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ESTIMATES OF EIGENVALUES OF SCHRÖDINGER OPERATORS

ON THE HALF–LINE WITH COMPLEX–VALUED POTENTIALS

ALEXANDRA ENBLOM

(Communicated by K. Veselić)

Abstract. Estimates for eigenvalues of Schrödinger operators on the half-line with complex-
valued potentials are established. Schrödinger operators with potentials belonging to weak
Lebesque’s classes are also considered. The results cover those known previously due to R. L.
Frank, A. Laptev and R. Seiringer [In spectral theory and analysis, vol. 214, Oper. Theory Adv.
Appl., pag. 39–44; Birkhäuser/Springer Basel.]

1. Introduction

This paper is motivated by the recent work [5] in which estimates for non-positive
eigenvalues of Schrödinger operators on the half-line are given. The estimates ob-
tained in [5] improve and extend a well-known result, it is mentioned in [6], accord-
ing to which any negative eigenvalue λ of the (self-adjoint) Schrödinger operator
H(= −d2/dx2 +q(x)) satisfies

|λ |1/2 � 1
2

∫ ∞

−∞
|q(x)|dx. (1.1)

This result, as was pointed out in [1], remains valid for the case of non-self-adjoint
Schrödinger operators as well. In [1] it is proved (1.1) provided that the potential q ,
being in general a complex-valued function, belongs to L1(R)∩L2(R). The mentioned
paper [5] concerns Schrödinger operator on L2(R+) subjected with Dirichlet (or also
Neumann) boundary conditions. Assuming that q is a summable (in general, complex-
valued) function, in [5] instead of (1.1) it is proved that for any (non-positive) eigen-
value λ = |λ |eiθ (0 < θ < 2π) of the Schrödinger operator H in L2(R+) (for instance,
with Dirichlet boundary condition) satisfies

|λ |1/2 � 1
2
g(cot(θ/2))

∫ ∞

0
|q(x)|dx, (1.2)

where g(t) := supy�0 |eity − e−y|.
In contrast with [5] we study the problem for the general case of the Schrödinger

operator H considered acting in the Banach space Lp(R+) (1 < p < ∞) by assuming
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that the potential q admits a factorization q = ab, where a ∈ Lr(R+) and b ∈ Ls(R+)
for some r,s , 0 < r , s � ∞. Under additional subordinate type conditions on the poten-
tial q , in order to guarantee the relatively compactness of q viewed as a perturbation
of −d2/dx2, the Schrödinger operator H is defined as a natural closed extension of
−d2/dx2 + q in Lp(R+) having its essential spectrum (as the unperturbed operator)
the semi-axis R+. In this framework the problem reduces to estimation of resolvent of
the unperturbed operator bordered by adequate operators of multiplications. First we
analyze the situation of Dirichlet boundary conditions, and then we show that the argu-
ments applied are available for the general case when mixed boundary conditions (in
particular, for Neumann boundary conditions) are imposed. We prove that if 0 < r � ∞ ,
p � s � ∞ , r−1 + s−1 < 1, then for eigenvalues λ lying out of R+ (the essential spec-
trum) there holds

|λ |1+α � (α sin(θ/2))−2‖a‖2α
r ‖b‖2α

r , (1.3)

where α := (1−r−1−s−1)−1; as above θ = argλ , (0 < θ < 2π). In the extremal case
α = ∞ (i.e., r−1 + s−1 = 1) the following estimate

|λ |1/2 � 1
2
g(cot(θ/2))‖a‖p‖b‖p′ (1.4)

holds true, where g is determined as in (1.2); p′(= p/(p−1)) denotes for the conjugate
exponent of p . Clearly, if a,b are taken as |a| = |b| = |q|1/2, for the case p = 2, (1.4)
leads to (1.2) that, as was already mentioned, is due to R. L. Frank, A. Laptev and R.
Seiringer [5].

