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SPECTRA OF INFINITE GRAPHS VIA SCHUR COMPLEMENT
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(Communicated by M. Omladič)

Abstract. The goal of the paper is to apply the general operator theoretic construction known as
the Schur complement for computation of the spectrum of certain infinite graphs which can be
viewed as finite graphs with rays attached to them. The examples of a multiple star and a flower
with infinite rays are considered.

Introduction and preliminaries

0.1. Graph theory

We begin with some basics of the graph theory. For the sake of simplicity we re-
strict ourselves with simple, connected, undirected, finite or infinite (countable) graphs,
although the main result holds for weighted multigraphs and graphs with loops. We
will label the vertex set V (Γ) by positive integers N = {1,2, . . .} , {v}v∈V = { j}ω

j=1 ,
ω � ∞ . The symbol i ∼ j means that the vertices i and j are incident, i.e., {i, j}
belongs to the edge set E (Γ) .

The degree (valency) of a vertex v ∈ V (Γ) is a number γ(v) of edges emanating
from v . A graph Γ is said to be locally finite, if γ(v) < ∞ for all v ∈ V (Γ) , and
uniformly locally finite, if supV γ(v) < ∞ .

The spectral graph theory studies the spectra and spectral properties of certain
matrices related to graphs (more precisely, operators acting on the Hilbert spaces Cn

or �2 = �2(N) , generated by such matrices in the standard basis {ek}ω
k=1 ). One of the

most notable of them is the adjacency matrix A(Γ)

A(Γ) = ‖ai j‖ω
i j=1, ai j =

{
1, {i, j} ∈ E (Γ);
0, otherwise.

(0.1)

The corresponding adjacency operator will be denoted by the same symbol. For locally
finite graphs it acts as

A(Γ)ek = ∑
j∼k

e j, k = 1,2, . . . ,ω . (0.2)
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Clearly, A(Γ) is a symmetric, densely-defined linear operator, whose domain is the set
of all finite linear combinations of the basis vectors. The operator A(Γ) is bounded and
self-adjoint on �2 as long as the graph Γ is uniformly locally finite.

Whereas the spectral theory of finite graphs is very well established (see, e.g.,
[2, 3, 4]), the corresponding theory for infinite graphs is in its infancy. We refer to
[9, 10] for the basics of this theory. In contrast to the general consideration in [10],
our goal is to compute the spectra of certain infinite graphs (precisely, the spectra of the
corresponding adjacency operators) which loosely speaking can be called “finite graphs
with tails attached to them”.

To make the notion precise, we define first an operation of coupling well known
for finite graphs (see, e.g., [4, Theorem 2.12]).

DEFINITION 1. Let Γk , k = 1,2, be two graphs with no common vertices, with
the vertex sets and edge sets V (Γk) and E (Γk) , respectively, and let vk ∈ V (Γk) . A
graph Γ = Γ1 + Γ2 will be called a coupling by means of the bridge {v1,v2} if

V (Γ) = V (Γ1)∪V (Γ2), E (Γ) = E (Γ1)∪E (Γ2)∪{v1,v2}. (0.3)

So we join Γ2 to Γ1 by the new edge between v2 and v1 .

��
��

Γ1
� �

��
��

Γ2
v1 v2

In general, the adjacency matrix A(Γ1 + Γ2) takes the form of a block operator
matrix

A(Γ) =
[
A(Γ1) E
E∗ A(Γ2)

]
, E =

⎡
⎢⎢⎢⎣

1 0 0 . . .
0 0 0 . . .
0 0 0 . . .
...

...
...

⎤
⎥⎥⎥⎦ . (0.4)

If the graph Γ1 is finite, V (Γ1) = {1,2, . . . ,n} , and V (Γ2) = { j}ω
j=1 , we can with no

loss of generality put v1 = 1, v2 = n+1, so the adjacency matrix A(Γ) can be written
as the block operator matrix

A(Γ) =
[
A(Γ1) En

E∗
n A(Γ2)

]
, En =

⎡
⎢⎢⎢⎣

1 0 0 . . .
0 0 0 . . .
...

...
...

0 0 0 . . .

