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Abstract. In this paper we consider asymmetric truncated Toeplitz operators acting between two
finite-dimensional model spaces. We compute the dimension of the space of all such operators.
We also describe the matrix representations of asymmetric truncated Toeplitz operators acting be-
tween two finite-dimensional model spaces. Our results are generalizations of the results known
for truncated Toeplitz operators.

1. Introduction

Let H2 be the classical Hardy space of the unit disk D = {z : |z| < 1} and let H∞

be the algebra of bounded analytic functions on D . As usual, H2 will be identified via
boundary values with a closed subspace of L2(∂D) .

The classical Toeplitz operator Tϕ with symbol ϕ ∈ L2(∂D) is defined on H2 by

Tϕ f = P(ϕ f ),

where P is the orthogonal projection from L2(∂D) onto H2 . The operator Tϕ is
densely defined and it is bounded if and only if ϕ ∈ L∞(∂D) . Two important exam-
ples of classical Toeplitz operators are the unilateral shift S = Tz and its Hilbert space
adjoint, the backward shift S∗ = Tz .

Let α be an arbitrary inner function, that is, α ∈ H∞ and |α| = 1 a.e. on ∂D .
The model space corresponding to α is the closed subspace Kα of H2 of the form

Kα = H2�αH2.

The theorem of A. Beurling (see for instance [7, Thm. 8.1.1]) implies that every non-
trivial S∗ -invariant subspace of H2 is a model space Kα corresponding to some inner
function α . Denote by Pα the orthogonal projection from L2(∂D) onto Kα .

The model space Kα is a reproducing kernel Hilbert space with the kernel function
given by

kα
w(z) =

1−α(w)α(z)
1−wz

, w, z ∈ D. (1.1)

Mathematics subject classification (2010): 47B32, 47B35, 30H10.
Keywords and phrases: Model spaces, truncated Toeplitz operators, asymmetric truncated Toeplitz

operators, matrix representations.

c© � � , Zagreb
Paper OaM-11-17

245

http://dx.doi.org/10.7153/oam-11-17


246 J. JURASIK AND B. ŁANUCHA

In other words, f (w) = 〈 f ,kα
w 〉 for every f ∈ Kα and w ∈ D (here 〈·, ·〉 is the usual in-

tegral inner product). Note that kα
w is bounded, and so the subspace K∞

α of all bounded
functions in Kα is dense in Kα . If α(w) = 0, then kα

w is equal to the Szegö kernel
kw(z) = (1−wz)−1 .

If α is an inner function, then the formula

Cα f (z) = α(z)z f (z), |z| = 1, (1.2)

defines a conjugation (an antilinear, isometric involution) on L2(∂D) which preserves
Kα (see [16, Subection 2.3]). A simple calculation reveals that the conjugate kernel
k̃α
w =Cαkα

w is given by

k̃α
w(z) =

α(z)−α(w)
z−w

, w, z ∈ D.

A truncated Toeplitz operator Aα
ϕ with a symbol ϕ ∈ L2(∂D) is the compression

of Tϕ to the model space Kα . More precisely, Aα
ϕ is defined on Kα by

Aα
ϕ f = Pα(ϕ f ).

An extensive study of truncated Toeplitz operators began in 2007 with D. Sarason’s
paper [16]. Despite similar definitions, truncated Toeplitz operators differ from the
classical ones in many ways. For example, Tϕ = 0 if and only if ϕ = 0, but Aα

ϕ = 0

if and only if ϕ ∈ αH2 + αH2 (see [16, Thm. 3.1]). Moreover, unlike in the classical
case, unbounded symbols can produce bounded truncated Toeplitz operators and there
are bounded truncated Toeplitz operators for which no bounded symbol exists (see [3]
for more details). More interesting results about truncated Toeplitz operators can be
found in [6, 10, 11, 12, 13].

Recently, the authors in [4] and [5] introduced the so-called asymmetric truncated
Toeplitz operators, which are generalizations of truncated Toeplitz operators. Let α , β
be two inner functions and let ϕ ∈ L2(∂D) . An asymmetric truncated Toeplitz operator

Aα ,β
ϕ with a symbol ϕ ∈ L2(∂D) is the operator from Kα into Kβ defined by

Aα ,β
ϕ f = Pβ (ϕ f ), f ∈ Kα .

The asymmetric truncated Toeplitz operator Aα ,β
ϕ is closed and densely defined.

Obviously, Aα ,α
ϕ = Aα

ϕ .
Let

T (α,β ) = {Aα ,β
ϕ : ϕ ∈ L2(∂D) and Aα ,β

ϕ is bounded}
and T (α) = T (α,α) .

In 2008 [8] J.A. Cima, W.T. Ross and W.R. Wogen considered truncated Toeplitz
operators on finite-dimensional model spaces. It is known that Kα has finite dimension
m if and only if α is a finite Blaschke product of degree m . In that case every f ∈Kα is
analytic in a domain containing the closed unit disk (see [10, Prop. 5.7.6]). If α has m
distinct zeros a1, . . . ,am , then the sets {kα

a1
, . . . ,kα

am
} and {k̃α

a1
, . . . , k̃α

am
} are two (non-

orthonormal) bases for Kα . The authors in [8] characterized the operators from T (α)
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in terms of the matrix representations with respect to each of these bases. They showed
that a matrix representing a truncated Toeplitz operator on m-dimensional model space
is completely determined by 2m− 1 of its entries, those along the main diagonal and
the first row (and the first row can be replaced by any other row or column). They also
proved a similar result for the so-called Clark bases.

