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Abstract. This brief paper presents several results which offer a useful approach for studying
the absolute continuity of spectral measures associated with some Jacobi matrix operators. The
operators are modeled as multiplication operators on a dense domain of a function space with a
polynomial basis. Properties of these polynomials and commutator equations are used to obtain
results on absolute continuity.

1. Introduction

This paper looks at the spectral properties of special subclasses of tridiagonal ma-
trix operators with subdiagonal sequence {an} and diagonal sequence {bn} satisfying
basic assumptions an > 0, and bn real. These operators, known as Jacobi operators,
have the following form on the indicated maximal domain:

C =

⎡
⎢⎢⎢⎢⎣

b1 a1 0 0 . . .
a1 b2 a2 0 . . .
0 a2 b3 a3 . . .
0 0 a3 b4 . . .
: : : :

⎤
⎥⎥⎥⎥⎦

DC =
{
xε�2 : Cxε�2}

A matrix operator of this type will be self-adjoint if Carleman’s condition ∑ 1
an

= ∞
holds. In addition, Berezanskii [1] showed that C is self-adjoint if either {an−1+bn+an}
or {an−1−bn +an} is a bounded sequence. In this paper it will be assumed that the
diagonal entries of C are zeroes. The results are generally determined by properties of
the difference sequence {dn} defined by dn = an −an−1 with a0 = 0. The conditions
imposed guarantee that the resulting operators are self-adjoint, which means that they
can be modeled as multiplication operators on appropriate function spaces. If {φn}
denotes the standard basis for �2 then, since an > 0, φ1 is a cyclic vector for the cor-
responding operator. It follows from the Spectral Theorem that if C =

∫
λdEλ and if
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μ(β ) = ‖E(β )φ1‖2 for any Borel set β , then the matrix operator C is unitarily equiv-
alent to a multiplication operator Mx : D → L 2(μ) defined on a dense subset of D
of L 2(μ) by Mx f = x f (x). The domain DC includes all finite linear combinations of
the basis vectors {φn}. The goal is to study the properties of the measure μ . From the
tridiagonal structure it follows that the standard basis vectors {φn} in �2 correspond to
a sequence of polynomials in L2 (μ) defined by

P1(x) = 1, P2(x) =
x−b1

a1

Pn+1(x) =
(x−bn)Pn(x)−an−1Pn−1(x)

an
.

In the case of a zero diagonal the corresponding polynomials {Pn} satisfy the
condition Pn(−x) = (−1)n+1Pn(x). It is known that the spectral measure is symmetric
about the origin. This symmetry will be used in the results that follow. The proofs of the
results on absolute continuity highly depend on properties of the polynomial sequence
{Pn} .

There are a number of papers in the literature, employing a variety of techniques,
which study the spectral properties of Jacobi matrices, based on properties of the defin-
ing weight sequences in both the bounded and unbounded cases. In this paper commu-
tator equations will play a key role in obtaining results on the absolute continuity of the
spectral measure.

2. The commutator equation approach

The following theorem from [2] is the basis for the results in this paper. It extends
to unbounded operators a result due to Putnam (See [6]) for bounded operators. The
theorem provides an inequality that is sufficient for establishing results on absolute
continuity.

THEOREM. Let C be a cyclic self-adjoint operator with cyclic vector φ , and spec-
tral resolution C =

∫
λdEλ . Let I be an interval. Suppose there exists a bounded self-

adjoint operator J and positive constants q and Q such that if CJ− JC = −iK, and
for any bounded subinterval Δ of I ,

〈JE(Δ)φ ,CE(Δ)φ〉− 〈CE(Δ)φ ,JE(Δ)φ〉 = −i〈KE(�)φ ,E(Δ)φ〉
with

(Q|Δ|)‖E(Δ)φ‖2 � |〈KE(Δ)φ ,E(Δ)φ1〉| � q‖E(Δ)φ‖4

where |Δ| denotes the Lebesgue measure of Δ . Then the spectral measure of C is
absolutely continuous on I .