Diverse estimates useful in applications can be derived from the general results
mentioned above. So, letting q = Lγ+1/2(R+) for γ > 1/2 if 1 < p � 2 and 2γ > p−1
if p > 2, the eigenvalues λ = |λ |eiθ (0 < θ < 2π) of H are confined according to the
following estimate

|λ |γ �
(

2γ +1
2γ −1

sin
θ
2

)1/2−γ∫ ∞

0
|q(x)|γ+1/2 dx. (1.5)

For the case of self-adjoint Schrödinger operators considered on the whole line a similar
inequality to (1.5) was pointed out by E. H. Lieb and W. Thirring [8] (cf. also the
discussion undertaken in this context in [5]; see Remark 1.6 [5]).

Estimates involving decaying potentials can also be derived directly from the gen-
eral results. So, if it is taken a(x) = (1+x)−τ and b(x) = (1+x)τq(x) by assuming that
(1+x)τq∈ Lr(R+) with τr > 1, then the eigenvalues λ (with θ = argλ , 0 < θ < 2π )
of H satisfy

|λ |r−1 � 1
τr−1

(
r

r−2
sin

θ
2

)2−r∫ ∞

0
|(1+ x)rq(x)|r dx.

It stands to reason that other weight functions like, for instance, eτ|x|α with τ > 0,
α ∈ R, can be also involved.

Finally, note that the arguments by interplaying with interpolation methods [2] ex-
tend the obtained results to more general case of Schrödinger operators with potentials
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belonging to weak Lebesgue’s spaces. A version of (1.5) for this case is the following
one

|λ |γ � C sup
t>0

(tγ+1/2λq(t))

with γ as in (1.5); λq denotes the distribution function of the potential q with respect
to the standard Lebesgue measure on R+.

The paper is organized as follows. In Section 2 the problem is discussed for
Schrödinger operators with Lebesgue power-summable potentials. Section 2 is divided
in two subsections. The first is concerned with Schrödinger operators with the Dirich-
let boundary conditions. In the second one we discuss the general situation when the
mixed boundary conditions are imposed. In Section 3 we treat the case of potentials
belonging to weak Lebesgue’s type spaces.

2. Lebesgue summable type potentials

We consider the Schrödinger operator H defined in the space Lp(R+) (1 < p < ∞)
as a closed extension of the formal differential operator −d2/dx2 +q(x). For it should
be posed suitable conditions on the potential q (in an averaged sense to be small at in-
finity) ensuring the relatively compactness of q regarded as a perturbation operator. We
assume that q admits a factorization q = ab with a∈ Lr(R+) and b∈ Ls(R+) for some
0 < r,s � ∞. Further conditions on the potential q under which the main results are ob-
tained ensured that the essential spectrum of H is the same in each of Banach space
Lp(R+) with 1 < p < ∞, and filling the semi-axis R+ . To this end we restrict our-
selves to refer [10] for details and other diverse related conditions concerning general
elliptic differential operators. In this framework the problem of evaluation for eigen-
values (lying outside of the essential spectrum) of H reduces to norm estimation of the
resolvent of the unperturbed operator bordered by adequate operators of multiplication
as is described below.

1. We first consider Dirichlet boundary condition case. The unperturbed operator
H0 = −d2/dx2 is taken with the domain the Sobolev space W 2

p (R+) consisting of all
functions u∈ Lp(R+) such that u , u′ are absolutely continuous with u′′ ∈ Lp(R+) and
u(0) = 0. The operator H0 is closed and σ(H0) = [0,∞) . For any λ ∈ C \ [0,∞) the
resolvent R(λ ;H0) = (H0 −λ I)−1 is the integral operator

R(λ ;H0)v(x) = − 1
2iμ

∫ ∞

0
eiμ|x−y|v(y)dy+

1
2iμ

∫ ∞

0
eiμ(x+y)v(y)dy, (2.1)

where μ = λ 1/2 is chosen so that Imμ > 0.
We denote by A,B the operators of multiplication by a,b , respectively, and eval-

uate the norm of the bordered resolvent BR(λ ;H0)A . For we choose β > 0 and γ > 0
such that the evaluations

‖au‖β � ‖a‖r‖u‖p, β−1 = r−1 + p−1, (2.2)

and
‖bv‖p � ‖b‖s‖v‖γ , p−1 = s−1 + γ−1 (2.3)
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hold true (those can be obtained by the use of Hölder inequality). In this way, the
operator A is bounded viewed as an operator acting from Lp(R+) to Lβ (R+) and,
respectively, B as a bounded operator from Lγ (R+) to Lp(R+) .

