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MOORE-PENROSE INVERSE OF CONDITIONAL TYPE OPERATORS

M. R. JABBARZADEH AND M. SOHRABI CHEGENI

(Communicated by R. Curto)

Abstract. We prove some basic results on some Moore-Penrose inverse of conditional type oper-
ators on L? (X). For instance, we show, among other results, that a weighted conditional operator
T = M,,EM,, is centered if and only if TT, the Moore-Penrose inverse of T, is centered. In ad-
dition, we establish lower and upper bounds for the numerical range of T and T .

1. Introduction and preliminaries

Let (X,X,u) be a complete o -finite measure space. For any o -finite subalgebra
</ C X the Hilbert space L*(X,</,[1),/) is abbreviated to L?(«7) where i , is the
restriction of u to 7. We denote the linear space of all complex-valued £-measurable
functions on X by L%(X) and L%.(X) = {f € L°(Z) : f > 0}. The support of a mea-
surable function f is defined by o(f) = {x € X : f(x) # 0}. All sets and functions
statements are to be interpreted as being valid almost everywhere with respect to .
For each non-negative f € L°(Z) or f € L*(Z), by the Radon-Nikodym theorem, there
exists a unique .27 -measurable function £ (f) such that

| fau= [ £,

where A is any .7 -measurable set for which [, fdu exists. Now associated with every
complete o -finite subalgebra .7 C X, the mapping E< : L*(X) — L*(</) uniquely
defined by the assignment f — E(f), is called the conditional expectation operator
with respect to 7. Put E = E“. The mapping E is a linear orthogonal projection.
Note that Z(E), the domain of E, contains L>(Z)U{f € L°(X) : f > 0}. For more
details on the properties of E see [10, 14, 16].

Given a complex separable Hilbert space H, let B(H) denotes the linear space of
all bounded linear operators on H. .4°(T) and Z(T) denote the null-space and range
of an operator T, respectively. Recall that for T € B(H) there is a unique factorization
T =U|T|, where A (T) =4 (U)=A(|T|), U is a partial isometry; i.e. UU*U =
U and |T| = (T*T)'/? is a positive operator. This factorization is called the polar
decomposition of 7. It is a classical fact that the polar decomposition of T* is U*|T*|.
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Associated with T € B(H) there is a useful related operator T = |T|'/2U|T|'/?, called
the Aluthge transform of 7 . For important properties of Aluthge transform see [8, 12].

Let CR(H) be the set of all bounded linear operators on H with closed range. For
T € CR(H), the Moore-Penrose inverse of T, denoted by T, is the unique operator
TT € CR(H) that satisfies following:

it =71, T'TT" =71, (TTY* =TT, (T'T)* =T"T. (1.1)

We recall that T exists if and only if T € CR(H). The Moore-Penrose inverse is
designed as a measure for the invertibility of an operator. If 7 = U|T| is invertible,
then T-! =TT, U is unitary and so |T| is invertible. For other important properties of
TT see[1, 3].

A combination of conditional expectation, multiplication and composition opera-
tors appears more often in the service of the study of other operators, such as Frobenius-
Perron operators [2], integral operators and operators generated by random measures
[9] and probabilistic conditional operators [15].

In this paper, we consider the weighted conditional operator M,,EM, and the
weighted conditional composition operator M,,EM,Cy on L?(X). We prove some ba-
sic results on some Moore-Penrose inverse of these type operators. For instance, we
obtain a lower and upper bound for the numerical range of T and T, respectively.

2. Weighted conditional operators

LEMMA 2.1. Let ® € L°(X), 0<v € LO(&/) andlet A :=M,5EM, € B(L*(X)).
Then for each p € (0,00) and f € L*(Z), AP(f) =" @E(|0|*)’"'E(of).

Proof. First note that, because v is .o/ -measurable then the positive multiplica-
tion operator M, commutes with the positive operator MgzEM,,, and so A is positive.
Suppose f € L*(Z), then by induction we obtain

A (f) =vi@E(|loP)i'E(of), neN.

