]A
w
2 (1.3)

holds for 1− t + r � {[(1−αt)p+αt]s−αt}q+αr , where w = {[(1−αt)p+αt]s−
αt}q+ αr− r .

Furthermore, we shall prove the equivalence between the log majorization inequal-
ity above and an operator order preserving inequality as follows.

THEOREM 1.4. If A � B � 0 with A > 0 , p,q,s � 1 , α ∈ (0,1] then

A{[(1−αt)p+αt]s−αt}q+αr �
{

A
r
2
[
A− t

2 {A t
2 (A− t

2 B
1
α A− t

2 )pA
t
2 }sA− t

2
]q

A
r
2

}α
(1.4)

holds for t ∈ [0,1] , r � t and 1− t + r � {[(1−αt)p+ αt]s−αt}q+αr .

In order to prove the results above, first, let us list a useful theorem, which is called
generalized Furuta inequality.

THEOREM 1.5. (Generalized Furuta inequality, [2]) If A � B � 0 with A > 0 ,
p1, p2, p3, p4 � 1 , then

A1−t+r �
{

A
r
2
[
A− t

2 {A t
2 (A− t

2 Bp1A− t
2 )p2A

t
2 }p3A− t

2
]p4A

r
2

} 1−t+r
{[(p1−t)p2+t]p3−t}p4+r (1.5)

holds for t ∈ [0,1] and r � t .

REMARK 1.1. Theorem 1.4 and Theorem 1.5 also hold if both A and B are
bounded linear operators on a Hilbert space. See [2] for details.
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2. Proofs of the main results

In this section, we shall prove our main results.

Proof of Theorem 1.4. Replacing p1 by 1
α , p2 by p , p3 by s , p4 by q in Theo-

rem 1.5, respectively, then we have

A1−t+r �
{

A
r
2
[
A− t

2 {A t
2 (A− t

2 B
1
α A− t

2 )pA
t
2 }sA− t

2
]q

A
r
2

} (1−t+r)α
{[(1−αt)p+αt]s−αt}q+αr

. (2.1)

Notice that {[(1−αt)p+αt]s−αt}q+αr
1−t+r ∈ [0,1] . Applying Löwner-Heinz inequality to (2.1),

then we can obtain (1.4). �

Next, we shall prove that Theorem 1.3 can be derived from Theorem 1.4.

Proof of Theorem 1.3. We only need to prove that

I � A
1−t
2 (At�αB)A

1−t
2 (2.2)

ensures
I � A

w
2 [Ar�α(At�sB

p)q]A
w
2 . (2.3)

By the Definition1.2, (2.2) is equivalent to

A−1 � (A− t
2 BA− t

2 )α (2.4)

and (2.3) is equivalent to

A−w−r �
[
A− r

2 {A t
2 (A− t

2 BpA− t
2 )sA

t
2 }qA− r

2
]α

. (2.5)

Replacing A by A−1
1 and B by A

− t
2

1 B
1
α
1 A

− t
2

1 in (2.4) and (2.5), respectively. (2.4) is
just A1 � B1 and (2.5) is

Aw+r
1 �

{
A

r
2
1

[
A
− t

2
1 {A

t
2
1 (A− t

2
1 B

1
α
1 A

− t
2

1 )pA
t
2
1 }sA

− t
2

1

]q
A

r
2
1

}α
. (2.6)

A1 � B1 � 0 with A1 > 0 ensures (2.6) is obvious by Theorem 1.4. �

Next, we shall show that Theorem 1.4 can also be obtained by Theorem 1.3.

Proof of Theorem 1.4. (via Theorem 1.3) We only need to prove that A � B
ensures (1.4). By Definition 1.2, (1.4) is equivalent to

I � A− w
2
{
A−r�α

[
A−t�s(A− t

2 B
1
α A− t

2 )p]q}
A− w

2 . (2.7)

Put A1 = A−1 and B1 = (A− t
2 B

1
α A− t

2 ) , then A � B is equivalent to A−1
1 � (A− t

2
1 B1A

− t
2

1 )α ,
i.e.

I � A
1−t
2

1 (At
1�αB1)A

1−t
2

1 , (2.8)
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and (2.7) is equivalent to

I � A
w
2
1 [Ar

1�α(At
1�sB

p
1)q]A

w
2
1 . (2.9)

(2.8) ensures (2.9) is obvious by Theorem 1.3. �
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