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(Communicated by H. Radjavi)

Abstract. We study the inverse along an element in the case of the algebra of bounded linear
operators on a Banach space and characterize it as an outer inverse with prescribed range and
nullspace. This inverse generalizes the group, Drazin and Koliha-Drazin inverses.

1. Introduction

Let X be a Banach space. We will denote by B(X) the algebra of bounded linear
operators on X . For an operator A ∈ B(X) , we will denote by R(A) the range of A
and by N (A) the nullspace of A . An operator B∈B(X) is called a (bounded) inverse
of A ∈B(X) if AB = BA = I . In general, not any A ∈B(X) has a bounded inverse. In
this case, sometimes, we are looking for some operator that has certain properties of the
inverse. In this way, over the years, there have been appeared several generalizations
of invertibility, and many of them are particular cases of outer inverses with prescribed
range and nullspace.

Let A ∈ B(X) . An operator B ∈ B(X) is an inner inverse for A if A = ABA
holds, in this case we say that A is inner regular and write B = A(1) . If B = BAB holds,
then A is outer regular, B is an outer inverse for A and we write B = A(2) .

Neither inner nor outer inverses are unique. However, if we fix the range and
nullspace of the outer inverse, say R(B) = M and N (B) = N where M and N are
given subspaces of X , then when the outer inverse exists, it is unique, and we denote it

by A(2)
M,N (see [1, Theorem 1.1.10]).
If V and W are subspaces of X such that V ∩W = {0} and V +W = X , we say

that V is complemented with complement W . Additionally, if V and W are closed,
then we write X = V ⊕W .

If A(2)
M,N exists, then both of M and N are closed and complemented, and there

exist two bounded projections P and Q such that R(P) = M and R(Q) = N . In this
way, the outer inverse is linked to two idempotent operators. There is some advantage
in considering only one operator, instead of two. In this way, we have interest in an
operator T ∈ B(X) such that R(T ) = R(B) and N (T ) = N (B) .

In Theorem 1 we prove that this situation is precisely the notion of inverse along
an element, which was introduced by X. Mary ([2]) in the more general context of
semigroups. Here we adjust for the case of the Banach algebra B(X) .
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DEFINITION 1. Let A,T ∈ B(X) . We say that A is invertible along T if there
exists B ∈ B(X) such that B = BAB and

B = LT, T = VB,

B = TU, T = BW,

for some L,U,V,W ∈ B(X) . In this case, we write B = A‖T .

Recall A ∈ B(X) is group invertible if there exists B ∈ B(X) such that

A = ABA, B = BAB, AB = BA.

We write B = A� for the group inverse of A . We have that A is group invertible if and
only if X = R(A)⊕N (A) .

In Section 2 we study the inverse of an operator along another operator, present
matrix forms for such operators and give relations with group, Drazin and Moore-
Penrose inverses.

2. Results

It is well known that any nonzero operator has a nonzero outer generalized inverse
(see, for instance, [1, Theorem 1.1.9]). On the other hand, not every nonzero operator
has a nonzero inner inverse: an operator A ∈ B(X) is inner regular if and only if
N (A) and R(A) are closed and complemented subspaces of X ([1, Theorem 1.1.3 and
Theorem 1.1.4]). In this case, let M and N be subspaces in X such that X = N⊕N (A)
and X = R(A)⊕M . Then A has the following matrix form:

A =
[
A1 0
0 0

]
:

[
N

N (A)

]
→

[
R(A)

M

]
,

where A1 ∈B(N,R(A)) is invertible. Furthermore, if B ∈B(X) is an inner inverse of
A such that R(BA) = N and N (AB) = M , then B has the following matrix form:

B =
[
A−1

1 0
0 W

]
:

[
R(A)

M

]
→

[
N

N (A)

]
,

where W is an arbitrary bounded linear operator from M to N (A) . Note that this
implies that an inner inverse is not unique even if we fix its range and nullspace.

Now we show that the inverse along an operator is an outer inverse with prescribed
range and nullspace.

THEOREM 1. Let A,T ∈ B(X) be nonzero operators. The following statements
are equivalent:

1. B is the inverse of A along T .

2. B is an outer inverse of A such that R(B) = R(T ) and N (B) = N (T ) .
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Proof. 1 =⇒ 2. Suppose A is invertible along T with inverse B = A‖T . Then B
is an outer inverse for A and there exist L,U,V,W ∈ B(X) such that

B = LT, T = VB,

B = TU, T = BW.

