PERTURBATION OF (m, p)-ISOMETRIES BY NILPOTENT OPERATORS AND THEIR SUPERCYCLICITY

Masoumeh Faghin-Ahmadi, Saeed Yarmahmoodi
and Karim Hedayatian

(Communicated by R. Curto)

Abstract. A bounded linear operator T on a Hilbert space H is an (m, p)-isometry if

$$
\sum_{k=0}^{m}(-1)^{k}\binom{m}{k}\left\|T^{k} x\right\|^{p}=0
$$

for all $x \in H$, in which $p \in[1, \infty)$ and $m \geqslant 1$. In this paper, two significant results will be proved. First, we introduce some perturbations of (m, p)-isometries which are (n, p)-isometries for some suitable n. Indeed, we show that the sum of an (m, p)-isometry and a commuting nilpotent operator of degree r is a $(p r-p+m, p)$-isometry for every even number p. As an application, the second result is to prove that such operators are not N-supercyclic for any positive integer N, even if p is a rational number. These results generalize the previous works on m-isometries.

1. Introduction

Let H denote a Hilbert space and $\mathscr{B}(H)$ be the algebra of all bounded linear operators on H. For a positive integer m and $p \in[1,+\infty)$ the operator T in $\mathscr{B}(H)$ is called an (m, p)-isometry if

$$
\sum_{k=0}^{m}(-1)^{k}\binom{m}{k}\left\|T^{k} x\right\|^{p}=0
$$

for all $x \in H$. When $p=2$ these operators are called m-isometric operators and have been studied in [1, 2, 3]. The dynamics of such operators is discussed in [14] and [8]. In 2011, Bayart introduced (m, p)-isometric operators on Banach spaces [6]; see also [22].

On the other hand, an operator Q in $\mathscr{B}(H)$ is a nilpotent of degree $r \geqslant 1$, if $Q^{r}=$ 0 . The dynamical properties of an isometry A plus a nilpotent operator Q commuting with A are studied in [23]. After that Bermúdez, et al. [11] proved that the operator $A+Q$ is a $(2 r-1)$-isometry. Recently, this result is generalized by proving that the sum of an m-isometry and an r-nilpotent operator, commuting with each other, is a $(2 r+m-2)$-isometry [10, 17, 20]. We will generalize this result to the case that A

Keywords and phrases: Isometry, m-isometry, nilpotent operator, N-supercyclic operator.
be an (m, p)-isometry, where p is any even number. We prove that $A+Q$ is a ($p r-$ $p+m, p)$-isometry. As an application, we will see that if p is a rational number, the operator $A+Q$ is not N-supercyclic; this improves the results obtained in [23], [11] and [10]. Throughout this paper, unless stated otherwise, we assume that $Q \in \mathscr{B}(H)$ is a nilpotent operator of degree r, p is an even number and $A \in \mathscr{B}(H)$ is an (m, p) isometric operator such that $A Q=Q A$.

A few comments are in order. For nonnegative integer numbers n and k, we denote

$$
n^{(k)}=\left\{\begin{array}{lll}
1, & (n=0 & \text { or } k=0) \\
n(n-1) \cdots(n-k+1), & (n \neq 0 & \text { and } k \neq 0) .
\end{array}\right.
$$

Moreover, if $a_{k} \in \mathbb{C},(k=0,1, \ldots, n)$ then $a_{0} a_{1} \ldots a_{i-1} a_{i+1} \ldots a_{n}$ (obtained by removing a_{i} from the product $\left.\prod_{k=0}^{n} a_{k}\right)$ is denoted by $D_{i}\left(\prod_{k=0}^{n} a_{k}\right)$ for $0 \leqslant i \leqslant n$. By convention, if $i=n=0$, then $D_{i}\left(\prod_{k=0}^{n} a_{k}\right)=1$.

Let $x \in H$. By Proposition 2.1 of [6]

$$
\begin{equation*}
\left\|A^{n} x\right\|^{p}=\sum_{k=0}^{m-1} \frac{n^{(k)}}{k!} \sum_{i=0}^{k}(-1)^{k-i}\binom{k}{i}\left\|A^{i} x\right\|^{p} \tag{1}
\end{equation*}
$$

for all nonnegative integers n. Moreover, Proposition 2.1 of [19] states that

$$
\begin{equation*}
\left\|A^{n} x\right\|^{p}=\sum_{k=0}^{m-1} \frac{(-1)^{m-1-k}}{k!(m-1-k)!} D_{k}\left(\prod_{i=0}^{m-1}(n-i)\right)\left\|A^{k} x\right\|^{p} \tag{2}
\end{equation*}
$$

for all $n \geqslant m$. Note that (2) is obvious for $n<m$. Also, every (m, p)-isometry is an $(m+1, p)$-isometry ([6]) but not vice versa (Proposition 8 of [5]). If T is an (m, p)isometry but not $(m-1, p)$-isometry then T is called a strict (m, p)-isometry.

