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MOORE–PENROSE INVERSE OF CONDITIONAL TYPE OPERATORS

M. R. JABBARZADEH AND M. SOHRABI CHEGENI

(Communicated by R. Curto)

Abstract. We prove some basic results on some Moore-Penrose inverse of conditional type oper-
ators on L2(Σ) . For instance, we show, among other results, that a weighted conditional operator
T = MwEMu is centered if and only if T † , the Moore-Penrose inverse of T , is centered. In ad-
dition, we establish lower and upper bounds for the numerical range of T and T † .

1. Introduction and preliminaries

Let (X ,Σ,μ) be a complete σ -finite measure space. For any σ -finite subalgebra
A ⊆ Σ the Hilbert space L2(X ,A ,μ|A ) is abbreviated to L2(A ) where μ|A is the
restriction of μ to A . We denote the linear space of all complex-valued Σ-measurable
functions on X by L0(Σ) and L0

+(Σ) = { f ∈ L0(Σ) : f � 0} . The support of a mea-
surable function f is defined by σ( f ) = {x ∈ X : f (x) �= 0} . All sets and functions
statements are to be interpreted as being valid almost everywhere with respect to μ .
For each non-negative f ∈ L0(Σ) or f ∈ L2(Σ) , by the Radon-Nikodym theorem, there
exists a unique A -measurable function EA ( f ) such that∫

A
f dμ =

∫
A
EA ( f )dμ ,

where A is any A -measurable set for which
∫
A f dμ exists. Now associated with every

complete σ -finite subalgebra A ⊆ Σ , the mapping EA : L2(Σ) → L2(A ) uniquely
defined by the assignment f �→ EA ( f ) , is called the conditional expectation operator
with respect to A . Put E = EA . The mapping E is a linear orthogonal projection.
Note that D(E) , the domain of E , contains L2(Σ)∪{ f ∈ L0(Σ) : f � 0} . For more
details on the properties of E see [10, 14, 16].

Given a complex separable Hilbert space H , let B(H) denotes the linear space of
all bounded linear operators on H . N (T ) and R(T ) denote the null-space and range
of an operator T , respectively. Recall that for T ∈ B(H) there is a unique factorization
T = U |T | , where N (T ) = N (U) = N (|T |) , U is a partial isometry; i.e. UU∗U =
U and |T | = (T ∗T )1/2 is a positive operator. This factorization is called the polar
decomposition of T . It is a classical fact that the polar decomposition of T ∗ is U∗|T ∗| .
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Associated with T ∈ B(H) there is a useful related operator T̃ = |T |1/2U |T |1/2 , called
the Aluthge transform of T . For important properties of Aluthge transform see [8, 12].

Let CR(H) be the set of all bounded linear operators on H with closed range. For
T ∈ CR(H) , the Moore-Penrose inverse of T , denoted by T † , is the unique operator
T † ∈CR(H) that satisfies following:

TT †T = T, T †TT † = T †, (TT †)∗ = TT †, (T †T )∗ = T †T. (1.1)

We recall that T † exists if and only if T ∈ CR(H) . The Moore-Penrose inverse is
designed as a measure for the invertibility of an operator. If T = U |T | is invertible,
then T−1 = T † , U is unitary and so |T | is invertible. For other important properties of
T † see [1, 3].

A combination of conditional expectation, multiplication and composition opera-
tors appears more often in the service of the study of other operators, such as Frobenius-
Perron operators [2], integral operators and operators generated by random measures
[9] and probabilistic conditional operators [15].

In this paper, we consider the weighted conditional operator MwEMu and the
weighted conditional composition operator MwEMuCϕ on L2(Σ) . We prove some ba-
sic results on some Moore-Penrose inverse of these type operators. For instance, we
obtain a lower and upper bound for the numerical range of T and T † , respectively.

2. Weighted conditional operators

LEMMA 2.1. Let ω ∈ L0(Σ) , 0 � v ∈ L0(A ) and let A := MvωEMω ∈ B(L2(Σ)) .
Then for each p ∈ (0,∞) and f ∈ L2(Σ) , Ap( f ) = vpωE(|ω |2)p−1E(ω f ) .

Proof. First note that, because v is A -measurable then the positive multiplica-
tion operator Mv commutes with the positive operator MωEMω , and so A is positive.
Suppose f ∈ L2(Σ) , then by induction we obtain

A
1
n ( f ) = v

1
n ωE(|ω |2) 1

n−1E(ω f ), n ∈ N.