. . R
Now the reiteration of powers of operator An , yields

m__

A% (f) = Vi BE(|0)5 ' E(0f), mneN.
Finally, by using of the functional calculus the desired formula is proved. [J

For f € L*(X), it is easy to see that |M,,EM,f||>» = |[EMyf|» where v :=
u(E (\w\z))% . But we know that a multiplication operator has closed range if and only
if the inducing function is bounded away from zero on its support. As a result it can
easily be checked that for some 8 > 0 such that E(v) > 6 on o(v), T has closed
range (see also [11, Theorem 2.8(ii)]). Some basic results concerning the conditional
type operators are given by Herron [10], Estaremi et al. [4] and the first author in [11].
Here we recall some results of [4] that state our results is valid for M,,EM,, .
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LEMMA 2.2. Let T = M,EM, be a weighted conditional operator on L*(X).
Then the following assertions hold.

(a) T € B(L*(X)) if and only if E(|w|?)E(|u|?) € L= (<), and in this case ||T|| =
1B (wP)E ()]l

(b) Let T € B(IA(X)), 0 <u e LX) and v = u(E(|w[?))2. If E(v) > 6 on
6(v), then T has closed range.

(c) Let U|T| be the polar decomposition of T. Then

e
110 = (5ot ) rsib ()
00 = (g ) W)

2)E(|ul?)

where where S = 6(E(u)), G = o(E(w)) and f € [*(Z).
(d) The Aluthge transformation of T is

=~ _ XsE(uw)
T = "E Py

From now on, we assume that u,w € L. (2), T = M,,EM, € B(L*(X)) and K :=
SNG, where G=0(E(w)) and S =6 (E(u)).

=

TE(uf), felL*(X).

PROPOSITION 2.3. T € CR(L*(X)). Then T" =M __ 5 T*.

E(u?)E(w?)
Proof. 1t is easy to check that T satisfy all equations in (1.1). O

PROPOSITION 2.4. Let T € CR(L?*(X)) and let U;|T"| be the polar decomposi-
tion of TT. Then

D=

T90) = (s ) WEG);

<E(uz)(E(Wz))3

Nl—

Us(f) = (W) UE(wf).

Proof. Let f € L*(Z). Then (TT)*(TT)(f) = (E(u?)(E(w?*))?) ! xxkwE (wf) . Now

|T| follows from Lemma 2.1. Moreover, it is easy to check that U; |TT| =TT, U; UiUs =
U; and A (Uy) = A (T*) = A (T"). This completes the proof. [

We now turn to the computation of (f)Jr and TT. By combining the previous
results we obtain the following proposition.

PROPOSITION 2.5. Let T,T € CR(L*(X)). Then
(i) (T) = Mgz yyns EMu.
E(2)E w)
(ll) T‘T =M le (m) EMW
E(u?)(E(w?))?
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REMARK 2.6. If w % u, then (T)" # T Moreover, by Lemma 2.2(b), T €

CR(L*(X)) whenever E(M)% > 6 forsome 6 >0 on S.

Now, we determine a lower and upper estimates for the numerical range of 77 . Let
B be largest <7 -measurable set contained in K with y(B) < . Then by Proposition
2.3 and definition of ®(7") we have

o(Th) > <TT XB /E XSmG uE (w)d

¢—¢—

B) /BE(M2 E w2

On the other hand, by the conditional Holder inequality we have

1

E@fEw/))| < (E®)2 (E(w?)E(| ).
Put A= {feL*>(Z)NL*(Z):||f|l2 < 1}. Then

o(TT) = sup [(TTf,f)] —sup\ (T f.0)] <

Ifll<1 / K E( uz)E(w2

By a similar argument we obtain @(7) < ||T|| and [ E(u)E(w)du < u(B)w(T), for
each B € o with 0 < u(B) < . So

1
E@EWI-= s s | E@EWdu < (7).

Consequently, we have the following proposition.

PROPOSITION 2.7. Let T,T € CR(L*(X)). Then

|E@)EW)le < o(T) < ||/ E(u?)E(W?) ||
/E ut)E w2 /K\/Ei

where B is the largest o -measurable set contained in K with [L(B) < .