We borrow two lemmas from [13] and [9].

Lemma 1. (Lemma 1 of [13]) If n is any positive integer then

$$
\sum_{k=0}^{n}(-1)^{n-k} k^{i}\binom{n}{k}=0
$$

for $i=0,1, \ldots, n-1$, where $0^{0}=1$, by convention.

LEMMA 2. (Lemma 3.6 of [9]) Let h be a real number and m be a positive integer. If $a_{k}=h-k$ then

$$
\sum_{i=0}^{m-1}(-1)^{m-i-1} \frac{D_{i}\left(\prod_{k=0}^{m-1} a_{k}\right)}{i!(m-i-1)!}=1
$$

2. The sum of an (m, p)-isometry and a nilpotent

For $T \in \mathscr{B}(H), m$ a positive integer, and $x \in H$, let φ_{x} be a mapping from the set $\{1,2, \ldots, m\}$ to $[0, \infty)$ defined by $\varphi_{x}(k)=\left\|T^{k} x\right\|^{p}$. Using Lemma 1 , it can be easily seen that if for every $x \in H, \varphi_{x}$ is a polynomial in k of degree at most $m-1$, then T is an (m, p)-isometry. The main result of this paper, runs as follows:

THEOREM 1. Suppose that $Q \in \mathscr{B}(H)$ is a nilpotent operator of degree r, p is an even number and $A \in \mathscr{B}(H)$ is an (m, p)-isometry commuting with Q. Then the operator $T=A+Q$ is a $(p r-p+m, p)$-isometry.

Proof. Take $x \in H$ and put

$$
y=\sum_{j=0}^{r-1}\binom{n}{j} Q^{j} A^{r-1-j} x .
$$

Then for every $n \geqslant r-1$, (2) implies that

$$
\begin{align*}
\left\|T^{n} x\right\|^{p} & =\left\|A^{n-(r-1)} y\right\|^{p} \\
& =\sum_{k=0}^{m-1} \frac{(-1)^{m-1-k}}{k!(m-1-k)!} D_{k}\left(\prod_{i=0}^{m-1}(n-r+1-i)\right)\left\|A^{k} y\right\|^{p} . \tag{3}
\end{align*}
$$

Now, suppose that $n<r-1$. For the simplicity of notation, let $c_{k}=\frac{(-1)^{m-1-k}}{k!(m-1-k)!}$ and $d_{k}=D_{k}\left(\prod_{i=0}^{m-1}(n-r+1-i)\right), 0 \leqslant k \leqslant m-1$. Then, applying Lemma 2, we see that $\sum_{k=0}^{m-1} c_{k} d_{k}=1$. Therefore,