Now the reiteration of powers of operator A
1
n , yields

A
m
n ( f ) = v

m
n ωE(|ω |2)m

n −1E(ω f ), m,n ∈ N.

Finally, by using of the functional calculus the desired formula is proved. �

For f ∈ L2(Σ) , it is easy to see that ‖MwEMu f‖2 = ‖EMυ f‖2 where υ :=
u(E(|w|2)) 1

2 . But we know that a multiplication operator has closed range if and only
if the inducing function is bounded away from zero on its support. As a result it can
easily be checked that for some δ > 0 such that E(υ) � δ on σ(υ) , T has closed
range (see also [11, Theorem 2.8(ii)]). Some basic results concerning the conditional
type operators are given by Herron [10], Estaremi et al. [4] and the first author in [11].
Here we recall some results of [4] that state our results is valid for MwEMu .
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LEMMA 2.2. Let T = MwEMu be a weighted conditional operator on L2(Σ) .
Then the following assertions hold.

(a) T ∈ B(L2(Σ)) if and only if E(|w|2)E(|u|2) ∈ L∞(A ) , and in this case ‖T‖ =
‖E(|w|2)E(|u|2)‖1/2

∞ .

(b) Let T ∈ B(L2(Σ)) , 0 � u ∈ L0(Σ) and υ = u(E(|w|2)) 1
2 . If E(υ) � δ on

σ(υ) , then T has closed range.
(c) Let U |T | be the polar decomposition of T . Then

|T |( f ) =
(

E(|w|2)
E(|u|2)

) 1
2

χSuE(u f );

U( f ) =
(

χS∩G

E(|w|2)E(|u|2)
) 1

2

wE(u f ),

where where S = σ(E(u)) , G = σ(E(w)) and f ∈ L2(Σ) .
(d) The Aluthge transformation of T is

T̃ ( f ) =
χSE(uw)
E(|u|2) uE(u f ), f ∈ L2(Σ).

From now on, we assume that u,w ∈ L0
+(Σ) , T = MwEMu ∈ B(L2(Σ)) and K :=

S∩G , where G = σ(E(w)) and S = σ(E(u)) .

PROPOSITION 2.3. T ∈CR(L2(Σ)) . Then T † = M χK
E(u2)E(w2)

T ∗ .

Proof. It is easy to check that T satisfy all equations in (1.1). �

PROPOSITION 2.4. Let T ∈ CR(L2(Σ)) and let U†|T †| be the polar decomposi-
tion of T † . Then

|T †|( f ) =
( χK

E(u2)(E(w2))3

) 1
2
wE(wf );

U†( f ) =
( χK

E(u2)E(w2)

) 1
2
uE(wf ).

Proof. Let f ∈L2(Σ) . Then (T †)∗(T †)( f )= (E(u2)(E(w2))2)−1χKwE(wf ) . Now
|T †| follows from Lemma 2.1. Moreover, it is easy to check that U†|T †|= T † , U†U∗

†U† =
U† and N (U†) = N (T ∗) = N (T †) . This completes the proof. �

We now turn to the computation of (T̃ )† and T̃ † . By combining the previous
results we obtain the following proposition.

PROPOSITION 2.5. Let T, T̃ ∈CR(L2(Σ)) . Then
(i) (T̃ )† = Muχσ(E(uw))∩S

E(u2)E(uw)

EMu .

(ii) T̃ † = M χKwE(uw)
E(u2)(E(w2))2

EMw
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REMARK 2.6. If w �= u , then (T̃ )† �= T̃ † . Moreover, by Lemma 2.2(b), T̃ ∈
CR(L2(Σ)) whenever E(u) E(uw)√

E(u2)
� δ for some δ > 0 on S .

Now, we determine a lower and upper estimates for the numerical range of T † . Let
B be largest A -measurable set contained in K with μ(B) < ∞ . Then by Proposition
2.3 and definition of ω(T †) we have

ω(T †) �
〈
T † χB√

μ(B)
,

χB√
μ(B)

〉
=

1
μ(B)

∫
B

χS∩G

E(u2)E(w2)
uE(w)dμ

� 1
μ(B)

∫
B

E(u)E(w)
E(u2)E(w2)

dμ .

