MOORE-PENROSE INVERSE OF CONDITIONAL TYPE OPERATORS

M. R. Jabbarzadeh and M. Sohrabi Chegeni

(Communicated by R. Curto)

Abstract

We prove some basic results on some Moore-Penrose inverse of conditional type operators on $L^{2}(\Sigma)$. For instance, we show, among other results, that a weighted conditional operator $T=M_{w} E M_{u}$ is centered if and only if T^{\dagger}, the Moore-Penrose inverse of T, is centered. In addition, we establish lower and upper bounds for the numerical range of T and T^{\dagger}.

1. Introduction and preliminaries

Let (X, Σ, μ) be a complete σ-finite measure space. For any σ-finite subalgebra $\mathscr{A} \subseteq \Sigma$ the Hilbert space $L^{2}\left(X, \mathscr{A}, \mu_{\mid \mathscr{A}}\right)$ is abbreviated to $L^{2}(\mathscr{A})$ where $\mu_{\left.\right|_{\mathscr{A}}}$ is the restriction of μ to \mathscr{A}. We denote the linear space of all complex-valued Σ-measurable functions on X by $L^{0}(\Sigma)$ and $L_{+}^{0}(\Sigma)=\left\{f \in L^{0}(\Sigma): f \geqslant 0\right\}$. The support of a measurable function f is defined by $\sigma(f)=\{x \in X: f(x) \neq 0\}$. All sets and functions statements are to be interpreted as being valid almost everywhere with respect to μ. For each non-negative $f \in L^{0}(\Sigma)$ or $f \in L^{2}(\Sigma)$, by the Radon-Nikodym theorem, there exists a unique \mathscr{A}-measurable function $E^{\mathscr{A}}(f)$ such that

$$
\int_{A} f d \mu=\int_{A} E^{\mathscr{A}}(f) d \mu
$$

where A is any \mathscr{A}-measurable set for which $\int_{A} f d \mu$ exists. Now associated with every complete σ-finite subalgebra $\mathscr{A} \subseteq \Sigma$, the mapping $E^{\mathscr{A}}: L^{2}(\Sigma) \rightarrow L^{2}(\mathscr{A})$ uniquely defined by the assignment $f \mapsto E^{\mathscr{A}}(f)$, is called the conditional expectation operator with respect to \mathscr{A}. Put $E=E^{\mathscr{A}}$. The mapping E is a linear orthogonal projection. Note that $\mathscr{D}(E)$, the domain of E, contains $L^{2}(\Sigma) \cup\left\{f \in L^{0}(\Sigma): f \geqslant 0\right\}$. For more details on the properties of E see $[10,14,16]$.

Given a complex separable Hilbert space H, let $B(H)$ denotes the linear space of all bounded linear operators on $H . \mathscr{N}(T)$ and $\mathscr{R}(T)$ denote the null-space and range of an operator T, respectively. Recall that for $T \in B(H)$ there is a unique factorization $T=U|T|$, where $\mathscr{N}(T)=\mathscr{N}(U)=\mathscr{N}(|T|), U$ is a partial isometry; i.e. $U U^{*} U=$ U and $|T|=\left(T^{*} T\right)^{1 / 2}$ is a positive operator. This factorization is called the polar decomposition of T. It is a classical fact that the polar decomposition of T^{*} is $U^{*}\left|T^{*}\right|$.

[^0]Associated with $T \in B(H)$ there is a useful related operator $\widetilde{T}=|T|^{1 / 2} U|T|^{1 / 2}$, called the Aluthge transform of T. For important properties of Aluthge transform see [8, 12].

Let $C R(H)$ be the set of all bounded linear operators on H with closed range. For $T \in C R(H)$, the Moore-Penrose inverse of T, denoted by T^{\dagger}, is the unique operator $T^{\dagger} \in C R(H)$ that satisfies following:

$$
\begin{equation*}
T T^{\dagger} T=T, \quad T^{\dagger} T T^{\dagger}=T^{\dagger}, \quad\left(T T^{\dagger}\right)^{*}=T T^{\dagger}, \quad\left(T^{\dagger} T\right)^{*}=T^{\dagger} T \tag{1.1}
\end{equation*}
$$

We recall that T^{\dagger} exists if and only if $T \in C R(H)$. The Moore-Penrose inverse is designed as a measure for the invertibility of an operator. If $T=U|T|$ is invertible, then $T^{-1}=T^{\dagger}, U$ is unitary and so $|T|$ is invertible. For other important properties of T^{\dagger} see [1, 3].

A combination of conditional expectation, multiplication and composition operators appears more often in the service of the study of other operators, such as FrobeniusPerron operators [2], integral operators and operators generated by random measures [9] and probabilistic conditional operators [15].

In this paper, we consider the weighted conditional operator $M_{w} E M_{u}$ and the weighted conditional composition operator $M_{w} E M_{u} C_{\varphi}$ on $L^{2}(\Sigma)$. We prove some basic results on some Moore-Penrose inverse of these type operators. For instance, we obtain a lower and upper bound for the numerical range of T and T^{\dagger}, respectively.

2. Weighted conditional operators

Lemma 2.1. Let $\omega \in L^{0}(\Sigma), 0 \leqslant v \in L^{0}(\mathscr{A})$ and let $A:=M_{v \bar{\omega}} E M_{\omega} \in B\left(L^{2}(\Sigma)\right)$. Then for each $p \in(0, \infty)$ and $f \in L^{2}(\Sigma), A^{p}(f)=v^{p} \bar{\omega} E\left(|\omega|^{2}\right)^{p-1} E(\omega f)$.