Matrix representations of truncated Toeplitz operators on infinite-dimensional mo-
del spaces were considered in [15]. In particular, it was proved in [15] that if α is
an infinite Blaschke product with uniformly separated zeros, then the operators from
T (α) can be described in terms of their matrix representations with respect to the
kernel basis.

The main purpose of this paper is to generalize the results from [8] to the case of
asymmetric truncated Toeplitz operators.

In Section 2 we compute the dimension of T (α,β ) for two finite Blaschke prod-
ucts α , β . D. Sarason [16, Thm. 3.1] proved that if α is a finite Blaschke product of
degree m > 0, then the dimension of T (α) is 2m−1. We show that if α and β are
finite Blachke products of degree m > 0 and n > 0, respectively, then the dimension of
T (α,β ) is m+n−1.

In Section 3 we generalize the results from [8] concerning matrix representations.
We characterize matrix representations of asymmetric truncated Toeplitz operators act-
ing between finite-dimensional model spaces. We consider matrix representations with
respect to kernel bases, conjugate kernel bases, Clark bases and modified Clark bases.
In each of these cases we show how the matrix representing an asymmetric truncated
Toeplitz operator is completely determined by m+n−1 of its entries.

2. The dimension of T (α,β )

Here we compute the dimension of the space of all asymmetric truncated Toeplitz
operators acting between finite-dimensional model spaces. We also give examples of
bases for T (α,β ) in this case. The proofs given here are analogous to those from [16,
Thm. 7.1].

As mentioned in the Introduction, if Kα has finite dimension m > 0, then the
dimension of T (α) is 2m−1 ([16, Thm. 7.1(a)]). Here we prove the following.

PROPOSITION 2.1. Let Kα have finite dimension m > 0 and let Kβ have finite
dimension n > 0 . The dimension of T (α,β ) is m+n−1 .

In the proof of Proposition 2.1 we use the fact that if α , β are two nonconstant
inner functions, then Aα ,β

ϕ = 0 if and only if ϕ ∈ αH2 + βH2 (see [14, Thm 2.1] for
proof). We also use the following simple lemma from [14].

LEMMA 2.2. ([14], Lem. 2.2) Let α , β be two arbitrary inner functions. If

Kα ⊂ βH2,

then both α and β have no zeros in D , or at least one of the functions α or β is a
constant function.
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Proof of Proposition 2.1. By [14, Cor. 2.6], every operator A in T (α,β ) can
be written as a sum A = Aχ +Aψ with χ ∈ Kα and ψ ∈ Kβ . Since Kα and Kβ have
finite dimension, it follows that α and β are finite Blaschke products and Kα ⊂ H∞ ,
Kβ ⊂ H∞ . Consequently, T (α,β ) is spanned by its subspaces

T∞(α,β ) = {Aα ,β
ϕ : ϕ ∈ H∞} and T∞(α,β ) = {Aα ,β

ϕ : ϕ ∈ H∞}.
We first compute the dimension of T∞(α,β ) and the dimension of T∞(α,β ) . To

this end, we consider the linear mapping ϕ �→ Aα ,β
ϕ acting from H∞ onto T∞(α,β ) .

By [14, Thm 2.1], its kernel is equal to βH∞ . Indeed, if ϕ ∈ βH∞ , then Aα ,β
ϕ = 0. On

the other hand, if ϕ ∈ H∞ and Aα ,β
ϕ = 0, then ϕ = αh1 + βh2 for some h1,h2 ∈ H2 .

Hence ϕ −βh2 = αh1 is a constant function, ϕ = βh2 + c for some complex number
c , and

0 = Aα ,β
ϕ = Aα ,β

βh2+c = cPβ |Kα .

If c 
= 0, then the above implies that Kα ⊂ βH2 , which, by Lemma 2.2, never happens
for nonconstant Blaschke products α , β . Therefore c = 0 and ϕ ∈ βH∞ . From this

dimT∞(α,β ) = dim(H∞/βH∞) = n.

Similarly, the mapping ϕ �→ Aα ,β
ϕ acting from H∞ onto T∞(α,β ) has kernel equal to

αH∞ and
dimT∞(α,β ) = dim

(
H∞/αH∞

)
= m.

To complete the proof, we only need to show that

dim(T∞(α,β )∩T∞(α,β )) = 1, (2.1)

for then

dimT (α,β ) = dimT∞(α,β )+dimT∞(α,β )−dim(T∞(α,β )∩T∞(α,β ))
= m+n−1.

Note that here Aα ,β
1 
= 0. Otherwise, we would have Kα ⊂βH2 , which, by Lemma

2.2 again, is impossible for nonconstant Blaschke products α , β . Clearly, Aα ,β
1 ∈

T∞(α,β )∩T∞(α,β ) , so T∞(α,β )∩T∞(α,β ) 
= {0} .

Assume now that A ∈ T∞(α,β )∩T∞(α,β ) , say A = Aα ,β
ϕ1 = Aα ,β

ϕ2
, ϕ1,ϕ2 ∈ H∞ .

Then
Aα ,β

ϕ1−ϕ2
= 0,

and ϕ1 −ϕ2 ∈ αH2 + βH2 by [14, Thm 2.1]. In other words, there exist h1,h2 ∈ H2

such that
ϕ1 −βh2 = ϕ2 + αh1.

This implies that there exists a complex number c such that ϕ1 = c + βh2 and A =
Aα ,β

c+βh2
= cAα ,β

1 . Thus every operator in T∞(α,β )∩T∞(α,β ) is a scalar multiple of

Aα ,β
1 and (2.1) holds. �
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It was proved by P. R. Ahern and D. N. Clark in [1, 2] that if α has an angular
derivative in the sense of Carathéodory (an ADC) at some point η ∈ ∂D , then the
function kα

η defined by (1.1) with η in place of w , belongs to Kα (for more details see
[10, pp. 33–37]). Recall the following.