Next, we let

k(x,y;λ ) = − 1
2iμ

(eiμ|x−y| − eiμ(x+y)), 0 < x,y < ∞,

for the kernel of the resolvent R(λ ;H0) and proceed as follows. First, we take an α ,
1 � α < ∞ , and observe that

sup
x>0

‖k(x, ·;λ )‖α � 1/|μ |(α Imμ)1/α .

In fact, for any x , 0 < x < ∞ , we have∫ ∞

0
|eiμ|x−y||α dy =

∫ x

0
e−α(Imμ)(x−y) dy+

∫ ∞

x
e−α(Imμ)(−x+y) dy

=
1

α Imμ

(
2− e−α(Imμ)x

)
,

and ∫ ∞

0
|eiμ(x+y)|α dy =

∫ ∞

0
e−α(Im μ)(x+y) dy =

1
α Imμ

e−α(Imμ)x,

hence

‖k(x, ·;λ )‖α =
(∫ ∞

0

∣∣∣∣ 1
2iμ

(
eiμ|x−y| − eiμ(x+y)

)∣∣∣∣
α

dy

)1/α

� 1
2|μ |

((∫ ∞

0
|eiμ|x−y||α dy

)1/α
+
(∫ ∞

0
|eiμ(x+y)|α dy

)1/α
)

=
1

2|μ |

((
1

α Imμ
(2− e−α(Imμ)x)

)1/α
+
(

1
α Imμ

e−α(Imμ)x
)1/α

)

=
1

2|μ |(α Imμ)1/α

(
(2− e−α(Imμ)x)1/α + e−(Imμ)x

)
,

i.e.,

‖k(x, ·;λ )‖α � 1

2|μ |(α Imμ)1/α

(
(2− e−α(Imμ)x)1/α + e−(Imμ)x

)
.

The optimal value of the right member for varying x , 0 < x < ∞ , is equal to
1/|μ |(α Imμ)1/α , and, thus, the desired inequality follows.

By Minkowski’s inequality, it follows

‖R(λ ;H0)v‖α =
(∫ ∞

0

∣∣∣∣
∫ ∞

0
k(x,y;λ )v(y)dy

∣∣∣∣
α

dx

)1/α

�
∫ ∞

0

(∫ ∞

0
|k(x,y;λ )|α dx

)1/α
|v(y)|dy

� sup
y>0

‖k(·,y;λ )‖α‖v‖1,
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and, since the variables in the kernel k(x,y;λ ) are equal right, one has

‖R(λ ;H0)v‖α � (1/|μ |(α Imμ)1/α)‖v‖1. (2.4)

On the other hand, by Hölder’s inequality, there holds

|R(λ ;H0)v(x)| =
∣∣∣∣
∫ ∞

0
k(x,y;λ )v(y)dy

∣∣∣∣
�
(∫ ∞

0
|k(x,y;λ )|α dy

)1/α(∫ ∞

0
|v(y)|α ′

dy

)1/α ′

= ‖k(x, ·;λ )‖α‖v‖α ′ ,

that yields that
‖R(λ ;H0)v‖∞ � (1/|μ |(α Imμ)1/α)‖v‖α ′ . (2.5)

The evaluation (2.4) means that the resolvent operator R(λ ;H0) is bounded re-
garded as an operator from L1(R+) to Lα(R+) while (2.5) means the boundedness of
R(λ ;H0) as an operator from Lα ′(R+) to L∞(R+) . In both cases its norm is bounded
by 1/|μ |(α Imμ)1/α . By applying the Riesz-Thorin interpolation theorem (see, for
instance, [2]; Theorem 1.1.1) we conclude that the resolvent operator R(λ ;H0) is
bounded from Lβ (R+) to Lγ (R+) provided that

1
β

=
1−θ

1
+

θ
α ′ ,

1
γ

=
1−θ

α
+

θ
∞

, 0 < θ < 1.