Proof. First note that, because v is \mathscr{A}-measurable then the positive multiplication operator M_{v} commutes with the positive operator $M_{\bar{\omega}} E M_{\omega}$, and so A is positive. Suppose $f \in L^{2}(\Sigma)$, then by induction we obtain

$$
A^{\frac{1}{n}}(f)=v^{\frac{1}{n}} \bar{\omega} E\left(|\omega|^{2}\right)^{\frac{1}{n}-1} E(\omega f), \quad n \in \mathbb{N}
$$

Now the reiteration of powers of operator $A^{\frac{1}{n}}$, yields

$$
A^{\frac{m}{n}}(f)=v^{\frac{m}{n}} \bar{\omega} E\left(|\omega|^{2}\right)^{\frac{m}{n}-1} E(\omega f), \quad m, n \in \mathbb{N}
$$

Finally, by using of the functional calculus the desired formula is proved.
For $f \in L^{2}(\Sigma)$, it is easy to see that $\left\|M_{w} E M_{u} f\right\|_{2}=\left\|E M_{v} f\right\|_{2}$ where $v:=$ $u\left(E\left(|w|^{2}\right)\right)^{\frac{1}{2}}$. But we know that a multiplication operator has closed range if and only if the inducing function is bounded away from zero on its support. As a result it can easily be checked that for some $\delta>0$ such that $E(v) \geqslant \delta$ on $\sigma(v), T$ has closed range (see also [11, Theorem 2.8(ii)]). Some basic results concerning the conditional type operators are given by Herron [10], Estaremi et al. [4] and the first author in [11]. Here we recall some results of [4] that state our results is valid for $M_{w} E M_{u}$.

LEMMA 2.2. Let $T=M_{w} E M_{u}$ be a weighted conditional operator on $L^{2}(\Sigma)$. Then the following assertions hold.
(a) $T \in B\left(L^{2}(\Sigma)\right)$ if and only if $E\left(|w|^{2}\right) E\left(|u|^{2}\right) \in L^{\infty}(\mathscr{A})$, and in this case $\|T\|=$ $\left\|E\left(|w|^{2}\right) E\left(|u|^{2}\right)\right\|_{\infty}^{1 / 2}$.
(b) Let $T \in B\left(L^{2}(\Sigma)\right), 0 \leqslant u \in L^{0}(\Sigma)$ and $v=u\left(E\left(|w|^{2}\right)\right)^{\frac{1}{2}}$. If $E(v) \geqslant \delta$ on $\sigma(v)$, then T has closed range.
(c) Let $U|T|$ be the polar decomposition of T. Then

$$
\begin{aligned}
|T|(f) & =\left(\frac{E\left(|w|^{2}\right)}{E\left(|u|^{2}\right)}\right)^{\frac{1}{2}} \chi_{S} \bar{u} E(u f) \\
U(f) & =\left(\frac{\chi_{S \cap G}}{E\left(|w|^{2}\right) E\left(|u|^{2}\right)}\right)^{\frac{1}{2}} w E(u f)
\end{aligned}
$$

where where $S=\sigma(E(u)), G=\sigma(E(w))$ and $f \in L^{2}(\Sigma)$.
(d) The Aluthge transformation of T is

$$
\widetilde{T}(f)=\frac{\chi_{S} E(u w)}{E\left(|u|^{2}\right)} \bar{u} E(u f), \quad f \in L^{2}(\Sigma)
$$

From now on, we assume that $u, w \in L_{+}^{0}(\Sigma), T=M_{w} E M_{u} \in B\left(L^{2}(\Sigma)\right)$ and $K:=$ $S \cap G$, where $G=\sigma(E(w))$ and $S=\sigma(E(u))$.

Proposition 2.3. $T \in C R\left(L^{2}(\Sigma)\right)$. Then $T^{\dagger}=M_{\frac{\chi_{K}}{E\left(u^{2}\right) E\left(w^{2}\right)}} T^{*}$.
Proof. It is easy to check that T satisfy all equations in (1.1).
Proposition 2.4. Let $T \in C R\left(L^{2}(\Sigma)\right)$ and let $U_{\dagger}\left|T^{\dagger}\right|$ be the polar decomposition of T^{\dagger}. Then

$$
\begin{aligned}
\left|T^{\dagger}\right|(f) & =\left(\frac{\chi_{K}}{E\left(u^{2}\right)\left(E\left(w^{2}\right)\right)^{3}}\right)^{\frac{1}{2}} w E(w f) \\
U_{\dagger}(f) & =\left(\frac{\chi_{K}}{E\left(u^{2}\right) E\left(w^{2}\right)}\right)^{\frac{1}{2}} u E(w f)
\end{aligned}
$$

Proof. Let $f \in L^{2}(\Sigma)$. Then $\left(T^{\dagger}\right)^{*}\left(T^{\dagger}\right)(f)=\left(E\left(u^{2}\right)\left(E\left(w^{2}\right)\right)^{2}\right)^{-1} \chi_{K} w E(w f)$. Now $\left|T^{\dagger}\right|$ follows from Lemma 2.1. Moreover, it is easy to check that $U_{\dagger}\left|T^{\dagger}\right|=T^{\dagger}, U_{\dagger} U_{\dagger}^{*} U_{\dagger}=$ U_{\dagger} and $\mathscr{N}\left(U_{\dagger}\right)=\mathscr{N}\left(T^{*}\right)=\mathscr{N}\left(T^{\dagger}\right)$. This completes the proof.

We now turn to the computation of $(\widetilde{T})^{\dagger}$ and $\widetilde{T^{\dagger}}$. By combining the previous results we obtain the following proposition.

Proposition 2.5. Let $T, \widetilde{T} \in C R\left(L^{2}(\Sigma)\right)$. Then
(i) $(\widetilde{T})^{\dagger}=M_{\frac{u \chi_{\sigma(E(u w)) \cap S}}{E\left(u^{2}\right) E(u w)}} E M_{u}$.
(ii) $\widetilde{T^{\dagger}}=M_{\frac{\chi_{K} w E(u w)}{E\left(u^{2}\right)\left(E\left(w^{2}\right)\right)^{2}}} E M_{w}$

REMARK 2.6. If $w \neq u$, then $(\widetilde{T})^{\dagger} \neq \widetilde{T^{\dagger}}$. Moreover, by Lemma 2.2(b), $\widetilde{T} \in$ $C R\left(L^{2}(\Sigma)\right)$ whenever $E(u) \frac{E(u w)}{\sqrt{E\left(u^{2}\right)}} \geqslant \delta$ for some $\delta>0$ on S.