PROPOSITION 2.3. ([14], Prop. 3.1) Let α , β be two nonconstant inner func-
tions.

(a) For w ∈ D , the operators k̃β
w ⊗ kα

w and kβ
w ⊗ k̃α

w belong to T (α,β ) ,

k̃β
w ⊗ kα

w = Aα ,β
β(z)
z−w

and kβ
w ⊗ k̃α

w = Aα ,β
α(z)
z−w

.

(b) If both α and β have an ADC at the point η of ∂D , then the operator kβ
η ⊗ kα

η
belongs to T (α,β ) ,

kβ
η ⊗ kα

η = Aα ,β
kβ

η +k
α
η−1

.

Consequently, if α and β are two finite Blaschke products, then kα
η ∈ Kα , kβ

η ∈
Kβ and kβ

η ⊗kα
η belongs to T (α,β ) for all η ∈ ∂D . Moreover, it is easy to verify that

kβ
η ⊗ k̃α

η = α(η)ηkβ
η ⊗ kα

η and k̃β
η ⊗ kα

η = α(η)ηkβ
η ⊗ kα

η .

COROLLARY 2.4. Let Kα have finite dimension m > 0 and let Kβ have finite
dimension n > 0 . If w1, . . . ,wm+n−1 are distinct points in the closed unit disk D , then:

(a) the operators k̃β
wj ⊗ kα

wj
, j = 1, . . . ,m+n−1 , form a basis for T (α,β );

(b) the operators kβ
wj ⊗ k̃α

wj
, j = 1, . . . ,m+n−1 , form a basis for T (α,β ) .

Proof. We only prove part (a) of the corollary. Proof of part (b) is similar (com-
pare with [16, Thm. 7.1(b)] and [8, Lem. 3.1]).

Let w1, . . . ,wm+n−1 be distinct points in D . By Proposition 2.3, the operators
k̃β
wj ⊗ kα

wj
, j = 1, . . . ,m+n−1, belong to T (α,β ) . Since the dimension of T (α,β )

is m+n−1, it is enough to prove that these operators are linearly independent.
Assume that

m+n−1

∑
j=1

c jk̃
β
wj
⊗ kα

wj
= 0

for some scalars c1, . . . ,cm+n−1 . We first show that c1 = 0.
Since the functions kα

w1
, . . . ,kα

wm
are linearly independent (see [16, p. 509]), there

exists f ∈ Kα such that

〈 f ,kα
wj
〉 =

{
1 for j = 1,
0 for 1 < j � m,
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and

0 =
m+n−1

∑
j=1

c jk̃
β
wj

⊗ kα
wj

( f ) = c1k̃
β
w1

+
m+n−1

∑
j=m+1

c j f (wj)k̃β
wj

.

But k̃β
w1 , k̃

β
wm+1 , . . . , k̃

β
wm+n−1 also are linearly independent, so c1 = 0.

A similar reasoning shows that c j = 0 for every j = 1, . . . ,m+n−1, which com-
pletes the proof. �

3. Matrix representations

For the reminder of the paper we assume that α and β are two finite Blaschke
products with zeros a1, . . . ,am and b1, . . . ,bn , respectively, that is,

α(z) =
m

∏
i=1

ai − z
1−aiz

, β (z) =
n

∏
j=1

b j − z

1−bjz
. (3.1)

3.1. Kernel bases and conjugate kernel bases

Let α and β be given by (3.1). Here we assume that the zeros a1, . . . ,am are dis-
tinct and that the zeros b1, . . . ,bn are distinct. Then the kernel functions {kα

a1
, . . . ,kα

am
}

form a basis for Kα and so do the conjugate kernel functions {k̃α
a1

, . . . , k̃α
am
} . Similarly,

{kβ
b1

, . . . ,kβ
bn
} and {k̃β

b1
, . . . , k̃β

bn
} are bases for Kβ .

Of course, it is possible that α and β have some zeros in common. In this sub-
section we assume that α and β have precisely l zeros in common ( l = 0 if there are
no zeros in common), those zeros being ai = bi for i � l .

Let A be any linear operator from Kα into Kβ . It can be verified using

〈kβ
b j

, k̃β
bs
〉 =

{
β ′(bs) for j = s,

0 for j 
= s,

that the matrix representation MA = (rs,p) of A with respect to the kernel bases {kα
a1

, . . . ,

kα
am
} and {kβ

b1
, . . . ,kβ

bn
} is given by

rs,p = (β ′(bs))−1〈Akα
ap

, k̃β
bs
〉,

and the matrix representation M̃A = (ts,p) of A with respect to the conjugate kernel

bases {k̃α
a1

, . . . , k̃α
am
} and {k̃β

b1
, . . . , k̃β

bn
} is given by

ts,p = β ′(bs)−1〈Ak̃α
ap

,kβ
bs
〉.

THEOREM 3.1. Let the function α be a finite Blaschke product with m distinct
zeros a1, . . . ,am , let β be a finite Blaschke product with n distinct zeros b1, . . . ,bn and
assume that α and β have precisely l zeros in common: ai = bi for i � l ( l = 0 if
there are no zeros in common). Let A be any linear transformation from Kα into Kβ .
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If MA = (rs,p) is the matrix representation of A with respect to the bases {kα
a1

, . . . ,kα
am
}

and {kβ
b1

, . . . ,kβ
bn
} , and

(a) l = 0 , then A ∈ T (α,β ) if and only if

rs,p =
β ′(bs)(a1−bs)rs,1 + β ′(b1)(b1−a1)r1,1 + β ′(b1)(ap−b1)r1,p

β ′(bs)(ap−bs)
(3.2)

for all 1 � p � m and 1 � s � n;

(b) l > 0 , then A ∈ T (α,β ) if and only if

rs,p =
β ′(b1)(a1 −bs)r1,s + β ′(b1)(ap−b1)r1,p

β ′(bs)(ap−bs)
(3.3)

for all p,s such that 1 � p � m, 1 � s � l , s 
= p, and

rs,p =
β ′(bs)(a1−bs)rs,1 + β ′(b1)(ap−b1)r1,p

β ′(bs)(ap−bs)
(3.4)

for all p,s such that 1 � p � m, l < s � n.