Then,
R(T ) = R(BW ) ⊆ R(B) = R(TU) ⊆ R(T ),

hence R(T ) = R(B) . On the other hand,

N (T ) ⊆ N (LT ) = N (B) ⊆ N (VB) = N (T ),

and N (T ) = N (B) .
2 =⇒ 1. Suppose that B is an outer inverse for A and T is such that R(B) =

R(T ) and N (B) = N (T ) . Since B is inner regular, there exist closed subspaces
M,N ⊂ X such that X = N ⊕N (B) and X = R(B)⊕M , and we have the following
matrix form for B :

B =
[
B1 0
0 0

]
:

[
N

N (B)

]
→

[
R(B)

M

]

with B1 invertible. Also, since R(T ) = R(B) and N (B) = N (T ) , we have that
N (T ) and R(T ) are closed and complemented subspaces. Thus, T is inner regular
and have the following matrix form with respect to the same decomposition of spaces
as above:

T =
[
T1 0
0 0

]
:

[
N

N (B)

]
→

[
R(B)

M

]

with T1 invertible. Now, let the operators L,V ∈ B(R(B)⊕M) and U,W ∈ B(N ⊕
N (B)) be defined by L =

[
B1T

−1
1 0

0 L2

]
, U =

[
T−1
1 B1 0

0 U2

]
, V =

[
T1B−1

1 0
0 V2

]
and W =[

B−1
1 T1 0
0 W2

]
, where L2,V2 ∈ B(M) and U2,W2 ∈ B(N (B)) are arbitrary operators.

Then, a simple calculation shows that LT = B , TU = B , VB = T and BW = T . �
Note that the operators L,U,V,W in the proof of previous theorem are not neces-

sarily unique. However, the uniqueness of the outer inverse with prescribed range and
nullspace ([1, Theorem 1.1.10]) implies that the operator B is the unique inverse of A
along T . On another side, T is not necessarily the only operator such that B is outer

inverse of A along it. Indeed, the previous proof shows that any T of the form

[
T1 0
0 0

]

with T1 invertible works.

EXAMPLE 1. Consider X = �2(N) the space of square-summable sequences, and
let A,T ∈ B(X) be defined by

Ax := ( 1
2x2,

1
3x3,

1
4x4, . . .),

Tx := (0,x2,x1,0,0, . . .).
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for x = (x1,x2,x3,x4, . . .) . Then A is invertible along T with B = A‖T defined by

Bx = (0,2x1,3x2,0,0, . . .),

as can be verified (by Definition 1) taking

Lx = (0,2x3,3x2,0, . . .),
Ux = (3x22x1,0, . . .),
Vx = (0, 1

3x3,
1
2x2,0, . . .),

Wx = (x1,x2,0 . . . ,).

Now, define an operator S ∈ B(X) by

Sx := (0,x1,x2,0,0, . . .),

so R(B) = R(S) and N (B) = N (S) . By Theorem 1, A is invertible along S with
B = A‖S .

Now we give a characterization of the set of operators along which an operator A
is invertible.

THEOREM 2. Let A,T ∈ B(X) be nonzero operators. The following statements
are equivalent.

1. A is invertible along T .

2. R(T ) is closed and complemented subspace of X , A(R(T )) = R(AT ) is closed
such that R(AT )⊕N (T ) = X and the reduction A|R(T ) : R(T ) → R(AT ) is
invertible.

Proof. Suppose A is invertible along T with B = A‖T ∈ B(X) . Then, from The-
orem 1, B is an outer inverse for A such that R(B) = R(T ) and N (B) = N (T ) .
Since A is an inner inverse for B , R(B) and N (B) (and thus R(T ) and N (T )) are
closed and complemented subspaces of X . Furthermore, I −AB is a projection from
X on N (B) = N (T ) , thus X = R(AB)⊕N (T ) , and since R(AB) = A(R(B)) =
A(R(T )) = R(AT ) we have that R(AT ) is closed and X = R(AT )⊕N (T ) . Now,
for the invertibility of A|R(T ) : R(T ) → R(AT ) it is clear that it is onto. To see that
A|R(T) is also 1− 1 on R(T ) , suppose that there exists x ∈ R(T ) such that Ax = 0.
Since x ∈ R(T ) = R(B) , there exists y ∈ X such that By = x . Then 0 = Ax implies
0 = BAx = BABy = By and thus x = 0. Therefore AR(T ) is 1−1 and onto, and hence
invertible.