Now, we determine a lower and upper estimates for the numerical range of T^{\dagger}. Let B be largest \mathscr{A}-measurable set contained in K with $\mu(B)<\infty$. Then by Proposition 2.3 and definition of $\omega\left(T^{\dagger}\right)$ we have

$$
\begin{aligned}
\omega\left(T^{\dagger}\right) & \geqslant\left\langle T^{\dagger} \frac{\chi_{B}}{\sqrt{\mu(B)}}, \frac{\chi_{B}}{\sqrt{\mu(B)}}\right\rangle=\frac{1}{\mu(B)} \int_{B} \frac{\chi_{S \cap G}}{E\left(u^{2}\right) E\left(w^{2}\right)} u E(w) d \mu \\
& \geqslant \frac{1}{\mu(B)} \int_{B} \frac{E(u) E(w)}{E\left(u^{2}\right) E\left(w^{2}\right)} d \mu .
\end{aligned}
$$

On the other hand, by the conditional Hölder inequality we have

$$
|E(u \bar{f} E(w f))| \leqslant\left(E\left(u^{2}\right)\right)^{\frac{1}{2}}\left(E\left(w^{2}\right)\right)^{\frac{1}{2}} E\left(|f|^{2}\right)
$$

Put $A=\left\{f \in L^{2}(\Sigma) \cap L^{\infty}(\Sigma):\|f\|_{2} \leqslant 1\right\}$. Then

$$
\omega\left(T^{\dagger}\right)=\sup _{\|f\|_{2} \leqslant 1}\left|\left\langle T^{\dagger} f, f\right\rangle\right|=\sup _{f \in A}\left|\left\langle T^{\dagger} f, f\right\rangle\right| \leqslant \int_{K} \frac{d \mu}{\sqrt{E\left(u^{2}\right) E\left(w^{2}\right)}}
$$

By a similar argument we obtain $\omega(T) \leqslant\|T\|$ and $\int_{B} E(u) E(w) d \mu \leqslant \mu(B) \omega(T)$, for each $B \in \mathscr{A}$ with $0<\mu(B)<\infty$. So

$$
\|E(u) E(w)\|_{\infty}=\sup _{0<\mu(B)<\infty} \frac{1}{\mu(B)} \int_{B} E(u) E(w) d \mu \leqslant \omega(T)
$$

Consequently, we have the following proposition.
Proposition 2.7. Let $T, \widetilde{T} \in C R\left(L^{2}(\Sigma)\right)$. Then

$$
\begin{gathered}
\|E(u) E(w)\|_{\infty} \leqslant \omega(T) \leqslant\left\|\sqrt{E\left(u^{2}\right) E\left(w^{2}\right)}\right\|_{\infty} \\
\frac{1}{\mu(B)} \int_{B} \frac{E(u) E(w)}{E\left(u^{2}\right) E\left(w^{2}\right)} d \mu \leqslant \omega\left(T^{\dagger}\right) \leqslant \int_{K} \frac{d \mu}{\sqrt{E\left(u^{2}\right) E\left(w^{2}\right)}}
\end{gathered}
$$

where B is the largest \mathscr{A}-measurable set contained in K with $\mu(B)<\infty$.
Example 2.8. Let $X=\left[-\frac{1}{2}, \frac{1}{2}\right], d \mu=d x, \Sigma$ be the Lebesgue sets, and let $\mathscr{A} \subseteq$ Σ be the σ-algebra generated by the symmetric sets about the origin. Then for each $f \in \mathscr{D}(E), E(f)(x)=\frac{f(x)+f(-x)}{2}$. Put $u(x)=2 x+5, w(x)=\cos x$ and $T=M_{w} E M_{u}$. Then $K=B=X, E(u)=5, E(w)=\cos x, E\left(u^{2}\right)=4 x^{2}+25$ and $E\left(w^{2}\right)=\cos ^{2}(x)$. Note that

$$
\begin{gathered}
u \sqrt{E\left(w^{2}\right)}=(2 x+5)(\cos x) \geqslant 3.9 \\
E(u) \frac{E(u w)}{\sqrt{E\left(u^{2}\right)}}=\frac{125 \cos x}{\sqrt{4 x^{2}+25}} \geqslant \frac{125 \cos \frac{1}{2}}{\sqrt{26}} \geqslant 24.5 .
\end{gathered}
$$

So by Lemma 2.2, $T, \widetilde{T} \in C R\left(L^{2}(\Sigma)\right)$. Also, it is easy to check that

$$
\begin{aligned}
\int_{\left[-\frac{1}{2}, \frac{1}{2}\right]} \frac{E(u) E(w)}{E\left(u^{2}\right) E\left(w^{2}\right)} d \mu & =\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{5 \cos x d x}{\left(4 x^{2}+25\right)\left(\cos ^{2}(x)\right)}=0.2060 \\
\int_{\left[-\frac{1}{2}, \frac{1}{2}\right]} \frac{d \mu}{\sqrt{E\left(u^{2}\right) E\left(w^{2}\right)}} & =\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{d x}{\sqrt{\left(x^{2}+4\right)\left(x^{2}+9\right)}}=0.2074 \\
\|T\| & =\left\|\sqrt{\left(4 x^{2}+25\right)\left(\cos ^{2}(x)\right)}\right\|_{\infty}=5 \\
\left\|T^{\dagger}\right\| & =\left\|\frac{1}{\sqrt{E\left(u^{2}\right) E\left(w^{2}\right)}}\right\|_{\infty}=0.2235 \\
\|\widetilde{T}\| & =\|E(u w)\|_{\infty}=5
\end{aligned}
$$

Thus, $\|\widetilde{T}\|=\|T\|=\omega(T)$ and by Proposition 2.7 we have

$$
0.2060 \leqslant \omega\left(T^{\dagger}\right) \leqslant 0.2074 \leqslant\left\|T^{\dagger}\right\| \leqslant \frac{1}{2} \omega(T)
$$

Proposition 2.9. Let $T \in C R\left(L^{2}(\Sigma)\right)$. If T^{\dagger} is p-hyponormal, then $E\left(u^{2}\right)(E(w))^{2}$ $\geqslant(E(u))^{2} E\left(w^{2}\right)$ on K.