Proof. We first prove the necessity of the conditions given in the theorem. Let
A = Aα ,β

ϕ be an asymmetric truncated Toeplitz operator with symbol ϕ ∈ L2(∂D) .
Recall that the matrix representation M

Aα,β
ϕ

= (rs,p) of Aα ,β
ϕ with respect to the bases

{kα
a1

, . . . ,kα
am
} and {kβ

b1
, . . . ,kβ

bn
} is given by

rs,p = (β ′(bs))−1〈Aα ,β
ϕ kα

ap
, k̃β

bs
〉.

By [14, Cor. 2.6], Aα ,β
ϕ can be written as

Aα ,β
ϕ = Aα ,β

χ+ψ ,

for some χ ∈ Kα , ψ ∈ Kβ . Since the functions k̃α
ai

, i = 1, . . . ,m , form a basis for Kα

and the functions k̃β
b j

, j = 1, . . . ,n , form a basis for Kβ , we can write

χ =
m

∑
i=1

cik̃
α
ai
, ψ =

n

∑
j=1

d jk̃
β
b j

.

We now compute rs,p in terms of the scalars c1, . . . ,cm and d1, . . . ,dn .
Since α(ai) = 0 and β (b j) = 0, we have

k̃α
ai
(z) =

α(z)
z−ai

, k̃β
b j

(z) =
β (z)
z−b j
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and

Aα ,β
ϕ =

m

∑
i=1

ciA
α ,β
α(z)
z−ai

+
n

∑
j=1

d jA
α ,β
β(z)
z−b j

.

By Proposition 2.3(a) ,

Aα ,β
α(z)
z−ai

= kβ
ai
⊗ k̃α

ai
and Aα ,β

β(z)
z−b j

= k̃β
b j
⊗ kα

b j
,

and so

Aα ,β
ϕ kα

ap
=

m

∑
i=1

ci〈kα
ap

, k̃α
ai
〉kβ

ai
+

n

∑
j=1

d j〈kα
ap

,kα
b j
〉k̃β

b j

= cpα ′(ap)kβ
ap

+
n

∑
j=1

d j

1−apb j
k̃β
b j

.

The last equality follows from the fact that

〈kα
ap

, k̃α
ai
〉 =

{
α ′(ap) for i = p,

0 for i 
= p.

Consequently,

rs,p = (β ′(bs))−1〈Aα ,β
ϕ kα

ap
, k̃β

bs
〉

= cp
α ′(ap)

β ′(bs)
〈kβ

ap
, k̃β

bs
〉+ 1

β ′(bs)

n

∑
j=1

d j

1−apb j
〈k̃β

b j
, k̃β

bs
〉

= cp
α ′(ap)

β ′(bs)
〈kβ

ap
, k̃β

bs
〉+ 1

β ′(bs)

n

∑
j=1

d j

(1−apb j)(1−bsb j)
.

(a) l = 0.

In this case ap 
= bs for all 1 � p � m and 1 � s � n . Therefore

〈kβ
ap

, k̃β
bs
〉 =

β (ap)
ap−bs


= 0

and

rs,p =
cp

ap−bs

α ′(ap)

β ′(bs)
β (ap)+

1

β ′(bs)

n

∑
j=1

d j

(1−apb j)(1−bsb j)

for all 1 � p � m , 1 � s � n .
We now show that rs,p satisfies (3.2) for all 1 � s � n and 1 � p � m . Clearly,

(3.2) holds for s = 1. Assume that s 
= 1. Using the equality

ap−bs

(1−apb j)(1−bsb j)
=

ap

1−apb j
− bs

1−bsb j
,
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we get

n

∑
j=1

d j

(1−apb j)(1−bsb j)
=

n

∑
j=1

d j

ap−bs

(
ap

1−apb j
− bs

1−bsb j

)

=
n

∑
j=1

d j

ap−bs

(
ap−b1

(1−apb j)(1−b1b j)
+

b1 −a1

(1−a1b j)(1−b1b j)

+
a1 −bs

(1−a1b j)(1−bsb j)

)

=
ap−b1

ap−bs

n

∑
j=1

d j

(1−apb j)(1−b1b j)
+

b1−a1

ap−bs

n

∑
j=1

d j

(1−a1b j)(1−b1b j)

+
a1 −bs

ap−bs

n

∑
j=1

d j

(1−a1b j)(1−bsb j)
.