Proof. If φ is a cyclic vector for C , the spectral measure of C is given by μ(β ) =
‖E(β )φ‖2 for any Borel set β . If Δ is a bounded subinterval of I and ‖E(Δ)φ‖2 �= 0,
it follows from the given inequalities that μ(Δ) = ‖E(Δ)φ‖2 � Q

q |Δ| . This inequality
can then be extended to Borel subsets of I, from which the result follows. �
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In this paper the above theorem will mainly be used to study the spectral mea-
sure of an unbounded tridiagonal matrix operator C by choosing the related bounded
operator J to be the imaginary part of the unilateral shift operator. If

J =
1
2i

⎡
⎢⎢⎢⎢⎢⎣

0 −1 0 0 . . .
1 0 −1 0 . . .
0 1 0 −1 . . .
0 0 1 0 . . .

: : : :
. . .

⎤
⎥⎥⎥⎥⎥⎦

the commutator K , defined by CJ−JC =−iK will be five diagonal. Structural proper-
ties of five diagonal matrices from [2] will be used to establish the inequalities needed
to apply the theorem. Of course the theorem also applies if the matrix operator C is
bounded. In this case a suitable choice for J may be:

J =
1
2i

⎡
⎢⎢⎢⎢⎢⎣

0 −a1 0 0 · · ·
a1 0 −a2 0 · · ·
0 a2 0 −a3 · · ·
0 0 a3 0 · · ·
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎦

,

and, in this case, the commutator K is diagonal.
The next Lemma shows that if, for a given self-adjoint tridiagonal matrix operator

C , the related self-adjoint operator J is chosen to be bounded, then the upper bound for
|〈KE(Δ)φ ,E(�)φ〉| in the previous theorem can always be found. Results on absolute
continuity will then depend on establishing the needed lower bound.

LEMMA. Let C be a self-adjoint operator with cyclic vector φ and spectral reso-
lution C =

∫
λdEλ . Let J be a bounded self-adjoint operator. If CJ− JC = −iK , and

if for some bounded subinterval Δ ,

〈JE(Δ)φ ,CE(Δ)φ〉− 〈CE(Δ)φ ,JE(Δ)φ〉 = −i〈KE(�)φ ,E(Δ)φ〉
then |〈KE(Δ)φ ,E(Δ)φ〉| � ‖J‖(|Δ|)‖E(Δ)φ‖2 .

Proof. Let λ be the midpoint of Δ . Then

〈JE(Δ)φ ,(C−λ I)E(Δ)φ〉− 〈(C−λ I)E(Δ)φ ,JE(Δ)φ〉 = −i〈KE(�)φ ,E(Δ)φ〉
and since ‖(C−λ I)E(Δ)φ‖ = |∫Δ(x−λ )d‖Exφ‖2| � 1

2 |Δ‖|E(Δ)φ‖2 it follows that

|〈KE(Δ)φ ,E(Δ)φ〉| � 2‖J‖
(1

2
|Δ|

)
‖E(Δ)φ‖2. �

The next lemma from [4] plays a key role in the results tht follow. Note that if
the self-adjoint matrix operator C =

∫
λdEλ is viewed as a multiplication operator on

L 2 (μ) with μ(β ) = ‖E(β )φ1‖2 for any Borel set β , then the basis vectors {φn}
correspond to the polynomials {Pn(x)} described above, and 〈E(β )φ1,φn〉 =

∫
β Pndμ .
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LEMMA. Let C be a self adjoint Jacobi matrix defined by the sequence {an} ,
with an > 0 . Assume bn = 0. If C =

∫
λdEλ , and if � is a subinterval of (0,∞) then

∑∞
n=1 |〈E(�)φ1,φ2n−1〉|2 = ∑∞

n=1 |〈E(�)φ1,φ2n〉|2 .