⎤
⎥⎥⎥⎦ (0.5)

has n rows. If Γ2 = P∞ , the one-sided infinite path, we can view the coupling Γ =
Γ1 +P∞ as a finite graph with the tail. Now
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A(Γ2) = J0 :=

⎡
⎢⎢⎢⎣

0 1 0 0
1 0 1 0
0 1 0 1

. . .
. . .

. . .
. . .

⎤
⎥⎥⎥⎦ (0.6)

is a Jacobi matrix called a discrete Laplacian or a free Jacobi matrix. It is of particular
interest in the sequel.

The spectral theory of infinite graphs with one or several rays attached to certain
finite graphs was initiated in [7, 8, 11] wherein a number of particular examples of
graphs was examined. In [5] this collection was enlarged considerably. A canonical
form of the adjacency matrix A(Γ1 +P∞) suggested there enabled one to compute the
spectrum of such graph by using the spectral theory of Jacobi matrices of finite rank.

Our argument here is based on a general construction from the block operator
matrices theory known as the Schur complement. As a matter of fact, the procedure
applies not only to adjacency matrices, but to both Laplacians on graphs of such type.

The examples in the next section rely heavily on the formula of Schwenk [13] (see
[4, Problem 2.7.9]) for characteristic polynomials of finite graphs F

P(λ ,F) := det(λ I−A(F)).

Given a graph F and V ⊂ V (F) we denote by F\V the subgraph of F induced
by the vertices of V (F)\V .

Theorem (Schwenk). For a given finite graph F and v ∈ V (F) , let C (v) denote
the set of all simple cycles Z which contain v . Then

P(λ ,F) = λP(λ ,F\v)− ∑
v′∼v

P(λ ,F\{v′,v})−2 ∑
Z∈C (v)

P(λ ,F\Z).

0.2. Schur complement

Let

A =
[
A11 A12

A21 A22

]
(0.7)

be a block operator matrix which acts on the orthogonal sum H1 ⊕H2 of two Hilbert
spaces. If A11 is invertible, the matrix A can be factorized as

A =
[

I 0
A21A

−1
11 I

][
A11 0
0 C22

][
I A−1

11 A12

0 I

]
, (0.8)

I is the unity operator on the corresponding Hilbert space. Similarly, if A22 is invert-
ible, one can write

A =
[
I A12A

−1
22

0 I

][
C11 0
0 A22

][
I 0

A−1
22 A21 I

]
. (0.9)

Here
C22 := A22−A21A

−1
11 A12, C11 := A11−A12A

−1
22 A21 (0.10)
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are usually referred to as the Schur complements [12]. Both equalities can be checked
by direct multiplication.

The result below follows immediately from the formulae (0.8) and (0.9).

PROPOSITION 1. Given a block operator matrix A (0.7) , let A11 (A22) be in-
vertible. Then A is invertible if and only if so is C22 (C11) .

Note that in the premises of Proposition 1 the inverse A −1 takes the form

A −1 =
[

C−1
11 −C−1

11 A12A
−1
22

−A−1
22 A21C

−1
11 A−1

22 +A−1
22 A21C

−1
11 A12A

−1
22

]

and, respectively,

A −1 =
[
A−1

11 +A−1
11 A12C

−1
22 A21A

−1
11 −A−1

11 A12C
−1
22

−C−1
22 A21A

−1
11 C−1

22

]
.

Denote by ρ(T ) the resolvent set of a bounded, linear operator T , i.e., the set of
complex numbers λ so that λ I−T is boundedly invertible. We apply the latter result
to the block matrix

λ I−A =
[

λ I−A11 −A12

−A21 λ I−A22

]
, λ ∈ C, (0.11)

to obtain

PROPOSITION 2. Given a block operator matrix A (0.7) , let λ ∈ ρ(A11)
(
λ ∈

ρ(A22)
)
. Then λ ∈ ρ(A ) if and only if the operator

C22(λ ) = λ I−A22−A21(λ I−A11)−1 A12

(C11(λ ) = λ I−A11−A12(λ I−A22)−1 A21)
(0.12)

is invertible.

