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LIFTING COMMUTING 3–ISOMETRIC TUPLES

BENJAMIN RUSSO

(Communicated by T. Ando)

Abstract. An operator T is called a 3-isometry if there exists operators B1(T ∗,T ) and B2(T ∗,T )
such that

Q(n) = T ∗nTn = 1+nB1(T ∗,T )+n2B2(T ∗,T )

for all natural numbers n . An operator J is a Jordan operator of order 2 if J = U +N where
U is unitary, N is nilpotent order 2 , and U and N commute. An easy computation shows that
J is a 3 -isometry and that the restriction of J to an invariant subspace is also a 3-isometry.
Those 3-isometries which are the restriction of a Jordan operator to an invariant subspace can
be identified, using the theory of completely positive maps, in terms of a positivity condition on
the operator pencil Q(s). In this article, we establish the analogous result in the multi-variable
setting and show, by modifying an example of Choi, that an additional hypothesis is necessary.
Lastly we discuss the joint spectrum of sub-Jordan tuples and derive results for 3-symmetric
operators as a corollary.

1. Introduction

Let H denote a complex Hilbert space and B(H) the bounded linear operators on
H . An operator T on H is a 3-isometry if

T ∗3T 3 −3T∗2T 2 +3T ∗T − I = 0.

Equivalently an operator T is a 3-isometry if there exist operators B1(T ∗,T ) , B2(T ∗,T )
∈ B(H) such that,

T ∗nTn = I +nB1(T ∗,T )+n2B2(T ∗,T ) (1)

for positive integers n . Similarly, T ∈ B(H) is a 3-symmetric operator if

exp(−isT ∗)exp(isT ) = I + sB1(T ∗,T )+ s2B2(T ∗,T ) (2)

for some B1(T ∗,T ) , B2(T ∗,T ) ∈ B(H) and all real numbers s . In particular, if T
is a 3-symmetric operator, then T = exp(iT ) is a 3-isometric operator.

An operator J is s-Jordan (of order 2 ) if J = S+N , where S and N commute,
N is nilpotent order two, and S is self-adjoint. A calcuation shows J is an example
of a 3-symmetric operator. Similarly J is u-Jordan (of order 2 ) if J = U +N , where
U and N commmute, U is unitary, and N is nilpotent of order two. One can check
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that u -Jordan operators are 3-isometric and if J is an s-Jordan operator, then exp(iJ)
is u -Jordan. For the remainder of the paper we will refer to u -Jordan and s-Jordan
operators as simply Jordan when it is clear from context which type is being discussed.

An operator T on a Hilbert space H has an extension or lifts to an operator J on a
Hilbert space if there is an isometry V : H → K such that VT = JV . If J is 3-isometric
(resp. 3-symmetric) and T lifts to J , then T is 3-isometric (resp. 3-symmetric) since,
in that case,

T ∗nT n = V ∗J∗nJnV

and the right hand side is quadratic in n .

THEOREM 1. T ∈ B(H) is a 3-symmetric operator if and only if T has an ex-
tension to an operator of the form

J =
(

A λ1
0 A

)
where A is self-adjoint and λ ∈ C.

Agler established Theorem 1 in the general case in [1]. A preliminary version of
the result was initially proven by Helton in [7].

The notation A � 0 indicates that the operator A on Hilbert space is positive
semidefinite. Given c > 0, let Fc denote the class of 3-isometric operators T such
that

Q̂(T,s) := I + sB1(T ∗,T )+ s2B2(T ∗,T )− 1
c2 B2(T ∗,T ) � 0

for all s ∈ R .

THEOREM 2. [8] (3-isometric lifting theorem) An operator T on a Hilbert space
H is in the class Fc if and only if there is a unitary operator U on a Hilbert space K
and an isometry V : H → K⊕K such that VT = JV , where

J =
(

U cU
0 U

)
.

Moreover, if T is invertible, then, VT−1 = J−1V, the spectrum of T is a subset of the
unit circle, and U can be chosen so that σ(T ) = σ(U) = σ(J) .

By use of a functional calculus argument Theorem 1 can be recovered from Theo-
rem 2.

In the case of tuples of 3-symmetric and 3-isometric operators, the picture is not
as clear. Ball and Helton [3] first considered a natural simplification of the problem.
Let

{Jn = Sn +Nn}
be a finite collection of commuting Jordan operators such that the nilpotent parts have
the following relation,

NiNj = 0
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for all i and j and the Sn are self-adjoint. We will call this a commuting Jordan family.
Let {Tn} be a finite collection of commuting 3-symmetric operators that satisfy the
following,

Q(s) = e−iskT
∗
k . . .e−is1T

∗
1 eis1T1 . . .eiskTk = ∑

j1,... jk
j1+...+ jk�2

Bj1,..., jk s
j1
1 . . .s jk

k .