Proof. Since Δ and −Δ are disjoint intervals, the corresponding spectral projec-
tions E(Δ) and E(−Δ) are orthogonal. Thus 〈E(Δ)φ1,E(−Δ)φ1〉 = 0. But E(Δ)φ1 =
∑∞

n=1〈E(Δ)φ1,φn〉φn = ∑∞
n=1(

∫
Δ Pndμ)φn , and similarly, E(−Δ)ϕ1 = ∑∞

n=1〈E(−Δ)φ1,φn〉
= ∑∞

n=1(
∫
−Δ Pndμ)ϕn . Since 〈E(Δ)φ1,E(−Δ)φ1〉 = 0, and Pn(−x) = (−1)n+1Pn(x) it

follows that

0 = 〈E(Δ)φ1,E(−Δ)φ1〉 =
∞

∑
n=1

|〈E(�)ϕ1,φ2n−1〉|2 −
∞

∑
n=1

|〈E(�)φ1,φ2n〉|2.

If the matrix operator C is unbounded, as is the case when liman = ∞ , and if the
related operator J is the imaginary part of the unilateral shift, then the commutator K
formally defined by CJ−JC =−iK is five diagonal. The next lemma from [2] provides
a sufficient condition for K to be self-adjoint. Note that the equation CJ− JC = −iK
holds on finite linear combinations of the basis vectors. �

LEMMA. Assume that the real infinite matrix K = [ki j] has the following struc-
ture: kii = si , ki,i+2 = ki+2,i = ti , with all other entries equal to zero. If the sequence
{ti} is bounded or if for all i � N, |ti|+ |ti+1| > 0 and ∑∞

i=N
1

|ti |+|ti+1| = ∞ , then K ,

defined on the maximal domain DK =
{
x ∈ �2 : Kx ∈ �2

}
, is self-adjoint.

The goal of the following sections is to use properties of the commutator K , to-
gether with properties of the related sequence of polynomials {Pn} , to establish the
lower bound needed to apply Theorem 2.1 to obtain results on absolute continuity.

3. Main results

THEOREM. Let C be a self-adjoint Jacobi matrix with bn = 0, an > 0 , liman =
∞ . Let dn = an − an−1 with a0 = 0 . Suppose there exists a non-negative constant s
such that d1 − 1

2d2 � s, d2n+1− 1
2d2n − 1

2d2n+2 � s, for n � 1 , and d2− 1
2d3 + s � 0,

d2n− 1
2d2n−1− 1

2d2n+1 + s � 0 for n > 1 . If d1− 1
2d2− s > 0 or d2− 1

2d3 + s > 0 then
the spectral measure of C is absolutely continuous on (−∞,0)

⋃
(0,∞).

Proof. Choose J to be the imaginary part of the unilateral shift. Then CJ− JC =
−iK where K has the following form:

K =

⎡
⎢⎢⎢⎢⎢⎣

d1 0 1
2d2 0 . . .

0 d2 0 1
2d3 . . .

1
2d2 0 d3 0 . . .
0 1

2d3 0 d4 . . .
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎦

Let � be a subinterval of (0,∞). Let x = E(�)φ1, and xn = 〈E(Δ)φ1,φn〉 =∫
�Pndμ . Then x = ∑xnφn. It follows that 〈Kx,x〉 = ∑∞

n=1 dn|xn|2 + ∑∞
n=2 dnxn−1xn+1 .



SOME RESULTS ON ABSOLUTE CONTINUITY FOR UNBOUNDED JACOBI MATRICES 359

Since

dn|xn+1xn−1| � 1
2
dn

[∣∣∣
∫

Δ
Pn−1dμ

∣∣∣2 +
∣∣∣
∫
�

Pn+1dμ
∣∣∣2

]
,

it follows that 〈Kx,x〉 � ∑∞
n=1 dn|xn|2 −∑∞

n=2
1
2dn|xn−1|2− 1

2 ∑∞
n=2 dn|xn+1|2 .

Thus

〈Kx,x〉 �
(
d1− 1

2
d2

)
|x1|2 +

(
d2− 1

2
d3

)
|x2|2 +

∞

∑
n=1

(
d2n+1− 1

2
d2n− 1

2
d2n+2

)
|x2n+1|2

+
∞

∑
n=2

(
d2n− 1

2
d2n−1− 1

2
d2n+1

)
|x2n|2

Since −s∑∞
n=1 |x2n+1|2 + s∑∞

n=1 |x2n|2 = 0, the assumption d1 − 1
2d2 − s > 0 im-

plies that 〈Kx,x〉 � (d1− 1
2d2− s)|x1|2 for. Thus

|〈Kx,x〉| �
(
d1− 1

2
d2− s

)
‖E(Δ)φ1‖4

which establishes the lower bound needed to apply the Theorem above to prove abso-
lute continuity on (−∞,0)