Moreover, the corresponding value of its norm does not exceed 1/|μ |(α Imμ)1/α .
Eliminating θ , we find

α−1 + β−1 = γ−1 +1,

which, in view of restriction in (2.2) and (2.3), implies α = (1− r−1 − s−1)−1 . Note
that due to the fact that 1 � α < ∞ it must be 0 � r−1 + s−1 < 1. In these conditions
we obtain the following estimate

‖BR(λ ;H0)Au‖p � (1/|μ |(α Imμ)1/α)‖a‖r‖b‖s‖u‖p,

and, therefore, for any eigenvalue λ ∈ C\R+ of H it should be fulfilled

|μ |(α Imμ)1/α � ‖a‖r‖b‖s,

that, by letting λ = |λ |eiθ , 0 < θ < 2π , provides to the following estimate

|λ |1+α � (α sin(θ/2))−2‖a‖2α
r ‖b‖2α

s . (2.6)

We have proved the following result.

THEOREM 2.1. Let 1 < p < ∞ , 0 < r � ∞ , p � s � ∞ , r−1 + s−1 < 1 , and
assume q = ab, where a ∈ Lr(R+) and b ∈ Ls(R+) . Then, for any eigenvalue λ ∈
C \R+ of the operator H , considered acting in Lp(R+) , there holds (2.6), where
α = (1− r−1− s−1)−1 .
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Estimates useful in applications can be derived from the above general result. If in
Theorem 2.1 is taken r = s , there obtains the following result.

COROLLARY 2.2. Suppose q = ab, where a,b∈ Lr(R+) with r > 2 if 1 < p � 2
and p � r � ∞ if p > 2 . Then for any eigenvalue λ ∈ C\R+ of H , considered acting
in Lp(R+) , there holds

|λ |r−1 �
(

r
r−2

sin
θ
2

)2−r

‖a‖r
r‖b‖r

r. (2.7)

The following case is of particular interest in many applications.

COROLLARY 2.3. Let γ > 1/2 if 1 < p � 2 and 2γ � p−1 if p > 2 , and suppose

q ∈ Lγ+1/2(R+).

Then any eigenvalue λ ∈ C\R+ of the operator H in Lp(R+) satisfies

|λ |γ �
(

2γ +1
2γ −1

sin
θ
2

)1/2−γ ∫ ∞

0
|q(x)|γ+1/2 dx. (2.8)

Proof. In Corollary 2.2 it suffices to let r = 2γ +1 and take a(x) = |q(x)|1/2 and
b(x) = (sgnq(x))|q(x)|1/2 , where sgnq(x) = q(x)/|q(x)| of q(x) �= 0 and sgnq(x) = 0
if q(x) = 0. �

REMARK 2.4. For the self-adjoint case can be occurred only negative eigenvalues
of H , and thus (2.8) becomes

|λ |γ �
(

2γ −1
2γ +1

)γ−1/2∫ ∞

0
|q(x)|γ+1/2 dx. (2.9)

Similar estimates for whole-line operators were pointed out in [6] or [8]. For
related results and discussion in other contexts see also [3], [4], [5] and [7].

Estimates involving decaying potentials can be also obtained directly from the
general results. So, if we take in (2.7) a(x) = (1+ x)−τ and b(x) = (1+ x)τq(x) , we
obtain the following result.

COROLLARY 2.5. Suppose (1+ x)τq ∈ Lr(R+) with τr > 1 and r as in Corol-
lary 2.2. Then any eigenvalue λ ∈ C \R+ of the operator H , considered acting in
Lp(R+) , satisfies

|λ |r−1 � 1
τr−1

(
r

r−2
sin

θ
2

)2−r ∫ ∞

0
|(1+ x)τq(x)|r dx. (2.10)

The following is also a simple consequence of above general results.
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COROLLARY 2.6. Let r and p be as in Corollary 2.2, and suppose eτxq∈Lr(R+)
for τ > 0 . Then, any eigenvalue λ ∈ C \R+ of the operator H , considered acting in
Lp(R+) satisfies

|λ |r−1 � 1
τr

(
r

r−2
sin

θ
2

)2−r ∫ ∞

0
eτrx|q(x)|r dx. (2.11)

For the extremal case α = ∞ we have

sup
x>0

‖k(x, ·;λ )‖∞ = sup
x,y>0

1
2|μ | |e

iμ|x−y| − eiμ(x+y)|.