1. Spectra of infinite graphs with tails

The adjacency matrices (0.4) and (0.5) of couplings Γ = Γ1 +Γ2 are block opera-
tor matrices (0.7), and, moreover, λ I−A is of the form (0.11),

λ I−A(Γ) =
[

λ I−A(Γ1) −E
−E∗ λ I−A(Γ2)

]
= (λ I−A(Γ1))⊕ (λ I−A(Γ2))+ Δ

with rank(Δ) = 2. So we can gather some information about the spectrum of A(Γ) for
arbitrary graphs Γ j , j = 1,2, from the general perturbation theory of finite rank (see,
e.g., [1, Section 9.2]). For instance, according to the famous result of Kato

σess(A(Γ)) = σess(A(Γ1))∪σess(A(Γ2)),
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(recall that a number λ ∈ σ(T ) belongs to the essential spectrum σess(T ) of a self-
adjoint operator T if it is not an eigenvalue of finite multiplicity). Moreover, λ is the
eigenvalue of A(Γ) as soon as λ is the isolated eigenvalue of either A(Γ1) or A(Γ2)
of multiplicity at least 3 .

The Schur complements (0.12) take now the form

Cii(λ ) = λ I−A(Γi)−G(λ ,Γ j) ẽi, i 
= j, i, j = 1,2, (1.1)

where
G(λ ,Γ j) :=

(
(λ I−A(Γ j))−1

)
11

, λ ∈ ρ(A(Γ j)), j = 1,2 (1.2)

is the so-called Green’s function of A(Γ j) . ẽi is a square matrix of the same order as
A(Γi) , with the only nonzero entry (ẽi)11 = 1.

We say that λ is a regular point of the graph Γ if λ ∈ ρ(A(Γ)) .

THEOREM 1. Let Γ = Γ1 + Γ2 be the coupling of a finite graph Γ1 and an ar-
bitrary graph Γ2 , and let λ be a regular point of Γ2 . The point λ belongs to the
spectrum of Γ if and only if it solves the equation

P(λ ,Γ1)−G(λ ,Γ2)P(λ ,Γ1\v1) = 0. (1.3)

Proof. By Proposition 2 and (1.1), λ ∈ σ(A(Γ)) if and only if

detC11(λ ) = det
(
(λ I−A(Γ1)−G(λ ,Γ2) ẽ1

)
= 0, ẽ1 =

⎡
⎢⎢⎢⎣

1 0 . . . 0
0 0 . . . 0
...

...
...

0 0 . . . 0

⎤
⎥⎥⎥⎦ .

The result follows by expanding the latter determinant along the first row. �
The basic example for us is Γ2 = P∞ . In this case

σ(Γ) = σess(Γ)∪σd(Γ) = [−2,2]∪σd(Γ),

where the discrete spectrum σd(Γ) is the set of eigenvalues of finite multiplicity off
[−2,2] . Theorem 1 can be applied, and the Green’s function is known explicitly (see,
e.g., [6])

(
λ I−A(P∞)

)−1
= ‖ri j(z)‖∞

i, j=1, ri j(z) =
zi+ j − z|i− j|

z− z−1 , λ = z+
1
z

, (1.4)

|z| < 1, and so
G(λ ,P∞) = r11(z) = z. (1.5)

The discrete spectrum agrees with the zero set of the algebraic equation (1.3)

λ ∈ σd(Γ) ⇔ P(λ ,Γ1)− xP(λ ,Γ1\v1) = 0, λ = x+
1
x

, x ∈ (−1,1). (1.6)

So the problem amounts to computation of two characteristic polynomials and solving
the equation (1.6).
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EXAMPLE 1. “A multiple star”.
Let κ := (k1,k2, . . . ,kn) , k j ∈ N be an n -tuple of positive integers. Denote by

S(κ) the graph obtained from the standard star graph K1,n with n� 2 edges by inserting
k j −1 new vertices into j ’s edge, so this edge contains k j +1 vertices altogether. Put
Γ1 = S(κ) and consider the coupling Γ = Γ1 + P∞ obtained from S(κ) by attaching
the infinite path to its root v1 .