On the other hand, by the conditional Hö lder inequality we have

|E(u f E(wf ))| � (E(u2))
1
2 (E(w2))

1
2 E(| f |2).

Put A = { f ∈ L2(Σ)∩L∞(Σ) : ‖ f‖2 � 1} . Then

ω(T †) = sup
‖ f‖2�1

|〈T † f , f 〉| = sup
f∈A

|〈T † f , f 〉| �
∫

K

dμ√
E(u2)E(w2)

·

By a similar argument we obtain ω(T ) � ‖T‖ and
∫
B E(u)E(w)dμ � μ(B)ω(T ) , for

each B ∈ A with 0 < μ(B) < ∞ . So

‖E(u)E(w)‖∞ = sup
0<μ(B)<∞

1
μ(B)

∫
B
E(u)E(w)dμ � ω(T ).

Consequently, we have the following proposition.

PROPOSITION 2.7. Let T, T̃ ∈CR(L2(Σ)) . Then

‖E(u)E(w)‖∞ � ω(T ) � ‖
√

E(u2)E(w2)‖∞;

1
μ(B)

∫
B

E(u)E(w)
E(u2)E(w2)

dμ � ω(T †) �
∫

K

dμ√
E(u2)E(w2)

,

where B is the largest A -measurable set contained in K with μ(B) < ∞ .

EXAMPLE 2.8. Let X = [− 1
2 , 1

2 ] , dμ = dx , Σ be the Lebesgue sets, and let A ⊆
Σ be the σ -algebra generated by the symmetric sets about the origin. Then for each
f ∈ D(E) , E( f )(x) = f (x)+ f (−x)

2 . Put u(x) = 2x+5, w(x) = cosx and T = MwEMu .
Then K = B = X , E(u) = 5, E(w) = cosx , E(u2) = 4x2 + 25 and E(w2) = cos2(x) .
Note that

u
√

E(w2) = (2x+5)(cosx) � 3.9;

E(u)
E(uw)√
E(u2)

=
125cosx√
4x2 +25

�
125cos 1

2√
26

� 24.5 .
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So by Lemma 2.2, T, T̃ ∈CR(L2(Σ)) . Also, it is easy to check that∫
[− 1

2 , 1
2 ]

E(u)E(w)
E(u2)E(w2)

dμ =
∫ 1

2

− 1
2

5cosxdx
(4x2 +25)(cos2(x))

= 0.2060;

∫
[− 1

2 , 1
2 ]

dμ√
E(u2)E(w2)

=
∫ 1

2

− 1
2

dx√
(x2 +4)(x2 +9)

= 0.2074;

‖T‖ = ‖
√

(4x2 +25)(cos2(x))‖∞ = 5;

‖T †‖ = ‖ 1√
E(u2)E(w2)

‖∞ = 0.2235;

‖T̃‖ = ‖E(uw)‖∞ = 5.

Thus, ‖T̃‖ = ‖T‖ = ω(T ) and by Proposition 2.7 we have

0.2060 � ω(T †) � 0.2074 � ‖T †‖ � 1
2

ω(T ).

PROPOSITION 2.9. Let T ∈CR(L2(Σ)) . If T † is p-hyponormal, then E(u2)(E(w))2

� (E(u))2E(w2) on K .

Proof. Let f ∈ L2(Σ) . Then by Lemma 2.1, we have

((T †)∗T †)p =
χK

(E(u2))p(E(w2))2p w(E(w2))p−1E(wf );

(T †(T †)∗)p =
χK

(E(u2))2p(E(w2))p u(E(u2))p−1E(u f ).

Thus T † is p-hyponormal if and only if

M χK
(E(u2))p(E(w2))p

(M χK
E(w2)

wEMw −M χK
E(u2)

uEMu) � 0.

Put P := M χK
E(w2)

wEMw −M χK
E(u2)

uEMu . Since M χK
(E(u2))p(E(w2))p

is positive and commute

with P , it follows that T † is p-hyponormal if and only if P � 0. But this implies that

〈P f , f 〉 =
∫

K

{
wE(wf )
E(w2)

− uE(u f )
E(u2)

}
f dμ � 0.