It follows that

rs,p =
cp

ap−bs

α ′(ap)

β ′(bs)
β (ap)+

1

β ′(bs)

n

∑
j=1

d j

(1−apb j)(1−bsb j)

=
cp

ap−bs

α ′(ap)

β ′(bs)
β (ap)+

ap−b1

ap−bs

1

β ′(bs)

n

∑
j=1

d j

(1−apb j)(1−b1b j)

− c1

ap−bs

α ′(a1)
β ′(bs)

β (a1)+
b1 −a1

ap−bs

1

β ′(bs)

n

∑
j=1

d j

(1−a1b j)(1−b1b j)

+
c1

ap−bs

α ′(a1)
β ′(bs)

β (a1)+
a1−bs

ap−bs

1

β ′(bs)

n

∑
j=1

d j

(1−a1b j)(1−bsb j)

=
ap−b1

ap−bs

β ′(b1)
β ′(bs)

r1,p +
b1 −a1

ap−bs

β ′(b1)
β ′(bs)

r1,1 +
a1−bs

ap−bs
rs,1

=
β ′(bs)(a1−bs)rs,1 + β ′(b1)(b1 −a1)r1,1 + β ′(b1)(ap−b1)r1,p

β ′(bs)(ap−bs)
.

(b) l > 0.

In this case ap = bp for p � l and ap 
= bs for p > l and every 1 � s � n . Hence

〈kβ
ap

, k̃β
bs
〉 =

⎧⎪⎨⎪⎩
β ′(bs)δs,p for p � l,

β (ap)
ap−bs

for p > l,

and

rs,p = cpα ′(ap)δs,p +
1

β ′(bs)

n

∑
j=1

d j

(1−apb j)(1−bsb j)
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for p � l , 1 � s � n , and

rs,p =
cp

ap−bs

α ′(ap)

β ′(bs)
β (ap)+

1

β ′(bs)

n

∑
j=1

d j

(1−apb j)(1−bsb j)

for p > l , 1 � s � n .
We now show that rs,p satisfies (3.4) for all p,s such that 1 � s � n , p > l or

1 � s � n , 1 � p � l , p 
= s .
Clearly, (3.4) holds for all p,s with p 
= s and such that s = 1 or p = 1. Assume

that s 
= 1 and p 
= 1. If p > l , then using the fact that a1 = b1 , we get

rs,p =
cp

ap−bs

α ′(ap)

β ′(bs)
β (ap)+

1

β ′(bs)

n

∑
j=1

d j

(1−apb j)(1−bsb j)

=
cp

ap−bs

α ′(ap)

β ′(bs)
β (ap)+

1

β ′(bs)

n

∑
j=1

d j

ap−bs

(
ap−b1

(1−apb j)(1−b1b j)

+
a1 −bs

(1−a1b j)(1−bsb j)

)

=
ap−b1

ap−bs

β ′(b1)
β ′(bs)

(
cp

ap−b1

α ′(ap)

β ′(b1)
β (ap)+

1

β ′(b1)

n

∑
j=1

d j

(1−apb j)(1−b1b j)

)

+
a1 −bs

ap−bs

1

β ′(bs)

n

∑
j=1

d j

(1−a1b j)(1−bsb j)

=
ap−b1

ap−bs

β ′(b1)
β ′(bs)

r1,p +
a1−bs

ap−bs
rs,1 =

β ′(bs)(a1−bs)rs,1 + β ′(b1)(ap−b1)r1,p

β ′(bs)(ap−bs)
.

Similarly, if p � l , s 
= p , then

rs,p =
1

β ′(bs)

n

∑
j=1

d j

(1−apb j)(1−bsb j)

=
ap−b1

ap−bs

β ′(b1)
β ′(bs)

1

β ′(b1)

n

∑
j=1

d j

(1−apb j)(1−b1b j)

+
a1−bs

ap−bs

1

β ′(bs)

n

∑
j=1

d j

(1−a1b j)(1−bsb j)

=
ap−b1

ap−bs

β ′(b1)
β ′(bs)

r1,p +
a1 −bs

ap−bs
rs,1

=
β ′(bs)(a1 −bs)rs,1 + β ′(b1)(ap−b1)r1,p

β ′(bs)(ap−bs)
.

In particular, (3.4) holds for all p,s such that l < s � n , 1 � p � m .



ASYMMETRIC TRUNCATED TOEPLITZ OPERATORS ON FINITE-DIMENSIONAL SPACES 255

To complete this part of the proof we need to show that rs,p satisfies (3.3) for
all p,s such that 1 � s � l , 1 � p � m , s 
= p . Again, this is obvious for s = 1. If
1 < s � l , then

rs,1 =
1

β ′(bs)

n

∑
j=1

d j

(1−a1b j)(1−bsb j)

=
1

β ′(bs)

n

∑
j=1

d j

(1−asb j)(1−b1b j)
=

β ′(b1)
β ′(bs)

r1,s

and (3.3) follows from (3.4).
The proof of necessity of the given conditions (for l = 0 and for l > 0) is now

complete. We now prove sufficiency.
Assume that l = 0 and note that the linear space V of all the matrices satisfying

(3.2) has dimension m + n− 1. By the first part of the proof, the set V0 of all the
matrices representing operators from T (α,β ) is a subspace of V ,

V0 = {M
Aα,β

ϕ
: Aα ,β

ϕ ∈ T (α,β )} ⊂V.

However, by Proposition 2.1 we know that V0 also has dimension m + n− 1, and so
V0 =V .

The proof for l > 0 is analogous. �

REMARK 3.2.

(a) Theorem 3.1 states that if α and β have no common zeros ( l = 0), then the
matrix representing an operator from T (α,β ) is determined by the entries along
the first row and the first column. A slight modification of the proof shows that
one can in fact take any other row and any other column.

(b) Note that in the proof of part (b) of Theorem 3.1 we actually showed that the
elements rs,p satisfy

rs,p =
β ′(bs)(a1−bs)rs,1 + β ′(b1)(ap−b1)r1,p

β ′(bs)(ap−bs)

for all p,s such that 1 � s � n , p > l or 1 � s � n , 1 � p � l , p 
= s . However,
this only says that the matrix representing an asymmetric truncated Toeplitz op-
erator is determined by m+n+ l−2 of its entries, which is more that m+n−1
for l > 1. To reduce the number of the determining entries we consider two
equations: (3.3) and (3.4). These equations say that the matrix is determined by
entries along the first row, first l entries along the main diagonal and last n− l
entries along the first column.