Proof. Let $f \in L^{2}(\Sigma)$. Then by Lemma 2.1, we have

$$
\begin{aligned}
\left(\left(T^{\dagger}\right)^{*} T^{\dagger}\right)^{p} & =\frac{\chi_{K}}{\left(E\left(u^{2}\right)\right)^{p}\left(E\left(w^{2}\right)\right)^{2 p}} w\left(E\left(w^{2}\right)\right)^{p-1} E(w f) \\
\left(T^{\dagger}\left(T^{\dagger}\right)^{*}\right)^{p} & =\frac{\chi_{K}}{\left(E\left(u^{2}\right)\right)^{2 p}\left(E\left(w^{2}\right)\right)^{p}} u\left(E\left(u^{2}\right)\right)^{p-1} E(u f)
\end{aligned}
$$

Thus T^{\dagger} is p-hyponormal if and only if

$$
M_{\frac{\chi_{K}}{\left(E\left(u^{2}\right)\right)^{p}\left(E\left(w^{2}\right)\right)^{p}}}\left(M_{\frac{\chi_{K}}{E\left(w^{2}\right)}} w E M_{w}-M_{\frac{\chi_{K}}{E\left(u^{2}\right)}} u E M_{u}\right) \geqslant 0
$$

Put $P:=M_{\frac{\chi_{K}}{E\left(w^{2}\right)}} w E M_{w}-M_{\frac{\chi_{K}}{E\left(u^{2}\right)}} u E M_{u}$. Since $M_{\frac{\chi_{K}}{\left(E\left(u^{2}\right)\right)^{p}\left(E\left(w^{2}\right)\right)^{p}}}$ is positive and commute with P, it follows that T^{\dagger} is p-hyponormal if and only if $P \geqslant 0$. But this implies that

$$
\langle P f, f\rangle=\int_{K}\left\{\frac{w E(w f)}{E\left(w^{2}\right)}-\frac{u E(u f)}{E\left(u^{2}\right)}\right\} \bar{f} d \mu \geqslant 0
$$

Choose $0<f_{0} \in L^{2}(\mathscr{A})$. By replacing f to f_{0}, we obtain

$$
\int_{K}\left\{\frac{(E(w))^{2}}{E\left(w^{2}\right)}-\frac{(E(u))^{2}}{E\left(u^{2}\right)}\right\} f_{0}^{2} d \mu \geqslant 0
$$

and so $E\left(u^{2}\right)(E(w))^{2} \geqslant(E(u))^{2} E\left(w^{2}\right)$ on K.
In [6], Estaremi determined when weighted conditional operators were A-class, *-A-class and quasi- $*-A$-classes. Now, we discuss measure theoretic characterizations
for T^{\dagger} in some A-classes of operators on $L^{2}(\Sigma)$. An operator $T \in B(H)$ is an A-class operator if $\left|T^{2}\right| \geqslant|T|^{2}$, quasi- A-class if $T^{*}\left|T^{2}\right| T \geqslant T^{*}|T|^{2} T$ and quasi-*- A-class if $T^{*}\left|T^{2}\right| T \geqslant T^{*}\left|T^{*}\right|^{2} T$.

Proposition 2.10. Let $T=M_{w} E M_{u} \in C R\left(L^{2}(\Sigma)\right)$. Then the followings are equivalent.
(i) T^{\dagger} is A-class.
(ii) T^{\dagger} is quasi-A-class.
(iii) T^{\dagger} is quasi-*-A-class.
(iv) $(E(u w))^{2} \geqslant\left(E\left(u^{2}\right)\right)\left(E\left(w^{2}\right)\right)$ on K.

Proof. (i) \Longleftrightarrow (iv) Let $f \in L^{2}(\Sigma)$. Then we obtain

$$
\begin{aligned}
\left\langle\left(\left|\left(T^{\dagger}\right)^{2}\right|-\left|T^{\dagger}\right|^{2}\right) f, f\right\rangle & \left.=\int_{X}\left\{\frac{\chi_{K} E(u w) w \bar{f} E(w f)}{\left(E\left(u^{2}\right)\right)^{\frac{3}{2}}\left(E\left(w^{2}\right)\right)^{\frac{5}{2}}}-\frac{\chi_{K} w \bar{f} E(w f)}{E\left(u^{2}\right)\left(E\left(w^{2}\right)\right)^{2}}\right\}\right) d \mu \\
& =\int_{K}\left\{\frac{E(u w)}{\left(E\left(u^{2}\right)\right)^{\frac{3}{2}}\left(E\left(w^{2}\right)\right)^{\frac{5}{2}}}-\frac{1}{E\left(u^{2}\right)\left(E\left(w^{2}\right)\right)^{2}}\right\}|E(w f)|^{2} d \mu
\end{aligned}
$$