$$
\begin{aligned}
& \sum_{k=0}^{m-1} c_{k} d_{k}\left\|A^{k} y\right\|^{p}=\sum_{k=0}^{m-1} c_{k} d_{k}\left\|A^{r-1-n+k}\left(T^{n} x\right)\right\|^{p} \\
= & \sum_{k=0}^{m-1} c_{k} d_{k}\left(\sum_{j=0}^{m-1}\left(\sum_{t=j}^{m-1} \frac{(-1)^{t-j}}{t!}(r-1-n+k)^{(t)}\binom{t}{j}\right)\left\|A^{j}\left(T^{n} x\right)\right\|^{p}\right) \quad(\text { by } \quad(1)) \\
= & \sum_{j=0}^{m-1} \sum_{t=j}^{m-1} \sum_{k=0}^{m-1} c_{k} d_{k} \frac{(-1)^{t-j}}{t!}(r-1-n+k)^{(t)}\binom{t}{j}\left\|A^{j}\left(T^{n} x\right)\right\|^{p} \\
= & \sum_{t=0}^{m-1} \sum_{k=0}^{m-1} c_{k} d_{k} \frac{(-1)^{t}}{t!}(r-1-n+k)^{(t)}\left\|T^{n} x\right\|^{p} \\
& -\left[\prod_{i=0}^{m-1}(n-r+1-i)\right]\left[\sum_{j=1}^{m-1} \sum_{t=j}^{m-1} \frac{(-1)^{t-j}}{t!}\binom{t}{j} \sum_{k=0}^{m-1} c_{k}(r-n+k-2)^{(t)}\left\|A^{j}\left(T^{n} x\right)\right\|^{p}\right] \\
= & \sum_{k=0}^{m-1} c_{k} d_{k}\left\|T^{n} x\right\|^{p}+\sum_{t=1}^{m-1} \frac{(-1)^{t}}{t!} \sum_{k=0}^{m-1} c_{k} d_{k}(r-1-n+k)^{(t)}\left\|T^{n} x\right\|^{p} \quad(\text { by } \quad \text { Lemma } \quad 1) \\
= & \left\|T^{n} x\right\|^{p}-\left[\prod_{i=0}^{m-1}(n-r+1-i)\right] \sum_{t=1}^{m-1} \frac{(-1)^{t}}{t!} \sum_{k=0}^{m-1} c_{k}(r-n+k-2)^{(t)}\left\|T^{n} x\right\|^{p} \\
= & \left\|T^{n} x\right\|^{p} \quad(\text { by Lemma } \quad 1) .
\end{aligned}
$$

Thus, (3) holds for every nonnegative integer number n and every $x \in H$. On the other hand, since $\binom{n}{r-1}$ is a polynomial in n of degree $r-1$, we conclude that $\left\|A^{k} y\right\|^{p}$ is a polynomial in n of degree $p r-p$ (here we use the facts that H is a Hilbert space and p is an even number). Furthermore, the coefficient of $\left\|A^{k} y\right\|^{p}$ in (3) is a polynomial in n of degree $m-1$; therefore, the mapping $n \longmapsto\left\|T^{n} x\right\|^{p}$ is of degree at most $p r-p+m-1$. Hence T is a $(p r-p+m, p)$-isometry.

If A is an isometry we can say more. Recall that the operator Q is of order $r \geqslant 1$ if $Q^{r}=0$ and $Q^{r-1} \neq 0$.

Corollary 1. Suppose that A is an isometry and Q is a nilpotent operator of order r. Then $T=A+Q$ is a strict $(p r-p+1, p)$-isometry.

Proof. Assume, on the contrary, that T is a $(p r-p, p)$-isometry. Proposition 2.1 of [6] state that the mapping $n \mapsto\left\|T^{n} x\right\|^{p}$ is a polynomial of degree at most $p r-p-1$, for every $x \in H$. But by (3)

$$
\left\|T^{n} x\right\|^{p}=\|y\|^{p}=\left\|\sum_{j=0}^{r-1}\binom{n}{j} Q^{j} A^{r-1-j} x\right\|^{p}
$$

which, in turn, implies that the coefficient of $n^{p r-p}$ in $\left\|T^{n} x\right\|^{p}$ is $\frac{1}{((r-1)!)^{p}} Q^{r-1} x$. Hence we get $Q^{r-1}=0$, which is absurd.

Although nilpotent operators are not (m, p)-isometry, as we see in the next result the perturbation of these operators by a unimodular scalar of the identity is (m, p) isometry for some suitable m and p.

Corollary 2. Suppose that Q is a nilpotent operator of order r and λ is a complex number with $|\lambda|=1$. Then $\lambda I+Q$ is a strict $(p r-p+1, p)$-isometry.

Corollary 3. Suppose that A is an isometry. Then $A+Q$ is a $(p r-p+1)-$ isometry for every integer number $p \geqslant 2$.

Proof. Note that $p r-p+1 \geqslant 2 r-1$ and $A+Q$ is a $(2 r-1)$-isometry.
The following examples show that in Theorem 1, it is essential that p be an even number and the underlying space be a Hilbert space.

EXAMPLE 1. Let $\left(e_{n}\right)_{n \in \mathbb{Z}}$ be the ordinary orthonormal basis for $\ell^{2}(\mathbb{Z})$. Define the weighted shift operator Q by $Q e_{n}=w_{n} e_{n+1}$, where $w_{2 n}=0$ for all integers n, $w_{2 n-1}=\frac{1}{(1-2 n)^{2}}$ for all $n \geqslant 1$ and $w_{2 n-1}=\frac{1}{1-2 n}$ for all $n \leqslant 0$. Then, $Q^{2}=0$. A simple computation shows that

$$
\sum_{k=0}^{4}(-1)^{k}\binom{4}{k}\left\|(I+Q)^{k} e_{1}\right\|^{3} \neq 0
$$

thus, the operator $I+Q$ is not a (4,3)-isometry.