⋃
(0,∞) . If d2 − 1

2d3 + s > 0 then 〈Kx,x〉 � (d2 − 1
2d3 +

s)|x2|2 = (d2 − 1
2d3 + s)|∫� λ

a1
dμ |2 . Thus if � ⊂ (α,∞) , it follows that 〈Kx,x〉 �

(d2 − 1
2d3 + s)α2

a2
1
‖E(�)φ1‖4 , which establishes absolute continuity on (α,∞) for ev-

ery α > 0. �

A very similar approach can be used to establish the next result.

THEOREM. Let C be self-adjoint Jacobi matrix with bn = 0 , an > 0 , liman = ∞ .
Let dn = an − an−1 with a0 = 0. If there exists a non-negative constant s such that
d1− 1

2d2 + s > 0 , d2n+1− 1
2d2n− 1

2d2n+2 + s � 0 , d2n− 1
2d2n−1− 1

2d2n+1 � s, then the
spectral measure of C is absolutely continuous on (−∞,0)

⋃
(0,∞).

Proof. Choose J to be the imaginary part of the unilateral shift. Let K be the com-
mutator defined by CJ− JC = −iK. If Δ is a subinterval of (0,∞) and x = E(�)φ1

then x = ∑xnφn and 〈Kx,x〉 = ∑∞
n=1 dn|xn|2 + ∑∞

n=2 dnxn−1xn+1 . Using the same esti-
mates as in the previous proof, it follows that 〈Kx,x〉 � ∑∞

n=1 dn|xn|2−∑∞
n=2

1
2dn|xn−1|2

−∑∞
n=2

1
2 |xn+1|2 . Thus

〈Kx,x〉 �
(
d1− 1

2
d2

)
|x1|2 +

(
d2− 1

2
d3

)
|x2|2 +

∞

∑
n=1

(
d2n+1− 1

2
d2n− 1

2
d2n+2

)
|x2n+1|2

+
∞

∑
n=2

(
d2n− 1

2
d2n−1− 1

2
d2n+1

)
|x2n|2.

Since s∑∞
n=1 |x2n+1|2 − s∑∞

n=1 |x2n|2 = 0, the assumptions of the theorem imply
that 〈Kx,x〉 � (d1− 1

2d2 + s)|x1|2 . Thus it follows that

|〈Kx,x〉| �
(
d1− 1

2
d2 + s

)
‖E(�)φ1‖4
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which provides the lower bound needed to prove absolute continuity on (−∞,0)
⋃

(0,∞).
�

COROLLARY. Let C be a self-adjoint Jacobi matrix with bn = 0, and an > 0
defined so that d2n−1 = a2n−1−a2n−2 = A, d2n = a2n−a2n−1 = B, n = 1,2, . . . . with
A � B. Then C is absolutely continuous on (−∞,0)

⋃
(0,∞).

Proof. Let s = A−B in Theorem 3.1. �

COROLLARY. Let C be a self-adjoint Jacobi matrix with bn = 0 and an defined
so that d1 − 1

2d2 > 0, d2 − 1
2d3 > 0, dn − 1

2dn−1 − 1
2dn+1 � 0 , for n > 2. Then C is

absolutely continuous on (−∞,0)
⋃

(0,∞).

Proof. Choose s = 0 in Theorem 3.1. �

It is also interesting to apply the technique of the previous theorem to the bounded
case.

THEOREM. Let C be a bounded self-adjoint Jacobi matrix operator with bn = 0 ,
and an > 0 . Suppose there exists a non-negative constant s such that a2

1 > s, a2
2n+1−

a2
2n � s, a2

2n−a2
2n−1 + s � 0 . Then C is absolutely continuous on (−∞,0)

⋃
(0,∞).

Proof. Choose

J =
1
2i

⎡
⎢⎢⎢⎢⎢⎣

0 −a1 0 0 · · ·
a1 0 −a2 0 · · ·
0 a2 0 −a3 · · ·
0 0 a3 0 · · ·
...