Conversely, suppose that R(T ) and N (T ) are closed and complemented sub-
spaces of X , X = R(AT )⊕N (T ) , and the reduction A|R(T ) : R(T ) → R(AT ) is
invertible. Let M be a complement of R(T ) , so X = R(T )⊕M . Then A has the
following matrix form with respect to these decompositions of spaces:

A =
[
A1 A3

A4 A2

]
:

[
R(T )

M

]
→

[
R(AT )
N (T )

]
. (1)
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Since A maps R(T ) onto R(AT ) (with A1 = A|R(T ) invertible), it follows that A4 = 0.
Now, let B be the operator defined by

B =
[
A−1

1 0
0 0

]
:

[
R(AT )
N (T )

]
→

[
R(T )

M

]
. (2)

A direct verification shows that BAB = B , R(B) = R(T ) and N (B) = N (T ) . Thus,
by Theorem 1, B is the inverse of A along T . Therefore, A is invertible along T . �

If A is invertible along T , from the proof of the previous theorem we know that A
has the matrix form of (1) with A4 = 0. We claim that also A3 = 0. Indeed, again from
the proof of the theorem above, if B is the inverse of A along T , then B has the matrix
form of (2). Since BA is the projection from X on R(B) = R(T ) , from the matrix
form

BA =
[
I A−1

1 A3

0 0

]
:

[
R(T )

M

]
→

[
R(T )

M

]
,

we see that A−1
1 A3 = 0, and it follows that A3 = 0. Hence, we have the following:

COROLLARY 1. Let A be invertible along T . Then A has the following matrix
form:

A =
[
A1 0
0 A2

]
:

[
R(T )

M

]
→

[
R(AT )
N (T )

]
, (3)

with A1 invertible.

From Theorem 2 we can get that AT is group invertible, as shown in the next
theorem (see also [2, Theorem 7]).

THEOREM 3. Let A,T ∈ B(X) . The following statements are equivalent:

1. The operator A is invertible along T ;

2. R(T ) = R(TA) and TA is group invertible;

3. N (T ) = N (AT ) and AT is group invertible.

Moreover, we have A‖T = (TA)�T = T (AT )� .

Proof. We will prove (1) is equivalent to (2) and (3).
(1) =⇒ (2). Since A is invertible along T , there exist L,V ∈ B(X) such that

B = LT and T = VB . From TAB = VBAB = VB = T we have R(T ) ⊆ R(TA) ,
and since R(TA) ⊂ R(T ) always hold, we get R(T ) = R(TA) . From T = VB and
B = LT we have N (TA) = N (VBA) ⊇ N(BA) and N (BA) = N (LTA) ⊇ N (TA) ,
so N (BA) = N (TA) . Finally, since R(T ) = R(B) = R(BA) and X = R(BA)⊕
N (BA) , we have X = R(TA)⊕N (TA) , which implies TA is group invertible.

(2) =⇒ (1). Let B = (TA)�T . It is straightforward that B = BAB . Using Theorem
1, we will prove that N (B) = N (T ) and R(B) = R(T ) .



352 G. KANTÚN-MONTIEL AND S. V. DJORDJEVIĆ

We have R(B) = R(BA) = R((TA)�TA) = R(TA) = R(T ) .
Since (TA)�TA is a projection on R(TA) = R(T ) we have

T = (TA)�(TA).

Then, N (B) = N ((TA)�T )⊇N (T ) and N (T ) = N (TA(TA)�T )⊇N ((TA)�T ) =
N (B) implies N (B) = N (T ) .

(1) =⇒ (3). Since A is invertible along T , there exist U,W ∈ B(X) such that
B = TU and T = BW . From BAT = BABW = BW = T we have N (T ) = N (BAT )⊇
N (AT ) , and since N (AT ) ⊇ N (T ) , we get N (AT ) = N (T ) . From B = TU and
T = BW we have R(AT ) = R(ATU) ⊆ R(AT ) and R(AT ) = R(ABW) ⊆ R(AB) ,
thus R(AT ) = R(AB) . Finally, since N (T ) = N (B) = N (AB) and X = R(AB)⊕
N (AB) , we get X = R(AT )⊕N (AT ) , which implies AT is group invertible.