EXAMPLE 2. Let $\left(e_{n}\right)_{n \in \mathbb{Z}}$ be the ordinary basis for $\ell^{3}(\mathbb{Z})$, and consider the nilpotent operator Q as in the preceding example. Since

$$
\sum_{k=0}^{3}(-1)^{k}\binom{3}{k}\left\|(I+Q)^{k} e_{1}\right\|^{2} \neq 0
$$

the operator $I+Q$ is not a (3,2)-isometry.

3. N-supercyclicity

Let T be a bounded linear operator on a Banach space X and $E \subseteq X$. The orbit of E under T is defined by

$$
\operatorname{orb}(T, E)=\left\{T^{k} x: x \in E, k \geqslant 0\right\}
$$

If there exists an N-dimensional subspace E of X such that $\operatorname{orb}(T, E)$ is dense in X, then T is called an N-supercyclic operator. Every 1 -supercyclic operator is called a supercyclic operator. As good sources on the dynamics of linear operators, one can see [7] and [16]. Supercyclicity of operators was introduced by Hilden and Wallen in [18]. Moreover, Feldman initiated the study of N-supercyclicity of operators [15] (see also [12]). In 1974, Hilden and Wallen proved that isometries on Hilbert spaces of dimension greater than 1 are not supercyclic [18]. After that, Ansari and Bourdon in [4] and Miller in [21] generalized their result to isometries on Banach spaces. In 2012, Faghih-Ahmadi and Hedayatian extended this result to the class of m-isometries on Hilbert spaces [14]. Moreover, Bermúdez et al. [8] have given sufficient conditions under which m-isometric operators on Hilbert spaces are not N-supercyclic. Later, Bayart [6] generalized this result on Banach spaces and showed that m-isometric operators on infinite dimensional Banach spaces are not N-supercyclic. On the other hand, in 2011, Yarmahmoodi et al. [23] proved that if A is an isometry and Q is a nilpotent operator on a normed space that commutes with A, then the operator $A+Q$ is not supercyclic. Later, in 2013, Bermúdez et al. [11] showed that the operator $A+Q$ is not N-supercyclic on a Hilbert space. Recently, the result is proved when A is an m-isometry [10]. By applying Theorem 1, we improve this result for each (m, p)isometric operator A.

Theorem 2. Suppose that H is an infinite dimensional Hilbert space, m is a positive integer, and $p \geqslant 1$ is a rational number. If A is an (m, p)-isometry, then the operator $T=A+Q$ is never N-supercyclic for any N.

Proof. Let $p=t / s$ where the greatest common divisor of t and s is 1 . Put $k=2 s$. If A is a strict (m, p)-isometry then by Corollary 4.6 of [19] it is also a $(2 s(m-1)+1,2 t)$-isometry. Hence Theorem 1 states that T is a $(2(t r-t+s m-$ $s)+1,2 t)$-isometry. So the result follows using Theorem 3.3 of [6]. Otherwise, A is an $(m-1, p)$-isometry, and again an argument similar to the above, shows that T is not N-supercyclic. Now, continuing this process, and noting that isometries are not N-supercyclic [6], we conclude that the operator T is not N-supercyclic.

Note that the operator $T=I+Q$ in Examples 1 and 2 are not N-supercyclic. Indeed, if X is any infinite dimensional Banach space and Q is a nilpotent operator of degree r, then $T=I+Q$ is not N-supercyclic for every $N \geqslant 1$. Because if $x \in X$ and $k \geqslant 0$ then $T^{k} x=\sum_{j=0}^{r-1}\binom{k}{j} Q^{j} x$. Suppose that $x_{1}, x_{2}, \ldots, x_{N}$ are N linearly independent vectors in X such that $E=\operatorname{span}\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$. Thus $T^{k} x_{i}$ is in $\operatorname{span}\left(\bigcup_{j=0}^{r-1} \bigcup_{t=1}^{N}\left\{Q^{j} x_{t}\right\}\right)$ for $1 \leqslant i \leqslant N$ and $k \geqslant 0$. Therefore, $\operatorname{orb}(T, E)$ is not dense in X. However, on a Banach space the question that whether an (m, p)-isometry plus a nonzero nilpotent, that commute with each other, is N-supercyclic or not is still an open question.