This supremum has been computed in [5] (see [5], proof of Theorem 1.1, and also
Lemma 1.3). It turns out that

sup
x,y>0

|eiμ|x−y| − eiμ(x+y)| = g(cot(θ/2)), θ = argλ ,

where
g(t) := sup

y>0
|eity − e−y|

(g is an even function: g(−t) = g(t)). Let us show this fact for the sake of complete-
ness. It follows from the following simple relations:

sup
x,y>0

|eiμ|x−y| − eiμ(x+y)| = sup
0<y<x

|eiμ(x−y) − eiμ(x+y)| = sup
y>0

|1− e2iμy|

= sup
y>0

|e−i(cot(θ/2))y− e−y| = g(cot(θ/2)).

Thus,

sup
x>0

‖k(x, ·;λ )‖∞ =
1

2|μ |g(cot(θ/2)),

and, therefore, the resolvent operator R(λ ;H0) is bounded from L1(R+) to L∞(R+) ,
and

‖R(λ ;H0)v‖∞ � 1
2|μ |g(cot(θ/2))‖v‖1. (2.12)

In this case it should be taken β = 1, γ = ∞ , then (2.2) and (2.3) held for r = p′ and
s = p that together with (2.12) implies

‖BR(λ ;H0)Au‖p � 1
2|μ |g(cot(θ/2))‖a‖p′‖b‖p‖u‖p.

Therefore, for any eigenvalue λ ∈C\R+ of the operator H0 , it should be held (changed
a with b )

|λ |1/2 � 1
2
g(cot(θ/2))‖a‖p‖b‖p′. (2.13)

Thus, there holds the following result.
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THEOREM 2.7. Let 1 < p < ∞ , and let q = ab with a∈Lp(R+) and b∈Lp′(R+) .
Then any eigenvalue λ ∈ C\R+ of the operator H , considered acting in Lp(R+) , sat-
isfies (2.13).

In particular, for the Hilbert space case p = 2 there holds

|λ |1/2 � 1
2
g(cot(θ/2))‖a‖2‖b‖2. (2.14)

REMARK 2.8. If in (2.14) it is taken a(x)= |q(x)|1/2 and b(x)= (sgnq(x))|q(x)|1/2 ,
then

‖a‖2
2 = ‖b‖2

2 =
∫ ∞

0
|q(x)|dx,

and estimate (2.14) becomes

|λ |1/2 � 1
2
g(cot(θ/2))

∫ ∞

0
|q(x)|dx.

This result was established in [5] (it is presented in Theorem 1.1 [5] as the main
result).

REMARK 2.9. From results presented in Theorem 2.7 can be established various
special estimates useful for applications. For instance, arguing as in the case of Corol-
lary 2.5, it can be derived the following estimate

|λ |1/2 � 1
2
g(cot(θ/2))(p′τ −1)−1/p′‖(1+ x)τq‖p

provided that p′τ > 1 and (1+ x)τq ∈ Lp(R+) .

2. By applying the same arguments there can be obtained related estimates for
eigenvalues of the operator H = −d2/dx2 + q(x) considered with general boundary
conditions like u′(0) = σu(0) (0 � σ < ∞ ; in case σ = ∞ it is taken the Dirichlet
condition; σ = 0 corresponds to the Neumann boundary condition u′(0) = 0). We
attach to this general situation all conventions made above for the Dirichlet boundary
condition case concerning the exact definition of the perturbed operator H . In what
follows, the corresponding perturbed operator is denoted by Hσ (it will be no confusion
with the notation H0 used as unperturbed operator and the operator H corresponding
to the Neumann boundary condition case σ = 0). In order to apply the arguments used
above, we first note that the resolvent operator of the unperturbed operator (with general
boundary conditions) is an integral operator with the kernel

kσ (x,y;λ ) = − 1
2μ i

(
eiμ|x−y| − σ + iμ

σ − iμ
eiμ(x+y)