This implies that if $(E(u w))^{2} \geqslant\left(E\left(u^{2}\right)\right)\left(E\left(w^{2}\right)\right)$ on K, then $\left|\left(T^{\dagger}\right)^{2}\right|-\left|T^{\dagger}\right|^{2} \geqslant 0$.
Conversely, if T^{\dagger} is an A-class operator, then $\left\langle\left(\left|\left(T^{\dagger}\right)^{2}\right|-\left|T^{\dagger}\right|^{2}\right) f, f\right\rangle \geqslant 0$ for all $f \in L^{2}(\Sigma)$. Let $B \in \mathscr{A}$, with $B \subseteq K$ and $0<\mu(B)<\infty$. By replacing f to χ_{B}, we get that

$$
\int_{B}\left\{\frac{E(u w)}{\left(E\left(u^{2}\right)\right)^{\frac{3}{2}}\left(E\left(w^{2}\right)\right)^{\frac{5}{2}}}-\frac{1}{E\left(u^{2}\right)\left(E\left(w^{2}\right)\right)^{2}}\right\}(E(w))^{2} d \mu \geqslant 0
$$

Since $B \in \mathscr{A}$ is arbitrary, then $(E(u w))^{2} \geqslant\left(E\left(u^{2}\right)\right)\left(E\left(w^{2}\right)\right)$ on K. The proofs of the other implications are similar.

In [13] Morrel and Muhly introduced the concept of a centered operator. An operator $T=U|T|$ on a Hilbert space H is said to be centered if the doubly infinite sequence $\left\{T^{n} T^{* n}, T^{* m} T^{m}: n, m \geqslant 0\right\}$ consists of mutually commuting operators. For $T \in B(H)$ and $n \in \mathbb{N}$, let $U_{n}\left|T^{n}\right|$ be the polar decomposition of T^{n}. It is shown in [13, Theorem I] that T is centered if and only if $U_{n}=U^{n}$. In the following theorem we give a necessary and sufficient condition for the Moore-Penrose of $M_{w} E M_{u}$ to be centered.

Proposition 2.11. Let $T \in C R\left(L^{2}(\Sigma)\right)$. Then the followings are equivalent.
(i) T is centered.
(ii) T^{\dagger} is centered.
(iii) $(E(u w))^{2}=E\left(u^{2}\right) E\left(w^{2}\right)$ on $\sigma(E(u w))$.

Proof. Put $Q=\sigma(E(u w))$ and let $n \in \mathbb{N}, f \in L^{2}(\Sigma)$. Then by induction we obtain

$$
\begin{aligned}
\left(T^{\dagger}\right)^{n}(f) & =\frac{\chi_{K}(E(u w))^{n-1}}{\left(E\left(u^{2}\right)\right)^{n}\left(E\left(w^{2}\right)\right)^{n}} u E(w f) \\
U_{n}(f) & =\frac{\chi_{Q} E(u w)^{n-1} u E(w f)}{\left(E\left(u^{2}\right)\right)^{\frac{1}{2}}\left(E\left(w^{2}\right)\right)^{\frac{1}{2}}(E(u w))^{n-1}} \\
U^{n}(f) & =\frac{\chi_{K} E(u w)^{n-1} u E(w f)}{\left(E\left(u^{2}\right)\right)^{\frac{n}{2}}\left(E\left(w^{2}\right)\right)^{\frac{n}{2}}}
\end{aligned}
$$

If $(E(u w))^{2}=E\left(u^{2}\right) E\left(w^{2}\right)$, then a calculation shows that $U_{n}=U^{n}$, and so T^{\dagger} is centered. Conversely, suppose that $U_{n}=U^{n}$. Then

$$
\left\{\frac{E(u w)^{n-1}}{\left(E\left(u^{2}\right)\right)^{\frac{1}{2}}\left(E\left(w^{2}\right)\right)^{\frac{1}{2}}(E(u w))^{n-1}}-\frac{E(u w)^{n-1}}{\left(E\left(u^{2}\right)\right)^{\frac{n}{2}}\left(E\left(w^{2}\right)\right)^{\frac{n}{2}}}\right\} \chi_{Q} u E(w f)=0
$$

In particular, it is holds for any strictly positive $f \in L^{2}(\mathscr{A})$. Therefore, $(E(u w))^{2}=$ $E\left(u^{2}\right) E\left(w^{2}\right)$ on Q. The equivalence $(i) \Longleftrightarrow(i i i)$ follows from [7].

3. Weighted conditional composition operators

Let φ be a measurable transformation from X into X such that $\mu \circ \varphi^{-1}$ is absolutely continuous with respect to μ, that is μ is non-singular. Let h be the RadonNikodym derivative $d \mu \circ \varphi^{-1} / d \mu$ and we always assume that h is almost everywhere finite valued or, equivalently $\varphi^{-1}(\Sigma)$ is a sub-sigma finite algebra. In this section we investigated some classic properties of weighted conditional composition operators $T_{\varphi}:=M_{w} E M_{u} C_{\varphi}$ on $L^{2}(\Sigma)$, where $u, w \in L_{+}^{0}(\Sigma)$. Let $\varphi^{-1}(\Sigma) \subseteq \mathscr{A}$. Since for each $f \in L_{+}^{0}(\Sigma), E(f \circ \varphi)=f \circ \varphi$, so $T_{\varphi}=M_{w E M_{u}} C_{\varphi}$ is a weighted composition operator. Put $E_{\varphi}=E^{\varphi^{-1}(\Sigma)}$. It is easy to check that $\left\|T_{\varphi} f\right\|_{2}=\left\|M_{\sqrt{J}} f\right\|_{2}$, where $J=h E_{\varphi}\left(w^{2}(E(u))^{2}\right) \circ \varphi^{-1}$. Thus, $T_{\varphi} \in B\left(L^{2}(\Sigma)\right)$ if and only if $J \in L^{\infty}(\Sigma)$ and in this case $\left\|T_{\varphi}\right\|=\|\sqrt{J}\|_{\infty}$ (see [5]). Moreover, $T_{\varphi} \in C R\left(L^{2}(\Sigma)\right)$ if and only if J is bounded away from zero on $\sigma(J)$. Set again $K=S \cap G$, where $G=\sigma(E(w))$ and $S=\sigma(E(u))$.