EXAMPLE 2.8. Let X = [—1, 1], du = dx, X be the Lebesgue sets, and let .o/ C
2 be the o-algebra generated by the symmetric sets about the origin. Then for each
fEDE), E(f)(x) = W Put u(x) =2x+35, w(x) =cosx and T = M,EM,,.
Then K =B =X, E(u) =5, E(w) = cosx, E(u?) = 4x*> + 25 and E(w?) = cos?(x).

Note that
u\/E(w?) = (2x+5)(cosx) > 3.9;

E 125 125cos 3
E(u) ("Wg == > 25045,
VE@W?) VAx2+25 V26
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Soby Lemma 2.2, T, T € CR(L*(Z)). Also, it is easy to check that

( / 5cosxdx
= 0.2060;
/l—%%] E@w d“ @2 1 25)(cost()) 20"

[ o
23] \/ﬂ (2 +4)(x2+9)
1T = H\/(4x2+25)(cos2(x))uw -5
1

177l = | ===z |l- = 0.2235;

E(u?)E(w?)

1T = | Euw)|| = 5.

=0.2074;

Thus, ||T|| = ||T|| = o(T) and by Proposition 2.7 we have
y 1
0.2060 < o(TT) <0.2074 < ||T7|| < So(T).

PROPOSITION 2.9. Let T € CR(L*(Z)). If T" is p-hyponormal, then E (u*)(E(w))?
> (E(u))*E(w?) on K.

Proof. Let f € L*>(Z). Then by Lemma 2.1, we have

(7Y = G s E ) EO0):
(T Y = Gy EE) T Ew).

Thus T is p-hyponormal if and only if

ENPEWDP  Ew?) E(u2)
Put P:=M x wEM,,— M xx uEM, . Since M 1K is positive and commute
E(w?) E(u?) (EW2)P (Ew2)P

with P, it follows that T is p-hyponormal if and only if P > 0. But this implies that

<Pf7f>=/l({w§((ww2];) E((:J;)}fdu>0

Choose 0 < fy € L>(o7). By replacing f to fy, we obtain

(EW?  (EW)?
/K{ Ew?)  E@) }fozd“ZO’

and so E(u?)(E(w))* = (E(u))*’E(w?*) on K. O

In [6], Estaremi determined when weighted conditional operators were A -class, *-
A-class and quasi-*-A-classes. Now, we discuss measure theoretic characterizations
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for TT in some A-classes of operators on L?(X). An operator T € B(H) is an A-class
operator if |T?| > |T|?, quasi-A-class if 7*|T?|T > T*|T|*T and quasi- *-A-class if
T*|T?|T > T*|T*|*T.

PROPOSITION 2.10. Let T = M,,EM, € CR(L*(X)). Then the followings are
equivalent.

(i) TT is A-class.

(ii) TT is quasi-A-class.

(iii) TT is quasi-*-A-class.

(iv) (E(uw))? > (E(u®))(E(w?)) on K.

Proof. (i) <= (iv) Let f € L>(X). Then we obtain

N2 2 _ AKE@@w)wfEwf)  xxwfE(wf)
(T =IT) S 1) /X{(E(zﬂ))%(E w2))% E(uz)(E(wz))Z})d'u

(
: K{(E(uz))%(E(wz))% E(u2)(E(W2))z}|E( f)l7du.

This implies that if (E(uw))? > (E(u?))(E(w?)) on K, then |(TT)?| - |TT|> > 0.

Conversely, if 77 is an A-class operator, then ((|(TT)?| — |TT|?)f, f) =0 for all
feL*X). Let B€ o7, with BC K and 0 < u(B) < . By replacing f to x5, we get
that

Since B € < is arbitrary, then (E(uw))? > (E(u?))(E(w?)) on K. The proofs of the
other implications are similar. [J

In [13] Morrel and Muhly introduced the concept of a centered operator. An opera-
tor T = U|T| on a Hilbert space H is said to be centered if the doubly infinite sequence
{T"T*", T*"T™ : n,m > 0} consists of mutually commuting operators. For T € B(H)
and n € N, let U,|T"| be the polar decomposition of 7" . It is shown in [13, Theorem I]
that T is centered if and only if U,, = U". In the following theorem we give a necessary
and sufficient condition for the Moore-Penrose of M,,EM,, to be centered.