)
, 0 < x,y < ∞,

where, as above, μ = λ 1/2 is chosen so that Imμ > 0.
Next, we take α , 1 � α < ∞ , and evaluate

sup
x>0

‖kσ (x, ·;λ )‖α � 1/|μ |(α Imμ)1/α .
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This evaluation follows at once from the fact that |(σ + iμ)/(σ − iμ)| � 1 (μ was
chosen so that Imμ > 0) by applying Minkowski’s inequality. The arguments used in
proving Theorem 2.1 can now be applied to yield the following analogue for the case
of general boudary conditions (as above it is letting λ = |λ |eiθ ,0 < θ < 2π ).

THEOREM 2.10. Let 1 < p < ∞ , 0 < r � ∞ , p � s � ∞ , r−1 + s−1 < 1 , and let
α = (1− r−1− s−1)−1 . Suppose q = ab with a ∈ Lr(R+) and b ∈ Ls(R+) . Then, for
any eigenvalue λ ∈ C \R+ of the operator Hσ , considered acting in Lp(R+) , there
holds

|λ |1+α � (α sin(θ/2))−2‖a‖2α
r ‖b‖2α

s .

For the extremal case α = ∞ we have

sup
x>0

‖kσ (x, ·;λ )‖∞ =
1

2|μ | sup
x,y>0

∣∣∣∣eiμ|x−y| − σ + iμ
σ − iμ

eiμ(x+y)
∣∣∣∣= 1

2|μ |gσ (cot(θ/2)),

gσ instead of g , where

gσ (t) := sup
y>0

∣∣∣∣e−ity − σ + iμ
σ − iμ

e−y

∣∣∣∣ , t ∈ R.

Accordingly, the following result holds true.

THEOREM 2.11. Let 1 < p < ∞ , and let q = ab with a ∈ Lp(R+) and b ∈
Lp′(R+) . Then, every eigenvalue λ ∈ C\R+ of the operator Hσ , considered acting in
Lp(R+) , satisfies

|λ |1/2 � 1
2
gσ (cot(θ/2))‖a‖p‖b‖p′. (2.15)

REMARK 2.12. Naturally that gσ (t) depends also of μ and, as it seems this de-
pendence is rather intricate, however, it is uniformly bounded with respect to both vari-
ables t and μ , namely,

gσ (t) � sup
y>0

(1+ e−y) = 2.

Thus, by (2.15), it follows
|λ |1/2 � ‖a‖p‖b‖p′,

an inequality which for the Hilbert space case, that is, for p = p′ = 2, and a(x) =
|q(x)|1/2,b(x) = (sgnq(x))|q(x)|1/2 was mentioned in [5] (see Proposition 1.5 [5]).

3. The case of potentials from weak Lebesgue’s spaces

Estimates for the perturbed eigenvalues can be obtained under slightly weakened
conditions on the potentials. It turns out that it can be involved potentials belonging
to weak Lebesgue’s spaces. To be more precisely we consider a Schrödinger opera-
tor H = −d2/dx2 + q(x) , where the potential q is written as a product q = ab with
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a ∈ Lr,w(R+) and b ∈ Ls,w(R+) (we will use Lr,w to denote the so-called weak Lr -
spaces). The operator H will be considered acting in the space Lp(R+) (1 < p < ∞)
and subjected with the Dirichlet boundary condition (there will no loss of generality in
supposing only the Dirichlet boundary condition).

We recall that the weak Lr -space Lr,w(R+) (0 < r < ∞) is the space consisting of
all measurable functions on R+ such that

‖ f‖r,w := sup
t>0

(trλ f (t))1/r < ∞,

where λ f denotes the distribution function of f , namely, λ f (t) = μ({x∈ R+ : | f (x)| >
t}), 0 < t < ∞ (here μ is the standard Lebesgue measure on R+ ). The spaces Lr,w(R+)
are special cases of the more general Lorentz spaces Lp,r(R+) which will also be
needed. Lp,r(R+) (0 < p,r < ∞) is defined as the space of all measurable functions f
on R+ for which

‖ f‖r
p,r :=

∫ ∞

0
tr(λ f (t))r/p dt

t
< ∞.