(c) A modification of the proof of part (b) of Theorem 3.1 shows that the first row
and column can be replaced by any other row and column that intersect at one
of the first l elements of the main diagonal. The theorem can also be formulated
with rows in place of the columns and vice versa.
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(d) Note that if α = β is a Blaschke product with m distinct zeros, then l = m = n
and part (b) of Theorem 3.1 is precisely the result obtained in [8, Thm. 1.4].

Theorem 3.1 can also be formulated in terms of the matrix representation with
respect to {k̃α

a1
, . . . , k̃α

am
} and {k̃β

b1
, . . . , k̃β

bn
} .

THEOREM 3.3. Let the function α be a finite Blaschke product with m distinct
zeros a1, . . . ,am , let β be a finite Blaschke product with n distinct zeros b1, . . . ,bn and
assume that α and β have precisely l zeros in common: ai = bi for i � l ( l = 0 if
there are no zeros in common). Let A be any linear transformation from Kα into Kβ .

If M̃A = (ts,p) is the matrix representation of A with respect to the bases {k̃α
a1

, . . . , k̃α
am
}

and {k̃β
b1

, . . . , k̃β
bn
} , and

(a) l = 0 , then A ∈ T (α,β ) if and only if

ts,p =
β ′(bs)(a1−bs)ts,1 + β ′(b1)(b1−a1)t1,1 + β ′(b1)(ap−b1)t1,p

β ′(bs)(ap−bs)

for all 1 � p � m and 1 � s � n;

(b) l > 0 , then A ∈ T (α,β ) if and only if

ts,p =
β ′(b1)(a1−bs)t1,s + β ′(b1)(ap−b1)t1,p

β ′(bs)(ap−bs)

for all p,s such that 1 � p � m, 1 � s � l , s 
= p, and

ts,p =
β ′(bs)(a1−bs)ts,1 + β ′(b1)(ap−b1)t1,p

β ′(bs)(ap−bs)

for all p,s such that 1 � p � m, l < s � n.

Proof. Let A be any linear transformation from Kα into Kβ . The proof is based
on the fact that the matrix representation of A with respect to the conjugate kernel basis
satisfies the conditions from Theorem 3.3 if and only if the matrix representation of A∗
with respect to the reproducing kernel basis satisfies the conditions from Theorem 3.1.
Since A ∈ T (α,β ) if and only if A∗ ∈ T (β ,α) (see [4, Lem. 3.2]), this proves the
theorem. The details are left to the reader. �

3.2. Clark bases and modified Clark bases

Now let α and β be as in (3.1) but do not assume that the zeros are distinct.
For any λ1 ∈ ∂D define

αλ1
=

λ1 + α(0)
1+ α(0)λ1

.
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Then αλ1
∈ ∂D and, since |α| = 1 and |α ′| > 0 on ∂D (see [11, p. 6]), the equation

α(η) = αλ1
(3.5)

has precisely m distinct solutions η1, . . . ,ηm , which lie on the unit circle ∂D . The
corresponding kernel functions kα

η1
, . . . ,kα

ηm
belong to Kα . Moreover,

〈kα
ηi

,kα
η j
〉 =

{‖kα
ηi
‖2 for i = j,

0 for i 
= j.

Therefore the functions kα
η1

, . . . ,kα
ηm

form an orthogonal basis for Kα and the normal-
ized kernel functions

vα
η j

= ‖kα
η j
‖−1kα

η j
, j = 1, . . . ,m,

form an orthonormal basis for Kα . The basis {vα
η1

, . . . ,vα
ηm
} is called the Clark basis

corresponding to λ1 (see [9] and [11] for more details).
We can also define the so-called modified Clark basis corresponding to λ1 by

eα
η j

= ωα
j vα

η j
, j = 1, . . . ,m,

where
ωα

j = e−
i
2 (argη j−argλ1), j = 1, . . . ,m.

Then the basis {eα
η1

, . . . ,eα
ηm
} is an orthonormal basis for Kα and such that

Cαeα
η j

= eα
η j

, j = 1, . . . ,m,

where Cα is the conjugation given by (1.2).
Similarly, for any λ2 ∈ ∂D there are precisely n distinct solutions ζ1, . . . ,ζn on

∂D of the equation

β (ζ ) = βλ2
=

λ2 + β (0)
1+ β (0)λ2

. (3.6)

The Clark basis {vβ
ζ1

, . . . ,vβ
ζn
} and modified Clark basis {eβ

ζ1
, . . . ,eβ

ζn
} corresponding

to λ2 are defined as above by

vβ
ζ j

= ‖kβ
ζ j
‖−1kβ

ζ j
, j = 1, . . . ,n,

and
eβ

ζ j
= ωβ

j vβ
ζ j

, j = 1, . . . ,n,

where
ωβ

j = e−
i
2 (argζ j−argλ2), j = 1, . . . ,n.