(3) =⇒ (1). Let B = T (AT )� . A simple calculation shows that B = BAB . By
Theorem 1 we have to show that N (B) = N (T ) and R(B) = R(T ) .

From N (B) = N (AB) = N (AT (AT )�) = N(AT ) we see N (B) = N (T ) .
Since AT is group invertible and N (AT ) = N (T ) , we have X = R(AT )⊕

N (T ) . Now, since (AT )�(AT ) is a projection onto R(AT ) along N (AT ) we have

T = T (AT )�(AT ).

Then, R(B)= R(T (AT )�)⊆R(T ) = R(T (AT )�AT )⊆R(T (AT )�A)= R(B) . There-
fore, R(T ) = R(B) . �

EXAMPLE 2. Consider X and A,T ∈ B(X) as in Example 1. Then AT is group
invertible with (AT )�x = (3x2,2x1,0,0, . . .) . Also, A is invertible along T and it is easy
to check that B = A‖T = T (AT )� .

However, group invertibility of AT is not sufficient for A to be invertible along T ,
additional conditions on the range or on the nullspace of T in Theorem 3 are needed
(see also [2, Theorem 7]).

EXAMPLE 3. Let X = �2(N) and let A,T ∈ B(X) be defined by

Ax := (x1,2x2,0,0, . . .),

Tx := (x1,
1
2x2,

1
3x3, . . .)

for x = (x1,x2,x3,x4, . . .) . Then, we have

ATx = (x1,x2,0,0, ..).

Thus, AT is group invertible with (AT )� = AT . However, T is compact with infinite
range and hence R(T ) is not closed, which by Theorem 2 implies A is not invertible
along T .
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REMARK 1. In the matrix representation (3) of A given in Corollary 1, based on
certain decomposition of the space X , we can replace the subspace M with N (TA) .
Indeed, it is easy to see that M ⊂ N (TA) (for any m ∈ M , Am = A2m ∈ N (T ) that
implies TAm = 0) and by group invertibility of TA (see Theorem 3 (ii)) it follows that
X = R(TA)⊕N (TA) with R(T ) = R(TA) .

Hence, if A is invertible along T , we have the following matrix representation
of A , T and A‖T with respect to decompositions X = R(T )⊕N (TA) = R(AT )⊕
N (T ) :

A =
[
A1 0
0 A2

]
:

[
R(T )

N (TA)

]
→

[
R(AT )
N (T )

]
(A1 invertible), (4)

T =
[
T1 0
0 0

]
:

[
R(AT )
N (T )

]
→

[
R(T )

N (TA)

]
(T1 invertible), (5)

and

A‖T =
[
A−1

1 0
0 0

]
:

[
R(AT )
N (T )

]
→

[
R(T )

N (TA)

]
. (6)

It is clear that the inverse along an element generalizes the usual inverse, and it
was proved in [3] that this inverse generalizes the group, Moore-Penrose and Drazin
inverses.

Recall A ∈ B(X) is Drazin invertible if there exists B ∈ B(X) and an integer
k ∈ N such that

B = BAB, Ak = AkBA, AB = BA.

The Drazin inverse is unique if it exists, and will be denoted by Ad .
Let H be a Hilbert space and B(H) the algebra of bounded linear operators on

H . Recall the Moore-Penrose inverse of A ∈ B(H) is an element B ∈ B(H) such that

ABA = A, BAB = B, (AB)∗ = AB, (BA)∗ = BA.

The Moore-Penrose inverse is unique if it exists, and will be denoted by A† .
Using Theorem 1, Theorem 2 and Corollary 1 we get at once the following (see

also [3, Theorem 11]):

COROLLARY 2. Let A be invertible along T with B = A‖T .

1. If T is invertible, B = A−1 .

2. If R(T ) = R(A) , N (T ) = N (A) , then B = A� .

3. If R(T ) = R(Ak) , N (T ) = N (Ak) for some k ∈ N , then B = Ad .

4. If A,T ∈ B(H) , R(T ) = R(A∗) , N (T ) = N (A∗) , then B = A† .

For instance, for a group invertible operator A , since R(A) = R(A�) = R(A�A) =
R(AA�) and N (A) = N (A�) = N (A�A) = N (AA�) , we have that the inverse of A
along A , A� , A�A or AA� is its group inverse.
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