Let $U_{\varphi}\left|T_{\varphi}\right|$ be the polar decomposition of T_{φ}. Since $T_{\varphi}^{*}(f)=h E_{\varphi}(w E(u) f) \circ$ φ^{-1}, we obtain $\left|T_{\varphi}\right|(f)=\sqrt{J} f$ and $U_{\varphi}(f)=\chi_{\sigma(w E(u))}(J \circ \varphi)^{-1 / 2} T_{\varphi}(f)$. It follows that

$$
\widetilde{T_{\varphi}} f=\left|T_{\varphi}\right|^{\frac{1}{2}} U_{\varphi}\left|T_{\varphi}\right|^{\frac{1}{2}} f=\chi_{\sigma(w E(u))}\left\{\frac{J}{J \circ \varphi}\right\}^{\frac{1}{4}} w E(u) f \circ \varphi .
$$

Now, let $T_{\varphi} \in C R\left(L^{2}(\Sigma)\right)$. Put

$$
P(f)=\frac{\chi_{\sigma(J)}}{E_{\varphi}\left(w^{2}(E(u))^{2}\right) \circ \varphi^{-1}} E_{\varphi}(w E(u) f) \circ \varphi^{-1} .
$$

Then P satisfy all equations in (1.1). Thus $P=T_{\varphi}^{\dagger}$. In fact we can write $T_{\varphi}^{\dagger}=M_{\frac{\sigma(J)}{J}} T_{\varphi}^{*}$. Hence

$$
\left(T_{\varphi}^{\dagger}\right)^{*} T_{\varphi}^{\dagger}(f)=\frac{\chi_{\sigma(w E(u))}}{h \circ \varphi\left\{E_{\varphi}\left(w^{2}(E(u))^{2}\right)\right\}^{2}} w E(u) E_{\varphi}(w E(u) f)
$$

In Lemma 2.1, set $v=\frac{\chi_{\sigma(w E(u))}}{h \circ \varphi\left\{E_{\varphi}\left(w^{2}(E(u))^{2}\right)\right\}^{2}}$ and $\omega=w E(u)$. Then we obtain

$$
\begin{aligned}
\left|T_{\varphi}^{\dagger}\right|(f) & =\frac{w E(u) \chi_{\sigma(w E(u))}}{(h \circ \varphi)^{\frac{1}{2}}\left\{E_{\varphi}\left(w^{2}(E(u))^{2}\right)\right\}^{\frac{3}{2}}} E_{\varphi}(w E(u) f) \\
\left|T_{\varphi}^{\dagger}\right|^{\frac{1}{2}}(f) & =\frac{w E(u) \chi_{\sigma(w E(u))}}{(h \circ \varphi)^{\frac{1}{4}}\left\{E_{\varphi}\left(w^{2}(E(u))^{2}\right)\right\}^{\frac{5}{4}}} E_{\varphi}(w E(u) f)
\end{aligned}
$$

Define

$$
U_{\varphi^{\dagger}}(f)=\left\{\frac{h \chi_{\sigma(J)}}{E_{\varphi}\left(w^{2}(E(u))^{2}\right) \circ \varphi^{-1}}\right\}^{\frac{1}{2}} E_{\varphi}(w E(u) f) \circ \varphi^{-1} .
$$

Then $T_{\varphi}^{\dagger}=U_{\varphi^{\dagger}}\left|T_{\varphi}^{\dagger}\right|, U_{\varphi^{\dagger}} U_{\varphi^{\dagger}}^{*} U_{\varphi^{\dagger}}=U_{\varphi^{\dagger}}$ and $\mathscr{N}\left(U_{\varphi^{\dagger}}\right)=\mathscr{N}\left(T_{\varphi}^{\dagger}\right)$. Note that $U_{\varphi^{\dagger}}=U_{\varphi}^{*}$ and $\left|T_{\varphi}^{\dagger}\right|=\left|T_{\varphi}^{*}\right|^{\dagger}$. So we have the following proposition.

Proposition 3.1. Let $T_{\varphi} \in C R\left(L^{2}(\Sigma)\right)$ and let $U_{\varphi^{\dagger}}\left|T_{\varphi}^{\dagger}\right|$ be the polar decomposition of T_{φ}^{\dagger}. Then

$$
\begin{aligned}
\left|T_{\varphi}^{\dagger}\right|(f) & =\frac{w E(u) \chi_{\sigma(w E(u))}}{(h \circ \varphi)^{\frac{1}{2}}\left\{E_{\varphi}\left(w^{2}(E(u))^{2}\right)\right\}^{\frac{3}{2}}} E_{\varphi}(w E(u) f) \\
U_{\varphi^{\dagger}}(f) & =\left\{\frac{h \chi_{\sigma(J)}}{E_{\varphi}\left(w^{2}(E(u))^{2}\right) \circ \varphi^{-1}}\right\}^{\frac{1}{2}} E_{\varphi}(w E(u) f) \circ \varphi^{-1} .
\end{aligned}
$$

Let $\widetilde{T_{\varphi}} \in C R\left(L^{2}(\Sigma)\right)$ and put $B(f)=\chi_{\sigma(J)} h J^{-\frac{3}{4}} E_{\varphi}\left(\chi_{\sigma(J)} J^{-\frac{1}{4}} w E(u) f\right) \circ \varphi^{-1}$. Then it is easy to check that B satisfy all equations in (1.1). Thus $B=\left(\widetilde{T_{\varphi}}\right)^{\dagger}$. Now, let $T_{\varphi} \in$ $C R\left(L^{2}(\Sigma)\right)$. Set $W=U_{\varphi^{\dagger}}\left|T_{\varphi}^{\dagger}\right|^{\frac{1}{2}}$. A calculation show that $W(f)=\chi_{\sigma(J)} h J^{-\frac{3}{4}} E_{\varphi}(w E(u) f)$ $\circ \varphi^{-1}$, and so we obtain

$$
\begin{aligned}
\widetilde{T_{\varphi}^{\dagger}}(f) & =\left|T_{\varphi}^{\dagger}\right|^{\frac{1}{2}} W(f)=\left|T_{\varphi}^{\dagger}\right|^{\frac{1}{2}}\left(\chi_{\sigma(J)} h J^{-\frac{3}{4}} E_{\varphi}(w E(u) f) \circ \varphi^{-1}\right) \\
& =\frac{\chi_{\sigma(w E(u)) \cap \sigma(J)} w E(u)}{(h \circ \varphi)^{\frac{1}{4}}\left\{E_{\varphi}\left(w^{2} E(u)^{2}\right)\right\}^{\frac{5}{4}}} E_{\varphi}\left(w E(u) h J^{-\frac{3}{4}} E_{\varphi}(w E(u) f) \circ \varphi^{-1}\right)
\end{aligned}
$$