Of course, it may happen that the equations (3.5) and (3.6) have some solutions in
common. Here we assume that (3.5) and (3.6) have precisely l solutions in common
( l = 0 if there are no solutions in common), these solutions being η j = ζ j for j � l .
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THEOREM 3.4. Let α and β be two finite Blaschke products of degree m > 0
and n > 0 , respectively. Let {vα

η1
, . . . ,vα

ηm
} be the Clark basis for Kα corresponding to

λ1 ∈ ∂D , let {vβ
ζ1

, . . . ,vβ
ζn
} be the Clark basis for Kβ corresponding to λ2 ∈ ∂D and

assume that the sets {η1, . . . ,ηm} , {ζ1, . . . ,ζn} have precisely l elements in common:
η j = ζ j for j � l ( l = 0 if there are no elements in common). Finally, let A be any
linear transformation from Kα into Kβ . If MA = (rs,p) is the matrix representation of

A with respect to the bases {vα
η1

, . . . ,vα
ηm
} and {vβ

ζ1
, . . . ,vβ

ζn
} , and

(a) l = 0 , then A ∈ T (α,β ) if and only if

rs,p =

(√|α ′(η1)|√|α ′(ηp)|
ηp

η1

η1− ζs

ηp− ζs
rs,1 +

√|α ′(η1)|
√|β ′(ζ1)|√|α ′(ηp)|
√|β ′(ζs)|

ηp

η1

ζ1−η1

ηp− ζs
r1,1

+

√|β ′(ζ1)|√|β ′(ζs)|
ηp− ζ1

ηp− ζs
r1,p

)
(3.7)

for all 1 � p � m and 1 � s � n;

(b) l > 0 , then A ∈ T (α,β ) if and only if

rs,p =

(√|α ′(ηs)|
√|β ′(ζ1)|√|α ′(ηp)|
√|β ′(ζs)|

ηp

ηs

η1 − ζs

ηp− ζs
r1,s +

√|β ′(ζ1)|√|β ′(ζs)|
ηp− ζ1

ηp− ζs
r1,p

)
(3.8)

for all p,s such that 1 � p � m, 1 � s � l , s 
= p, and

rs,p =

(√|α ′(η1)|√|α ′(ηp)|
ηp

η1

η1− ζs

ηp− ζs
rs,1 +

√|β ′(ζ1)|√|β ′(ζs)|
ηp− ζ1

ηp − ζs
r1,p

)
(3.9)

for all p,s such that 1 � p � m, l < s � n.

Proof. Let A be any linear transformation from Kα into Kβ and let MA = (rs,p)

be its matrix representation with respect to the bases {vα
η1

, . . . ,vα
ηm
} and {vβ

ζ1
, . . . ,vβ

ζn
} .

We first show that if A belongs to T (α,β ) , then MA has the desired properties.

Assume that A = Aα ,β
ϕ for ϕ ∈ L2(∂D) . To compute rs,p pick m+n−1 distinct

points ξ1, . . . ,ξm+n−1 from ∂D , different from ηi , i = 1, . . . ,m , and from ζ j , j =
1, . . . ,n . It follows form Corollary 2.4 that the operators kβ

ξi
⊗ kα

ξi
, i = 1, . . . ,m+n−1,

form a basis for T (α,β ) . Hence there exist scalars c1, . . . ,cm+n−1 such that

Aα ,β
ϕ =

m+n−1

∑
i=1

cik
β
ξi
⊗ kα

ξi
. (3.10)
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Since the Clark bases are orthonormal,

rs,p = 〈Aα ,β
ϕ vα

ηp
,vβ

ζs
〉

for 1 � p � m and 1 � s � n . We now compute rs,p in terms of ci , i = 1, . . . ,m+n−1.
By (3.10) we have

Aα ,β
ϕ vα

ηp
=

m+n−1

∑
i=1

cik
β
ξi
⊗ kα

ξi
(vα

ηp
) =

m+n−1

∑
i=1

civ
α
ηp

(ξi)k
β
ξi
,

and

rs,p =
m+n−1

∑
i=1

civ
α
ηp

(ξi)v
β
ζs

(ξi)

=
1

‖kα
ηp‖‖kβ

ζs
‖

m+n−1

∑
i=1

ci
1−α(ηp)α(ξi)

1−η pξi

1−β (ζs)β (ξi)

1− ζsξ i

=
ηp

‖kα
ηp‖‖kβ

ζs
‖

m+n−1

∑
i=1

ciξi
(α(ηp)α(ξi)−1)(1−β (ζs)β (ξi))

(ξi −ηp)(ξi − ζs)
.

Note that ‖kα
ηp
‖ =

√|α ′(ηp)| and ‖kβ
ζs
‖ =

√|β ′(ζs)| . Moreover, ηp and ζs are so-

lutions of (3.5) and (3.6), respectively. Consequently, α(ηp) = αλ1
, p = 1, . . . ,m ,

β (ζs) = βλ2
, s = 1, . . . ,n , and

rs,p =
ηp√|α ′(ηp)|
√|β ′(ζs)|

m+n−1

∑
i=1

di

(ξi −ηp)(ξi − ζs)
, (3.11)

where

di = ciξi(α(ηp)α(ξi)−1)(1−β (ζs)β (ξi))

= ciξi(αλ1
α(ξi)−1)(1−βλ2

β (ξi))

is independent of p and s .

(a) l = 0.