Choose 0 < f0 ∈ L2(A ) . By replacing f to f0 , we obtain∫
K

{
(E(w))2

E(w2)
− (E(u))2

E(u2)

}
f 2
0 dμ � 0,

and so E(u2)(E(w))2 � (E(u))2E(w2) on K . �
In [6], Estaremi determined when weighted conditional operators were A-class, ∗ -

A-class and quasi-∗ -A-classes. Now, we discuss measure theoretic characterizations
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for T † in some A-classes of operators on L2(Σ) . An operator T ∈ B(H) is an A-class
operator if |T 2| � |T |2 , quasi-A-class if T ∗|T 2|T � T ∗|T |2T and quasi-∗ -A-class if
T ∗|T 2|T � T ∗|T ∗|2T .

PROPOSITION 2.10. Let T = MwEMu ∈ CR(L2(Σ)) . Then the followings are
equivalent.

(i) T † is A-class.
(ii) T † is quasi-A-class.
(iii) T † is quasi-∗ -A-class.
(iv) (E(uw))2 � (E(u2))(E(w2)) on K .

Proof. (i) ⇐⇒ (iv) Let f ∈ L2(Σ) . Then we obtain

〈(|(T †)2|− |T†|2) f , f 〉 =
∫

X

{
χKE(uw)w f E(wf )

(E(u2))
3
2 (E(w2))

5
2

− χKw f E(wf )
E(u2)(E(w2))2

}
)dμ

=
∫

K

{
E(uw)

(E(u2))
3
2 (E(w2))

5
2

− 1
E(u2)(E(w2))2

}
|E(wf )|2dμ .

This implies that if (E(uw))2 � (E(u2))(E(w2)) on K , then |(T †)2|− |T†|2 � 0.
Conversely, if T † is an A-class operator, then 〈(|(T †)2|− |T †|2) f , f 〉 � 0 for all

f ∈ L2(Σ) . Let B ∈ A , with B ⊆ K and 0 < μ(B) < ∞ . By replacing f to χB , we get
that ∫

B

{
E(uw)

(E(u2))
3
2 (E(w2))

5
2

− 1
E(u2)(E(w2))2

}
(E(w))2dμ � 0.

Since B ∈ A is arbitrary, then (E(uw))2 � (E(u2))(E(w2)) on K . The proofs of the
other implications are similar. �

In [13] Morrel and Muhly introduced the concept of a centered operator. An opera-
tor T =U |T | on a Hilbert space H is said to be centered if the doubly infinite sequence
{TnT ∗n,T ∗mTm : n,m � 0} consists of mutually commuting operators. For T ∈ B(H)
and n∈N , let Un|Tn| be the polar decomposition of Tn . It is shown in [13, Theorem I]
that T is centered if and only if Un =Un . In the following theorem we give a necessary
and sufficient condition for the Moore-Penrose of MwEMu to be centered.

PROPOSITION 2.11. Let T ∈CR(L2(Σ)) . Then the followings are equivalent.
(i) T is centered.
(ii) T † is centered.
(iii) (E(uw))2 = E(u2)E(w2) on σ(E(uw)) .
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Proof. Put Q = σ(E(uw)) and let n∈N , f ∈ L2(Σ) . Then by induction we obtain

(T †)n( f ) =
χK(E(uw))n−1

(E(u2))n(E(w2))n uE(wf );

Un( f ) =
χQE(uw)n−1uE(wf )

(E(u2))
1
2 (E(w2))

1
2 (E(uw))n−1

;

Un( f ) =
χKE(uw)n−1uE(wf )
(E(u2))

n
2 (E(w2))

n
2

.

If (E(uw))2 = E(u2)E(w2) , then a calculation shows that Un = Un , and so T † is cen-
tered. Conversely, suppose that Un = Un . Then{

E(uw)n−1

(E(u2))
1
2 (E(w2))

1
2 (E(uw))n−1

− E(uw)n−1

(E(u2))
n
2 (E(w2))

n
2

}
χQuE(wf ) = 0.