These observations establish the following proposition.
Proposition 3.2. Let $k=w E(u)$ and $T \in C R\left(L^{2}(\Sigma)\right)$. Then the following assertions hold.
(i) $T_{\varphi}^{\dagger}(f)=\frac{\chi_{\sigma(J)}}{E_{\varphi}\left(k^{2}\right) \circ \varphi^{-1}} E_{\varphi}(k f) \circ \varphi^{-1}$.
(ii) Let $U_{\varphi^{\dagger}}\left|T_{\varphi}^{\dagger}\right|$ be the polar decomposition of T^{\dagger}. Then

$$
\begin{aligned}
\left|T_{\varphi}^{\dagger}\right|(f) & =\frac{k \chi_{\sigma(k)}}{(h \circ \varphi)^{\frac{1}{2}}\left\{E_{\varphi}\left(k^{2}\right)\right\}^{\frac{3}{2}}} E_{\varphi}(k f) \\
U_{\varphi^{\dagger}}(f) & =\left\{\frac{h \chi_{\sigma(J)}}{E_{\varphi}\left(k^{2}\right) \circ \varphi^{-1}}\right\}^{\frac{1}{2}} E_{\varphi}(k f) \circ \varphi^{-1}
\end{aligned}
$$

(iii) If $\widetilde{T_{\varphi}} \in C R\left(L^{2}(\Sigma)\right)$, then $\widetilde{\left(T_{\varphi}\right)^{\dagger}}(f)=\chi_{\sigma(J)} h J^{-\frac{3}{4}} E_{\varphi}\left(\chi_{\sigma(J)} J^{-\frac{1}{4}} k f\right) \circ \varphi^{-1}$.
(iv) $\widetilde{T_{\varphi}^{\dagger}}(f)=\frac{\chi_{\sigma(k) \cap \sigma(J)} k}{(h \circ \varphi)^{\frac{1}{4}}\left\{E_{\varphi}\left(k^{2}\right)\right\}^{\frac{5}{4}}} E_{\varphi}\left(\chi_{\sigma(J)} k h J^{-\frac{3}{4}} E_{\varphi}(k f) \circ \varphi^{-1}\right)$.

Example 3.3. Let $X=[0,1]$ equipped with the Lebesgue measure $d \mu=d x$ on the Lebesgue measurable subsets of X and let $\psi, \varphi: X \rightarrow X$ be a non-singular measurable transformations defined by $\psi(x)=x^{3}$ and

$$
\varphi(x)= \begin{cases}2 x & 0 \leqslant x \leqslant \frac{1}{2} \\ 2-2 x & \frac{1}{2} \leqslant x \leqslant 1\end{cases}
$$

Then $\psi^{-1}(\Sigma)=\Sigma$, and hence $E^{\psi^{-1}(\Sigma)}=I$. Moreover, for each $f \in L^{2}(\Sigma)$ and $x \in X$ we have

$$
\begin{gathered}
h(x)=\left|\frac{d}{d x}\left(\frac{x}{2}\right)\right|+\left|\frac{d}{d x}\left(\frac{2-x}{2}\right)\right|=1 \\
E_{\varphi}(f)(x)=\frac{f(x)+f(1-x)}{2} \\
\left(E_{\varphi}(f) \circ \varphi^{-1}\right)(x)=\frac{1}{2}\left(f\left(\frac{x}{2}\right)+f\left(1-\frac{x}{2}\right)\right) .
\end{gathered}
$$

Put $u(x)=x$ and $w(x)=2$. Then $k(x)=(w E(u))(x)=2 x$ and

$$
\begin{gathered}
E_{\varphi}(k) \circ \varphi^{-1}=1 ; \\
E_{\varphi}\left(k^{2}\right) \circ \varphi^{-1}=x^{2}-2 x+2 ; \\
J=x^{2}-2 x+2 ; \\
J \circ \varphi=4 x^{2}-2 x+2 .
\end{gathered}
$$

Hence we get that

$$
\begin{gathered}
T_{\varphi}^{\dagger} f(x)=\left(\frac{1}{2 x^{2}-4 x+4}\right)\left\{x f\left(\frac{x}{2}\right)+(2-x) f\left(1-\frac{x}{2}\right)\right\} \\
U_{\varphi^{\dagger}}(x) f=\left(\frac{1}{4\left(x^{2}-2 x+2\right)}\right)^{\frac{1}{2}}\left\{x f\left(\frac{x}{2}\right)+(2-x) f\left(1-\frac{x}{2}\right)\right\} ; \\
T_{\varphi} f(x)= \begin{cases}2 x f(2 x) & 0 \leqslant x \leqslant \frac{1}{2} \\
2 x f(2-2 x) & \frac{1}{2} \leqslant x \leqslant 1\end{cases} \\
U_{\varphi} f(x)= \begin{cases}\left(4 x^{2}-2 x+2\right)^{\frac{-1}{2}} 2 x f(2 x) & 0 \leqslant x \leqslant \frac{1}{2} \\
\left(4 x^{2}-2 x+2\right)^{\frac{-1}{2}} 2 x f(2-2 x) & \frac{1}{2} \leqslant x \leqslant 1\end{cases} \\
\left|T_{\varphi}\right| f(x)=\sqrt{J} f(x)=\sqrt{x^{2}-2 x+2} f(x)
\end{gathered}
$$