In this case ηp 
= ζs for all 1 � p � m and 1 � s � n . Using (3.11) and the equality

ηp− ζs

(ξi −ηp)(ξi − ζs)
=

1
ξi −ηp

− 1
ξi − ζs
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we get

rs,p =
ηp√|α ′(ηp)|
√|β ′(ζs)|

m+n−1

∑
i=1

di

(ξi −ηp)(ξi − ζs)

=
1√|α ′(ηp)|
√|β ′(ζs)|

ηp

ηp− ζs

m+n−1

∑
i=1

di

(
1

ξi−ηp
− 1

ξi − ζs

)

=
1√|α ′(ηp)|
√|β ′(ζs)|

ηp

ηp− ζs

m+n−1

∑
i=1

di

(
ηp− ζ1

(ξi −ηp)(ξi − ζ1)

+
ζ1−η1

(ξi − ζ1)(ξi −η1)
+

η1 − ζs

(ξi −η1)(ξi − ζs)

)
=

1√|α ′(ηp)|
√|β ′(ζs)|

ηp

ηp− ζs

(√
|α ′(ηp)|

√
|β ′(ζ1)|ηp− ζ1

ηp
r1,p

+
√
|α ′(η1)|

√
|β ′(ζ1)|ζ1 −η1

η1
r1,1 +

√
|α ′(η1)|

√
|β ′(ζs)|η1− ζs

η1
rs,1

)
=

(√|α ′(η1)|√|α ′(ηp)|
ηp

η1

η1− ζs

ηp− ζs
rs,1 +

√|α ′(η1)|
√|β ′(ζ1)|√|α ′(ηp)|
√|β ′(ζs)|

ηp

η1

ζ1−η1

ηp− ζs
r1,1

+

√|β ′(ζ1)|√|β ′(ζs)|
ηp− ζ1

ηp − ζs
r1,p

)
.

Hence (3.7) holds.

(b) l > 0.

In this case the proof of part (a) can be repeated to show that (3.7) holds for all
p,s such that 1 � p � m , s > l , and for all p,s such that 1 � p � m , 1 � s � l , s 
= p .
Since here ζ1 = η1 , we get (3.9).

We now show that (3.8) holds for all p,s such that 1 � p � m , 1 � s � l , p 
= s .
Clearly, (3.8) holds for s = 1, p 
= s . Since here ηs = ζs , it follows that for 1 < s � l ,

rs,1 =
η1√|α ′(η1)|
√|β ′(ζs)|

m+n−1

∑
i=1

di

(ξi −η1)(ξi − ζs)

=
η1√|α ′(η1)|
√|β ′(ζs)|

m+n−1

∑
i=1

di

(ξi −ηs)(ξi − ζ1)

=

√|α ′(ηs)|
√|β ′(ζ1)|√|α ′(η1)|
√|β ′(ζs)|

η1

ηs
r1,s.

Hence, for 1 < s � l , p 
= s , the equation (3.8) follows form (3.9).

The rest of the proof is similar to that of Theorem 3.1. �
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REMARK 3.5.

(a) Part (a) of Theorem 3.4 states that the matrix representing an operator from
T (α,β ) is determined by entries along the first row and the first column. The
proof can be modified to show that one may replace the first row and the first
column by any other row and any other column.

(b) Proof of part (b) of Theorem 3.4 can also be modified to show that the first row
and column can be replaced by any other row and column that intersect at one of
the first l elements of the main diagonal. The theorem can be formulated with
rows in place of the columns and vice versa.

(c) If α = β is a Blaschke product of degeree m , then l = m = n . Moreover, if λ1 =
λ2 , then η j = ζ j for all j = 1, . . . ,m , and part (b) of Theorem 3.4 is precisely
the result form [8, Thm. 1.11].

THEOREM 3.6. Let α and β be two finite Blaschke products of degree m > 0 and
n > 0 , respectively. Let {eα

η1
, . . . ,eα

ηm
} be the modified Clark basis for Kα correspond-

ing to λ1 ∈ ∂D , let {eβ
ζ1

, . . . ,eβ
ζn
} be the modified Clark basis for Kβ corresponding

to λ2 ∈ ∂D and assume that the sets {η1, . . . ,ηm} , {ζ1, . . . ,ζn} have precisely l el-
ements in common: η j = ζ j for j � l ( l = 0 if there are no elements in common).
Finally, let A be any linear transformation from Kα into Kβ . If M̃A = (ts,p) is the

matrix representation of A with respect to the bases {eα
η1

, . . . ,eα
ηm
} and {eβ

ζ1
, . . . ,eβ

ζn
} ,

and

(a) l = 0 , then A ∈ T (α,β ) if and only if

ts,p =

(√|α ′(η1)|√|α ′(ηp)|
ωα

1

ωα
p

η1− ζs

ηp− ζs
ts,1 +

√|α ′(η1)|
√|β ′(ζ1)|√|α ′(ηp)|
√|β ′(ζs)|

ωα
1 ωβ

1

ωα
p ωβ

s

ζ1−η1

ηp− ζs
t1,1

+

√|β ′(ζ1)|√|β ′(ζs)|
ωβ

1

ωβ
s

ηp− ζ1

ηp− ζs
t1,p

)

for all 1 � p � m and 1 � s � n;

(b) l > 0 , then A ∈ T (α,β ) if and only if

ts,p =

(√|α ′(ηs)|
√|β ′(ζ1)|√|α ′(ηp)|
√|β ′(ζs)|

ωα
s ωβ

1

ωα
p ωβ

s

η1− ζs

ηp− ζs
t1,s +

√|β ′(ζ1)|√|β ′(ζs)|
ωβ

1

ωβ
s

ηp− ζ1

ηp − ζs
t1,p

)

for all p,s such that 1 � p � m, 1 � s � l , s 
= p, and

ts,p =

(√|α ′(η1)|√|α ′(ηp)|
ωα

1

ωα
p

η1 − ζs

ηp− ζs
ts,1 +

√|β ′(ζ1)|√|β ′(ζs)|
ωβ

1

ωβ
s

ηp− ζ1

ηp− ζs
t1,p

)

for all p,s such that 1 � p � m, l < s � n.
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Proof. Let A be any linear transformation from Kα into Kβ . Here it is enough
to compare the matrix representation of A with respect to the Clark basis with its ma-
trix representation with respect to the modified Clark basis and use Theorem 3.4. The
straightforward computations are left to the reader. �
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