In particular, it is holds for any strictly positive f ∈ L2(A ) . Therefore, (E(uw))2 =
E(u2)E(w2) on Q . The equivalence (i) ⇐⇒ (iii) follows from [7]. �

3. Weighted conditional composition operators

Let ϕ be a measurable transformation from X into X such that μ ◦ϕ−1 is ab-
solutely continuous with respect to μ , that is μ is non-singular. Let h be the Radon-
Nikodym derivative dμ ◦ϕ−1/dμ and we always assume that h is almost everywhere
finite valued or, equivalently ϕ−1(Σ) is a sub-sigma finite algebra. In this section
we investigated some classic properties of weighted conditional composition opera-
tors Tϕ := MwEMuCϕ on L2(Σ) , where u,w ∈ L0

+(Σ) . Let ϕ−1(Σ) ⊆ A . Since
for each f ∈ L0

+(Σ) , E( f ◦ϕ) = f ◦ ϕ , so Tϕ = MwEMuCϕ is a weighted composi-

tion operator. Put Eϕ = Eϕ−1(Σ) . It is easy to check that ‖Tϕ f‖2 = ‖M√
J f‖2 , where

J = hEϕ(w2(E(u))2)◦ϕ−1 . Thus, Tϕ ∈ B(L2(Σ)) if and only if J ∈ L∞(Σ) and in this
case ‖Tϕ‖ = ‖√J‖∞ (see [5]). Moreover, Tϕ ∈CR(L2(Σ)) if and only if J is bounded
away from zero on σ(J) . Set again K = S∩G , where G = σ(E(w)) and S = σ(E(u)) .

Let Uϕ |Tϕ | be the polar decomposition of Tϕ . Since T ∗
ϕ ( f ) = hEϕ(wE(u) f ) ◦

ϕ−1 , we obtain |Tϕ |( f ) =
√

J f and Uϕ( f ) = χσ(wE(u))(J ◦ϕ)−1/2Tϕ( f ) . It follows
that

T̃ϕ f = |Tϕ | 1
2Uϕ |Tϕ | 1

2 f = χσ(wE(u)){
J

J ◦ϕ
} 1

4 wE(u) f ◦ϕ .

Now, let Tϕ ∈CR(L2(Σ)) . Put

P( f ) =
χσ(J)

Eϕ(w2(E(u))2)◦ϕ−1 Eϕ(wE(u) f )◦ϕ−1.

Then P satisfy all equations in (1.1). Thus P = T †
ϕ . In fact we can write T †

ϕ = Mσ(J)
J

T ∗
ϕ .

Hence

(T †
ϕ )∗T †

ϕ ( f ) =
χσ(wE(u))

h ◦ϕ{Eϕ(w2(E(u))2)}2 wE(u)Eϕ(wE(u) f ).



296 M. R. JABBARZADEH AND M. SOHRABI CHEGENI

In Lemma 2.1, set v =
χσ(wE(u))

h◦ϕ{Eϕ(w2(E(u))2)}2 and ω = wE(u) . Then we obtain

|T †
ϕ |( f ) =

wE(u)χσ(wE(u))

(h ◦ϕ)
1
2 {Eϕ(w2(E(u))2)} 3

2

Eϕ(wE(u) f );

|T †
ϕ |

1
2 ( f ) =

wE(u)χσ(wE(u))

(h ◦ϕ)
1
4 {Eϕ(w2(E(u))2)} 5

4

Eϕ(wE(u) f ).

Define

Uϕ†( f ) =
{ hχσ(J)

Eϕ(w2(E(u))2)◦ϕ−1

} 1
2
Eϕ(wE(u) f )◦ϕ−1.

Then T †
ϕ =Uϕ† |T †

ϕ | , Uϕ†U∗
ϕ†Uϕ† =Uϕ† and N (Uϕ†) = N (T †

ϕ ) . Note that Uϕ† =U∗
ϕ

and |T †
ϕ | = |T ∗

ϕ |† . So we have the following proposition.

PROPOSITION 3.1. Let Tϕ ∈CR(L2(Σ)) and let Uϕ† |T †
ϕ | be the polar decompo-

sition of T †
ϕ . Then

|T †
ϕ |( f ) =

wE(u)χσ(wE(u))

(h ◦ϕ)
1
2 {Eϕ(w2(E(u))2)} 3

2

Eϕ(wE(u) f );

Uϕ†( f ) =
{

hχσ(J)

Eϕ(w2(E(u))2)◦ϕ−1

} 1
2

Eϕ(wE(u) f )◦ϕ−1.