$$
\begin{gathered}
\left|T_{\varphi}^{\dagger}\right| f(x)=\frac{2 x}{\left(4 x^{2}-2 x+2\right)^{\frac{3}{2}}}\{x f(x)+(1-x) f(1-x)\} \\
\left(\widetilde{T_{\varphi}}\right)^{\dagger} f(x)=\frac{1}{2\left(x^{2}-2 x+2\right)^{\frac{3}{4}}}\left\{\frac{x f\left(\frac{x}{2}\right)}{\left(\frac{x^{2}}{4}-x+2\right)^{\frac{1}{4}}}+\frac{(2-x) f\left(1-\frac{x}{2}\right)}{\left(\left(1-\frac{x}{2}\right)^{2}+x\right)^{\frac{1}{4}}}\right\} .
\end{gathered}
$$

Example 3.4. (i) Let $X=[0,1] \times[0,1], d \mu=d x d y, \Sigma$ be the Lebesgue subsets of $X, \mathscr{A}=\{[0,1] \times A: A$ is a Lebesgue set in $[0,1]\}$. Then for each $f \in L^{2}(\Sigma)$, $(E f)(x, y)=\int_{0}^{1} f(t, y) d t$, which is independent of the first coordinate. Now, if we take $u(x, y)=x^{2} e^{y}, w(x, y)=x^{2} \sin (y)$. Then $E\left(u^{2}\right)(x, y)=\frac{e^{2 y}}{5}, E\left(w^{2}\right)(x, y)=\frac{\sin ^{2}(y)}{5}$. It follows that

$$
(E(u w))^{2}(x, y)=\frac{e^{2 y} \sin ^{2}(y)}{25}=E\left(u^{2}\right)(x, y) E\left(w^{2}\right)(x, y)
$$

Thus, by Theorem 2.10, T^{\dagger} belongs to A-classes of operator and quasi- A-class, quasi-*- A-class and by Theorem 2.11 the operator T^{\dagger} is centered.
(ii) Let $X=[-1,1], d \mu=\frac{1}{2} d x$. With the same assumptions of Example 2.8 let $\mathscr{A}=\langle\{(-a, a): 0 \leqslant a \leqslant 1\}\rangle$. Then for each $f \in L^{2}(\Sigma), E^{\mathscr{A}}(f)$ is the even part of f. Let $u(x)=e^{x}, w(x)=1$. Then $E(u)(x)=\cosh (x), S(E(u))=X$ and $E\left(u^{2}\right)(x)=$ $\cosh (2 x)$. Since $\cosh ^{2}(x) \neq \cosh (2 x)$ then by Theorem $2.11, T$ and T^{\dagger} are not centered. Now, if $u(x)=x^{2}$ and $w(x)=\cos (x)$ then $E\left(u^{2}\right)(x)=x^{4}, E\left(w^{2}\right)(x)=\cos ^{2}(x)$ and $E(u w)(x)=x^{2} \cos (x)$, and thus T^{\dagger} is centered.

REFERENCES

[1] A. Ben-Israel and T. N. E. Greville, Generalized inverses: theory and applications, Second Ed., Springer, 2003.
[2] J. Ding and W. E. Hornor, A new approach to Frobenius-Perron operators, J. Math. Anal. Appl. 187 (1994), 1047-1058.
[3] D. S. Djordjević and N. C. Dinčić, Reverse order law for the Moore-Penrose inverse, J. Math. Anal. Appl. 361 (2010) 252-261.
[4] Y. Estaremi, M. R. JabbarZadeh, Weighted lambert type operators on Lp-spaces, Oper. Matrices 7 (2013), 101-116.
[5] Y. Estaremi, M. R. JabbarZadeh, Weighted composition Lambert-type operators on L^{p} spaces, Mediterr. J. Math. 11 (2014), 955-964.
[6] Y. Estaremi, Some classes of weighted conditional type operators and their spectra, Positivity 19 (2015), 83-93.
[7] Y. Estaremi, Centered weighted conditional type operators, arxiv.org.
[8] T. Furuta, Invitation to linear operators, Taylor \& Francis, Ltd., London, 2001.
[9] J. J. Grobler and B. De Pagter, Operators representable as multiplicationconditional expectation operators, J. Oper. Theory 48 (2002), 15-40.
[10] J. HERRON, Weighted conditional expectation operators, Oper. Matrices 5 (2011), 107-118.
[11] M. R. Jabbarzadeh, A conditional expectation type operator on L^{p} spaces, Oper. Matrices 4 (2010), 445-453.
[12] I. B. Jung, E. Ko and C. Pearcy, Aluthge transforms of operators, Integral Equations Operator Theory 37 (2000), 437-448.
[13] B. B. Morrell and P. S. Muhly, Centered operators, Studia Math. 51 (1974), 251-263.
[14] A. Lambert, L^{p}-multipliers and nested sigma-algebras, Oper. Theory Adv. Appl. 104 (1998), 147153.
[15] A. Lambert and B. Weinstock, A class of operator algebras induced by probabilistic conditional expectations, Michigan Math. J. 40 (1993), 359-376.
[16] M. M. RaO, Conditional measure and applications, Marcel Dekker, New York, 1993.
(Received March 8, 2016)

M. R. Jabbarzadeh
Faculty of Mathematical Sciences, University of Tabriz
5166615648, Tabriz, Iran
e-mail: mjabbar@tabrizu.ac.ir
M. Sohrabi Chegeni
e-mail: m.sohrabi@tabrizu.ac.ir

[^0]: Mathematics subject classification (2010): 47B20, 47B38.
 Keywords and phrases: Moore-Penrose inverse, Aluthge transformation, conditional expectation, polar decomposition.