Denote by Q(·,m) the characteristic polynomial of the finite path Pm with m
vertices, so

Q(λ ,m) = Um

(λ
2

)
, Um(cost) :=

sin(m+1)t
sin t

is the standard Chebyshev polynomial of the second kind.
To compute the characteristic polynomial of Γ1 we apply the result of Schwenk

which now looks

P(λ ,Γ1) = λ Q(λ )−Q(λ )
n

∑
j=1

Q(λ ,k j −1)
Q(λ ,k j)

, Q(λ ) :=
n

∏
j=1

Q(λ ,k j).

It is clear that
P(λ ,Γ1\v1) = Q(λ ),

so the equation in (1.6) takes the form

Q(λ )
{1

x
−

n

∑
j=1

Q(λ ,k j −1)
Q(λ ,k j)

}
= 0, λ = x+

1
x

.

Since Q 
= 0 off [−2,2] we come to

n

∑
j=1

Q(λ ,k j −1)
Q(λ ,k j)

− 1
x

= 0, λ = x+
1
x

, −1 < x < 1.

The function in the left-hand side is odd (as a function of x ), so we can restrict ourselves
with the values 0 < x < 1. Putting x = e−t , t > 0, we obtain after a bit of calculation

ϕ(t) :=
n

∑
j=1

sinhk jt
sinh(k j +1)t

= et , t > 0. (1.7)

Since the function

sinhat
sinhbt

, 0 < a < b, t > 0

is easily seen to be monotone decreasing (it follows, e.g., from the infinite product
expansion of sinhz), then so is ϕ in the left-hand side of (1.7). Moreover, ϕ vanishes
at infinity. Next,

lim
t→0

ϕ(t) =
n

∑
j=1

k j

k j +1
> 1
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(we discard the trivial configuration n = 2, k1 = k2 = 1). So (1.7) has a unique solution
t+ > 0. Finally, the discrete spectrum is

σd(Γ) = ±λ+, λ+ := 2cosht+. (1.8)

In particular case k j = p , 1 � j � n , equation (1.7) looks

n
sinh pt

sinh(p+1)t
= et , n

(
ept − e−pt) = e(p+2)t − e−pt ,

which is equivalent to
(n−1)x2p+2−nx2 +1 = 0.

Note that in this case the more detailed description of the spectrum is available,
see [5, Example 2.3]. Precisely, there are p eigenvalues lying on the essential spectrum
[−2,2] .

EXAMPLE 2. “A flower with n petals”.
In this example Γ1 is composed of n cycles {C j}n

j=1 , glued together at one com-
mon vertex (root) O . Put Γ = Γ1 + P∞ with the infinite path attached to the root O .
Assume that the cycle C j contains k j +1 vertices.

To compute the characteristic polynomial of Γ1 we apply again the Schwenk the-
orem which gives

P(λ ,Γ1) = Q(λ )
{

λ −2
n

∑
j=1

Q(λ ,k j −1)+1
Q(λ ,k j)

}
.

As in the above example, P(·,Γ1\O) = Q , and we come to the following equation

2
n

∑
j=1

Q(λ ,k j −1)+1
Q(λ ,k j)

− 1
x

= 0, λ = x+
1
x

, −1 < x < 1.

Putting x = e−t , t > 0, we obtain

2
n

∑
j=1

sinhk jt

sinh(k j +1)t
= et , t > 0. (1.9)

The same argument as above shows that (1.9) has a unique solution t+ > 0, so the
point λ+ = 2cosht+ ∈ σd(Γ) for all configurations in Γ1 (with no exceptions). Putting
x = −e−t , t > 0, we come to

ϕ(t) := 2
n

∑
j=1

sinhk jt +(−1)k j+1 sinht

sinh(k j +1)t
= et , t > 0. (1.10)

Since
sinhmt− sinht
sinh(m+1)t

=
sinh m−1

2 t

sinh m+1
2 t

,
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ϕ is a monotone decreasing function vanishing at infinity, and ϕ(0+) > 1 for all con-
figurations in Γ1 . Hence (1.10) has a unique solution t− > 0, and λ− = −2cosht− ∈
σd(Γ) . Finally, the discrete spectrum is

σd(Γ) = λ±, λ± := ±2cosht±. (1.11)

Note that in particular case n = 2, k1 = k2 (the propeller with equal blades), a
complete description of the spectrum is given in [5, Example 3.4].
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