Let T̃ϕ ∈CR(L2(Σ)) and put B( f )= χσ(J)hJ−
3
4 Eϕ(χσ(J)J

− 1
4 wE(u) f )◦ϕ−1 . Then

it is easy to check that B satisfy all equations in (1.1). Thus B = (T̃ϕ )† . Now, let Tϕ ∈
CR(L2(Σ)) . Set W =Uϕ† |T †

ϕ | 1
2 . A calculation show that W ( f )= χσ(J)hJ−

3
4 Eϕ(wE(u) f )

◦ϕ−1 , and so we obtain

T̃ †
ϕ ( f ) = |T †

ϕ |
1
2W ( f ) = |T †

ϕ |
1
2 (χσ(J)hJ−

3
4 Eϕ (wE(u) f )◦ϕ−1)

=
χσ(wE(u))∩σ(J)wE(u)

(h ◦ϕ)
1
4 {Eϕ(w2E(u)2)} 5

4

Eϕ(wE(u)hJ−
3
4 Eϕ(wE(u) f )◦ϕ−1).

These observations establish the following proposition.

PROPOSITION 3.2. Let k = wE(u) and T ∈ CR(L2(Σ)) . Then the following as-
sertions hold.

(i) T †
ϕ ( f ) =

χσ(J)
Eϕ (k2)◦ϕ−1 Eϕ(k f )◦ϕ−1 .

(ii) Let Uϕ† |T †
ϕ | be the polar decomposition of T † . Then

|T †
ϕ | ( f ) =

kχσ(k)

(h ◦ϕ)
1
2 {Eϕ(k2)} 3

2

Eϕ(k f );

Uϕ†( f ) =
{

hχσ(J)

Eϕ(k2)◦ϕ−1

} 1
2

Eϕ(k f )◦ϕ−1.
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(iii) If T̃ϕ ∈CR(L2(Σ)) , then (T̃ϕ )†( f ) = χσ(J)hJ−
3
4 Eϕ(χσ(J)J

− 1
4 k f )◦ϕ−1 .

(iv) T̃ †
ϕ ( f ) =

χσ(k)∩σ(J)k

(h◦ϕ)
1
4 {Eϕ (k2)} 5

4
Eϕ(χσ(J)khJ−

3
4 Eϕ (k f )◦ϕ−1) .

EXAMPLE 3.3. Let X = [0,1] equipped with the Lebesgue measure dμ = dx on
the Lebesgue measurable subsets of X and let ψ ,ϕ : X → X be a non-singular measur-
able transformations defined by ψ(x) = x3 and

ϕ(x) =

{
2x 0 � x � 1

2 ,

2−2x 1
2 � x � 1.

Then ψ−1(Σ) = Σ , and hence Eψ−1(Σ) = I . Moreover, for each f ∈ L2(Σ) and x ∈ X
we have

h(x) =
∣∣∣ d
dx

( x
2

)∣∣∣+ ∣∣∣ d
dx

(2− x
2

)∣∣∣ = 1;

Eϕ( f )(x) =
f (x)+ f (1− x)

2
;

(Eϕ ( f )◦ϕ−1)(x) =
1
2

(
f
( x

2

)
+ f

(
1− x

2

))
.

Put u(x) = x and w(x) = 2. Then k(x) = (wE(u))(x) = 2x and

Eϕ(k)◦ϕ−1 = 1;

Eϕ(k2)◦ϕ−1 = x2−2x+2;

J = x2−2x+2;

J ◦ϕ = 4x2−2x+2.

Hence we get that

T †
ϕ f (x) =

( 1
2x2−4x+4

){
x f

( x
2

)
+(2− x) f

(
1− x

2

)}
;

Uϕ†(x) f =
( 1

4(x2 −2x+2)

) 1
2
{

x f
( x

2

)
+(2− x) f

(
1− x

2

)}
;

Tϕ f (x) =

{
2x f (2x) 0 � x � 1

2 ,

2x f (2−2x) 1
2 � x � 1;

Uϕ f (x) =

{
(4x2−2x+2)

−1
2 2x f (2x) 0 � x � 1

2 ,

(4x2−2x+2)
−1
2 2x f (2−2x) 1

2 � x � 1;

|Tϕ | f (x) =
√

J f (x) =
√

x2 −2x+2 f (x);
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|T †
ϕ | f (x) =

2x

(4x2 −2x+2)
3
2

{x f (x)+ (1− x) f (1− x)};

(T̃ϕ )† f (x) =
1

2(x2 −2x+2)
3
4

⎧⎪⎪⎨⎪⎪⎩
x f

(
x
2

)
(

x2

4 − x+2
)1

4

+
(2− x) f

(
1− x

2

)
((

1− x
2

)2
+ x

) 1
4

⎫⎪⎪⎬⎪⎪⎭ .