Acknowledgements. The first and the third authors are in part supported by a grant from Shiraz University Research Council.

REFERENCES

[1] J. Alger, M. Stankus, m-isometric transformations of Hilbert space I, Integr. Equ. Oper. Theory 21 (1995), 383-429.
[2] J. Agler, M. Stankus, m-isometric transformations of Hilbert space II, Integr. Equ. Oper. Theory 23 (1995), 1-48.
[3] J. Agler, M. Stankus, m-isometric transformations of Hilbert space III, Integr. Equ. Oper. Theory 24 (1996), 379-421.
[4] S. I. Ansari, P. S. Bourdon, Some properties of cyclic operators, Acta Sci. Math. (Szeged), 63 (1997), 195-207.
[5] A. Athavale, Some operator theoretic calculus for positive definite kernels, Proc. Amer. Math. Soc. 112 (3) (1991), 701-708.
[6] F. Bayart, m-isometries on Banach spaces, Math. Nachr. 284 (2011), 2141-2147.
[7] F. Bayart, E. Matheron, Dynamics of Linear Operators, vol. 179, Cambridge University Press, 2009.
[8] T. Bermúdez, I. Marrero, A. Marinón, On the orbit of an m-isometry, Integr. Equ. Oper. Theory 64 (4) (2009), 487-494.
[9] T. Bermúdez, A. Martinón, E. Negrin, Weighted shift operators which are m-isometries, Integr. Equ. Oper. Theory 68 (3) (2010), 301-312.
[10] T. Bermúdez, A. Martinón, V. Müller and J. A. Noda, Perturbation of m-isometries by nilpotent operators, Abstr. Appl. Anal. 2014 (2014), Article ID 745479, 6 pages.
[11] T. Bermúdez, A. MARTinón and J. A. NodA, An isometry plus a nilpotent operator is an misometry, Applications, J. Math. Anal. Appl. 407 (2) (2013), 505-512.
[12] P. S. Bourdon, N. Feldman, J. Shapiro, Some properties of N-supercyclic operators, Studia Math. 165 (2) (2004), 135-157.
[13] M. FAGHIH-Ahmadi, Powers of A-m-isometric operators and their supercyclicity, Bull. Malays. Math. Sci. Soc. 39 (3) (2016), 901-911.
[14] M. FAGHIH-AhMADI, K. HEDAYATIAN, Hypercyclicity and supercyclicity of m-isometric operators, Rocky Mountain J. Math., 42 (1) (2012), 15-23.
[15] N. Feldman, n-supercyclic operators, Studia Math. 151 (2) (2002), 141-159.
[16] K. G. Grosse-Erdmann, A. Peris Manguillot, Linear Chaos, Springer-Verlag London Limited, 2011.
[17] G. Gu and M. Stankus, Some results on higher order isometries and symmetries: products and sums with a nilpotent operator, Linear Algebra Appl. 469 (2015), 500-509.
[18] H. M. Hilden, L. J. Wallen, Some cyclic and non-cyclic vectors of certain operators, Indiana Univ. Math. J. 23 (1974), 557-565.
[19] P. Hoffmann, M. Mackey and M. Searcóid, On the second parameter of an (m, p) -isometry, Integr. Equ. Oper. Theory 71 (2011), 389-405.
[20] T. LE, Algebraic properties of operator roots of polynomials, J. Math. Anal. Appl. 421 (2) (2015), 1238-1246.
[21] V. G. Miller, Remarks on finitely hypercylic and finitely supercyclic operators, Integr. Equ. Oper. Theory 29 (1997), 110-115.
[22] O. A. M. Sid Ahmed, m-isometric operators on Banach spaces, Asian-European J. Math. 3 (1) (2010), 1-19.
[23] S. Yarmahmoodi, K. Hedayatian, B. Yousefi, Supercyclicity and hypercyclicity of an isometry plus a nilpotent, Abstr. Appl. Anal. 2011 (2011), Article ID 686832, 11 pages.

Karim Hedayatian
Department of Mathematics, College of Sciences
Shiraz University
Shiraz 7146713565, Iran
e-mail: hedayati@shirazu.ac.ir, khedayatian@gmail.com