PROPOSITION 2.11. Let T € CR(L*(X)). Then the followings are equivalent.
(i) T is centered.

(ii) TT is centered.

(iii) (E(uw))? = E(u?)E(W?) on o(E(uw)).
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Proof. Put Q =0 (E(uw)) andlet n € N, f € L?(X). Then by induction we obtain
o Ak E@)
LoE(wn) WE(wf)
(E(2))2 (E(w2)) 2 (E (uw))n~!
AKE (uw)" luE(wf).
(E(u?)2(E(w?))?

If (E(uw))? = E(u?)E(w?), then a calculation shows that U, = U", and so T" is cen-
tered. Conversely, suppose that U,, = U". Then

Un(f) =

vn(f) =

E(”W)n_l B E(uw)n 1 y
{(E(”z))%(E(Mﬂ))%(E(MW))n1 (E(uz))%(E(w ))% }XQ uE(wf) =
2

In particular, it is holds for any strictly positive f € L?>(</). Therefore, (E(uw))? =
E(u?)E(w?) on Q. The equivalence (i) <= (iii) follows from [7]. O

3. Weighted conditional composition operators

Let @ be a measurable transformation from X into X such that po @' is ab-

solutely continuous with respect to t, that is u is non-singular. Let & be the Radon-
Nikodym derivative du o ¢! /du and we always assume that / is almost everywhere
finite valued or, equivalently @~!(Z) is a sub-sigma finite algebra. In this section
we investigated some classic properties of weighted conditional composition opera-
tors Ty := MyEM,Cy on L*(X), where u,w € L9 (Z). Let ¢ '(£) C «/. Since
for each f € LQ(Z), E(fog)= fo@, so Ty = M,eyu,Cp is a weighted composi-
tion operator. Put E, = E9'® _ Itis easy to check that ITofll2 = [|M /5f|]2, where
J =hEy(W*(E(u))*)o@~!. Thus, T, € B(L*(%)) if and only if J € L*(X) and in this
case || Ty|| = || V7| (see [5]). Moreover, Ty, € CR(L?(X)) if and only if J is bounded
away from zero on ¢ (J). Set again K =SNG, where G = o(E(w)) and S= 6 (E(u)).

Let Uy|Ty| be the polar decomposition of T,. Since Ty (f) = hEg(WE(u)f) o

I, we obtain |Ty,|(f) = VJf and Up(f) = XowEu)) (I © @)~ 2Ty(f). Tt follows

0
that

—~ 1 1 J 1
Tof =Tp|2Up|Ty|2 f = XO'(WE(M)){JO(P}ZWE(”)JCO(/)~
Now, let Ty € CR(L*(Z)). Put

Xo())
Ep(wW*(E(u))?)op~!

Then P satisfy all equationsin (1.1). Thus P = T(; . In fact we can write T} = Mo T, .
e

P(f) = Eo(WE(u)f)og™".

Hence
Xo(WE(u))

ho p{Eg(w?(E(u))?)}?

(Tg) T3 (f) = WE (u)Eg(WE (u) f)-
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In Lemma 2.1, set v = XowE(w) & and ® = wE (u). Then we obtain

hoo{Eq(w?(E(u))?)

WE( )XO'(WE(M)

IHGE : L Ey(WEu)f);
’ (ho @) {Ep(W2(E)?)}
WE( U) X (wE (u))
IT]1(f) = _Ey(WE(u)f).
(ho @) H{Ep(w2 (Ew)?)}

Define
Eo(WE(u)f) o(p’l.

hxs ) 3
U o+ =
o= EytEoe )
Then Ty = U,:|T4|. UptUgiUgs = Uyt and A (Upt) = A (Ty). Note that U; = U,

and \T(Z | = |T$|T. So we have the following proposition.