EXAMPLE 3.4. (i) Let X = [0,1]× [0,1] , dμ = dxdy , Σ be the Lebesgue subsets
of X , A = {[0,1]× A : A is a Lebesgue set in [0,1]}. Then for each f ∈ L2(Σ) ,
(E f )(x,y) =

∫ 1
0 f (t,y)dt , which is independent of the first coordinate. Now, if we take

u(x,y) = x2ey , w(x,y) = x2 sin(y) . Then E(u2)(x,y) = e2y

5 , E(w2)(x,y) = sin2(y)
5 . It

follows that

(E(uw))2(x,y) =
e2y sin2(y)

25
= E(u2)(x,y)E(w2)(x,y).

Thus, by Theorem 2.10, T † belongs to A-classes of operator and quasi-A-class, quasi-
∗ -A-class and by Theorem 2.11 the operator T † is centered.

(ii) Let X = [−1,1] , dμ = 1
2dx . With the same assumptions of Example 2.8 let

A = 〈{(−a,a) : 0 � a � 1}〉 . Then for each f ∈ L2(Σ) , EA ( f ) is the even part of
f . Let u(x) = ex , w(x) = 1. Then E(u)(x) = cosh(x) , S(E(u)) = X and E(u2)(x) =
cosh(2x) . Since cosh2(x) �= cosh(2x) then by Theorem 2.11, T and T † are not cen-
tered. Now, if u(x) = x2 and w(x) = cos(x) then E(u2)(x) = x4 , E(w2)(x) = cos2(x)
and E(uw)(x) = x2 cos(x) , and thus T † is centered.
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[3] D. S. DJORDJEVIĆ AND N. C. DINČIĆ, Reverse order law for the Moore-Penrose inverse, J. Math.
Anal. Appl. 361 (2010) 252–261.

[4] Y. ESTAREMI, M. R. JABBARZADEH, Weighted lambert type operators on Lp-spaces, Oper. Matrices
7 (2013), 101–116.

[5] Y. ESTAREMI, M. R. JABBARZADEH, Weighted composition Lambert-type operators on Lp spaces,
Mediterr. J. Math. 11 (2014), 955–964.

[6] Y. ESTAREMI, Some classes of weighted conditional type operators and their spectra, Positivity 19
(2015), 83–93.

[7] Y. ESTAREMI, Centered weighted conditional type operators, arxiv.org.
[8] T. FURUTA, Invitation to linear operators, Taylor & Francis, Ltd., London, 2001.
[9] J. J. GROBLER AND B. DE PAGTER, Operators representable as multiplicationconditional expecta-

tion operators, J. Oper. Theory 48 (2002), 15–40.
[10] J. HERRON, Weighted conditional expectation operators, Oper. Matrices 5 (2011), 107–118.
[11] M. R. JABBARZADEH, A conditional expectation type operator on Lp spaces, Oper. Matrices 4

(2010), 445–453.
[12] I. B. JUNG, E. KO AND C. PEARCY, Aluthge transforms of operators, Integral Equations Operator

Theory 37 (2000), 437–448.
[13] B. B. MORRELL AND P. S. MUHLY, Centered operators, Studia Math. 51 (1974), 251–263.



MOORE-PENROSE INVERSE 299

[14] A. LAMBERT, Lp -multipliers and nested sigma-algebras, Oper. Theory Adv. Appl. 104 (1998), 147–
153.

[15] A. LAMBERT AND B. WEINSTOCK,A class of operator algebras induced by probabilistic conditional
expectations, Michigan Math. J. 40 (1993), 359–376.

[16] M. M. RAO, Conditional measure and applications, Marcel Dekker, New York, 1993.

(Received March 8, 2016) M. R. Jabbarzadeh
Faculty of Mathematical Sciences, University of Tabriz

5166615648, Tabriz, Iran
e-mail: mjabbar@tabrizu.ac.ir

M. Sohrabi Chegeni

e-mail: m.sohrabi@tabrizu.ac.ir

Operators and Matrices
www.ele-math.com
oam@ele-math.com