Note that Lr,r(R+) = Lr(R+) , and it will be convenient to let L∞,r(R+) = L∞(R+) .
As in previous section we let A,B denote the operators of multiplication by a,b ,

respectively. In view of a∈ Lr,w(R+) and b∈ Ls,w(R+) , as was assumed, we can apply
a result of O’Neil [9] due to of which there can be chosen β > 0 and γ > 0 such that
the multiplication operator A to be bounded from Lp,p(R+)(= Lp(R+)) to Lβ ,p(R+)
and, respectively, B to be bounded from Lγ,p(R+) to Lp,p(R+) and, moreover,

‖Au‖β ,p � c‖a‖r,w‖u‖p, β−1 = r−1 + p−1, (3.1)

and
‖Bv‖p � c‖b‖s,w‖v‖γ,p, p−1 = s−1 + γ−1. (3.2)

Note that in (3.1) and (3.2) the constants in general are distinct, but depending only on
r, p and s, p , respectively.

Next, as was shown, the resolvent operator R(λ ;H0) of unperturbed operator
H0 acts as a bounded operator from L1(R+) to Lα(R+) and, simultaneously, from
Lα ′(R+) to L1(R+) for any α , 1 � α < ∞ . Besides, in both cases the bound for the
norm of R(λ ;H0) does not exceed 1/|μ |(α Imμ)1/α . By applying the interpolation
functor Kθ ,p with 0 < θ < 1 (cf., [2] or [11]), we obtain that R(λ ;H0) acts also as a
bounded operator from Lβ ,p(R+) into Lγ,p(R+) provided that

1
β

=
1−θ

1
+

θ
α ′ ,

1
γ

=
1−θ

α
+

θ
∞

.

Moreover,
‖R(λ ;H0)v‖γ,p �

(
C/|μ |(α Imμ)1/α

)
‖v‖β ,p, (3.3)

where C is a positive constant depending only on p,γ and β occurred after interpo-
lation. In view of (3.1), (3.2) and (3.3) we conclude that, under our assumption, there
holds

‖BR(λ ;H0)Au‖p �
(
C/|μ |(α Imμ)1/α

)
‖a‖r,w‖b‖s,w‖u‖p
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with a positive constant C depending only on p,r and s .
In this manner, we obtain an estimate like (2.6), namely

|λ |1+α � C(α sin(θ/2))−2‖a‖2α
r,w‖b‖2α

s,w, (3.4)

under more weaker conditions on the potential q than those required in Theorem 2.1.
In (3.4), as in (2.6), α = (1− r−1 − s−1)−1 with the same restrictions on r and s . We
have proved the following result.

THEOREM 3.1. Let p,r,s be as in Theorem 2.1, and suppose q = ab, where a ∈
Lr,w(R+) and b ∈ Ls,w(R+) . Then, any eigenvalues λ ∈ C \R+ of the operator H ,
considered acting in Lp(R+) , satisfies (3.4).

Similarly as in previous section diverse estimates for eigenvalues useful in appli-
cations can be derived from general result given by Theorem 3.1. Here we restrict
ourselves to remark only a version accommodated for potentials from weak Lebesgue’s
classes of the result presented in Corollary 2.3.

COROLLARY 3.2. Let 2γ > 1 if 1 < p � 2 and 2γ > p−1 if p > 2 , and suppose
q ∈ Lγ+1/2,w(R+) . Then any eigenvalue λ ∈ C \R+ of the operator H , considered
acting in Lp(R+) , satisfies

|λ |γ � C sup
t>0

(
tγ+1/2λq(t)

)
, (3.5)

where C =C(p,γ,θ ) is a positive constant depending only on p,γ and θ (θ = argλ ).

REMARK 3.3. In (3.5) the value of C can be controlled.

Acknowledgements. The author wishes to express her gratitudes to Professor Ari
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