PROPOSITION 3.1. Let Ty, € CR(L*(X)) and let U¢T|Tq;r\ be the polar decompo-
sition of TqI. Then
WE () X (wE (1))
(ho @) {Eg(w? (E(w))?)}}
hxe ()
Ui (f :{
o B R Ew)ee T
Let Ty € CR(L2(E)) and put B(f) = Xo()hJ 3 Eg(Xo(s)J AWE(u)f)o@". Then
it is easy to check that B satisfy all equations in (1.1). Thus B (Tq,) . Now, let T €
CR(L*(X)). Set W = Uy \T(; \% . A calculation show that W(f) = )(g(,)hJ_%E(p(wE(u)f)
—1
o

T41(f) =

Ep(WE(u)f);

}2E<p(wE(u)f)O<p‘1~

, and so we obtain

() = [T W (F) = T3} Gtonhd 3 EpWE@)f)o o))
Xo(wE@w)no)WE (1) -1 (WE 4
= . u iEQ(WE(u)f)o .
(o) HgtwerG 7 D)

These observations establish the following proposition.

PROPOSITION 3.2. Let k = wE(u) and T € CR(L*(X)). Then the following as-
sertions hold.

. Lo _
(i) Tq;r(f) = W)(?Wlﬂp(kf)ofp !
(i) Let U i |T$\ be the polar decomposition of T™. Then

k%o(
3
(ho @)2 {Ep(k?)} >

"o 2 _
Uy (f) = {Wg)(p_l} Eg(kf)og~".

751 (f) =

Ey(kf);
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(iii) If Ty € CR(L*(X)), then (Ty)T(f) = Xo(hI ™3 Eg(Xo()d4kf) 0
(iv) TJ(f)=%fk)75<p(xo kI3 Eg(kf)o ")
(ho@) 3 {E¢(k?)}4

EXAMPLE 3.3. Let X = [0, 1] equipped with the Lebesgue measure dy = dx on
the Lebesgue measurable subsets of X and let v, ¢ : X — X be a non-singular measur-
able transformations defined by y(x) = x> and

o) = {i_ N
Then vy !(Z) =

¥, and hence E¥~ ®) = I. Moreover, for each fel’X) and xeX
we have

) =[£G+ E )=

o)) = LU=,

EolNoo )W =5 (r(3)+1(1-3)).

Put u(x) = x and w(x) = 2. Then k(x) = (WE(u))(x) = 2x and

Ep(k)op™' =
Ep(K)op ' =x —2x+2;
J=x"—2x+2;
Jo@=4x* —2x+2.

o= O

<x< 3,
<x<1

Hence we get that
100 = (=) P (5) -7 (1-5)

ot (i) (93) - -9}

_ @) 0
Upf(x) = {(4x2—2x+ 2) 7 2xf(2 — 2x)

| Tp|f(x) = VIf(x) = Va2 = 2x+2f(x)
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T$|f<x>=m{xf<> (1= f(1-)};
(Tp) ) = ——— i(5) | eoar(ioy)
2(x2 —2x+2)3 (%z_x+2>% ((1—§> +x>l

EXAMPLE 3.4. (i) Let X =[0,1] x [0, 1], du = dxdy, Z be the Lebesgue subsets
of X, o ={[0,1] xA: A is a Lebesgue set in [0,1]}. Then for each f € L*(X),
(Ef)(x,y) = fol f(z,y)dt, which is independent of the first coordinate. Now, if we take

u(x,y) = x*¢’, w(x,y) = x*sin(y). Then E(u?)(x,y) = %, E(wW?)(x,y) = M It
follows that

e sin?
(E(n)(e5) = ) B0 ) E?) 5,

Thus, by Theorem 2.10, T belongs to A-classes of operator and quasi-A -class, quasi-
%-A-class and by Theorem 2.11 the operator T is centered.

(i) Let X = [—1,1], du = Adx. With the same assumptions of Example 2.8 let
o = ({(—a,a) : 0 <a < 1}). Then for each f € L*(X), E“(f) is the even part of
f. Let u(x) = ¢*, w(x) = 1. Then E(u)(x) = cosh(x), S(E(u)) =X and E(u®)(x) =
cosh(2x). Since cosh?(x) # cosh(2x) then by Theorem 2.11, T and T are not cen-
tered. Now, if u(x) = x> and w(x) = cos(x) then E(u?)(x) = x*, E(w?)(x) = cos?(x)
and E(uw)(x) = x> cos(x), and thus 7 is centered.
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