...
...

...

⎤
⎥⎥⎥⎥⎥⎦

.

Then CJ− JC = −iK where

K =

⎡
⎢⎢⎢⎢⎢⎣

a2
1 0 0 0 · · ·
0 a2

2−a2
1 0 0 · · ·

0 0 a2
3−a2

2 0 · · ·
0 0 0 a2

4−a2
3 · · ·

...
...

...
...

⎤
⎥⎥⎥⎥⎥⎦

.

Let Δ be a subinterval of (0,∞) . Let x = E(�)φ1 and xn = 〈E(Δ)φ1,φn〉 . Then
x = ∑∞

n=1 xnφn . It follows that 〈Kx,x〉 = a2
1|x1|2 + ∑∞

n=1(a
2
n+1 − a2

n)|xn+1|2. Since
−s∑∞

n=1 |x2n+1|2 +s∑∞
n=1 |x2n|2 = 0, the assumptions imply that 〈Kx,x〉� (a2

1−s)|x1|2 .
It follows that 〈Kx,x〉 � (a2

1− s)‖E(�)φ1‖4 whch establishes the lower bound needed
to apply the theorem above to establish the absolute continuity of the spectral measure
on (−∞,0)

⋃
(0,∞) . �
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4. Examples

4.1. Bounded case

• Theorem 3.5 can be applied to bounded periodic Jacobi matrices. If a2n−1 = A ,
A > 0, and a2n = B , B > 0, with A > B , let s = A2−B2 .

• Choose a2n to be a positive increasing bounded sequence. For some C > 0

choose a2n−1 =
√

a2
2n +C. Then a2

2n+1 − a2
2n = a2

2n+2 − a2
2n +C , and a2

2n −
a2

2n−1 +C = 0.

4.2. Unbounded case

• Choose an to be a positive sequence such that the difference sequence dn =
an−an−1 with a0 = 0 satisfies the conditions d2n−1 = d , d > 0, d2n = δ , δ � 0,
with d > δ . Apply Theorem 3.1 with s = d− δ .

• Choose 0 < ω < 1, ρ > 0. Let d2n−1 = 1+ω +ρ , d2n = 1−ω . Such operators
were considered in [3], which established the existence of the spectral gap (−ω−
ρ
2 ,ω + ρ

2 ) in the essential spectrum. Theorem 3.1 with s = 2ω + ρ can be used
to prove absolute continuity.

• Choose d2n = 1− 1
n+1 , d2n−1 = 1+ 1

2(1− 1
n)+ 1

2 (1− 1
n+1). Then d2n−1− 1

2d2n−
1
2d2n−2 = 1, and d2n − 1

2d2n−1 − 1
2d2n+1 = −1 + 2

4n(n+1)(n+2) . Apply Theorem
3.1 with s = 1.

• In general, choose the positive difference sequence dn so that d2n → A, d2n −
1
2d2n−2− 1

2d2n+2 � 0, with d0 = 0. Choose C > 0, and let d1 = 1
2d2+C, d2n+1 =

1
2d2n + 1

2d2n+2 +C. Apply Theorem 3.1 with s = C. Note that d2n − 1
2d2n−1 −

1
2d2n+1 = d2n− 1

2(C+ 1
2d2n−2 + 1

2d2n)− 1
2 (C+ 1

2d2n + 1
2d2n+2) = −C+ 1

2(d2n −
1
2d2n−2− 1

2d2n+2)

• Choose the positive difference sequence dn so that d2n − 1
2d2n−2 − 1

2d2n+2 � 0
with d2 > 0, d0 = 0. Choose C < 0, |C| < 1

2d2 . Let d1 = 1
2d2 +C , d2n+1 =

1
2d2n + 1

2d2n+2 +C . Apply Theorem 3.2 with s = −C. Note that d2n− 1
2d2n−1−

1
2d2n+1 = d2n − 1

2(C + 1
2d2n−2 + 1

2d2n)− 1
2 (C + d2n + d2n+2) = −C + 1

2 (d2n −
1
2d2n−2− 1

2d2n).
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