We will call this a commuting family of 3-symmetric operators.

CONJECTURE 1. [3] A collection of operators {Tn} can be extended to a com-
muting Jordan family {Jn} if and only if {Tn} is a commuting family of 3-symmetric
operators.

Ball and Helton established this result using disconjugacy theory for multivariable
Sturm-Liouville operators for tuples T of 3-symmetric operators with a cyclic vector
and satisfying a certain smoothness hypothesis. In this paper we show that an analog of
this conjecture for tuples of 3-isometric operators is false and give a counter-example.

DEFINITION 1. A commuting 2-tuple of operators T = (T1,T2) is a 2-tuple of 3-
isometries if there exists bounded operators Bi, j for 0 � i+ j � 2 (and i, j � 0) such
that

QT (n,m) = T ∗m
2 T ∗n

1 Tn
1 Tm

2 = ∑
0�i+ j�2

min jBi, j

for all (n,m) ∈ N2 . We will call QT the associated quadratic pencil.

DEFINITION 2. Fix positive real numbers c,d . A 2-tuple of commuting 3-isometries
T = (T1,T2) is in the class F(c,d) if

Q̂T (α,β ) = QT (α,β )− 1
c2 B2,0− 1

d2 B0,2 � 0

for all (α,β ) ∈ R2 .

The following definition identifies a canonical class of model operators for the
class Fc,d .

DEFINITION 3. Given c,d > 0 a 2-tuple J = (J1,J2) is in the class Jc,d if

J1 =

⎛⎝U1 cU1 0
0 U1 0
0 0 U1

⎞⎠ , J2 =

⎛⎝U2 0 dU2

0 U2 0
0 0 U2

⎞⎠ . (3)

for some unitary operators U1 , U2 that commute.
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Given J ∈ Jc,d , compute, for non-negative integers m,n ,

Jn
1 =

⎛⎝Un
1 ncUn

1 0
0 Un

1 0
0 0 Un

1

⎞⎠ , Jm
2 =

⎛⎝Um
2 0 mdUm

2
0 Um

2 0
0 0 Um

2

⎞⎠
and

J∗m2 J∗n1 Jn
1Jm

2 =

⎛⎝ 1 nc md
nc n2c2 +1 ncmd
md ncmd m2d2 +1

⎞⎠ . (4)

It follows that Jc,d ⊆ Fc,d .

THEOREM 3. A 3-isometric 2-tuple T = (T1,T2) in the class Fc,d lifts to a 2-tuple
J = (J1,J2) in the class Jc,d if and only if the quadratic pencil Q̂T (α,β ) factors in the
form,

Q̂T (α,β ) = (V0 + αV1 + βV2)∗(V0 + αV1 + βV2)

for some operators V0 , V1 and V2 in B(H) .

Theorem 3 is proved in Section 2.
The proof of the first part of the following remark for 3-symmetric operators ap-

pears in [3]. The proof of the result for 3-isometries is similar. The proof of the second
part of the remark can be found in Section 3.

REMARK 1. If H is finite dimensional and T ∈ Fc,d , then T is a pair of commut-
ing u -Jordan operators and the sufficient condition of Theorem 3 is easily verified. Oth-
erwise H is infinite dimensional and Q̂T factors in the form above with Vj : H → H ,
where H is an auxiliary Hilbert space, if and only if it factors with Vj ∈ B(H) .

Section 3 exhibits, by construction, a 3-isometric 2-tuple T in the class Fc,d for
which Q̂T does not factor (in the form given in Theorem 3). We show that this T does
not lift to a J ∈ Jcd and further that T does not lift to any Jordan operator in any class
Jc̃,d̃ for any c̃ and d̃ . In this sense the 3-isometric analog of the conjecture of Ball-
Helton is false. In Section 4 we show, by a functional calculus argument, that a 2-tuple
of 3-symmetric operators lift if and only if its associated operator polynomial factors.

2. Extensions of theorems

We begin by extending the results found in [8] to 2-tuples of invertible commuting
3-isometries in Fc,d . While the proofs only deal with 2-tuples, the extension to general
n -tuples is apparent.

A subspace A of B(H) is unital if it contains the identity and is self-adjoint if
T ∈ A implies T ∗ ∈ A . For a given N ∈ N , let MN(C) be the space of N×N matrices
with complex entries, denoted MN when the context is clear. Moreover, we denote with
MN(A) the space of N×N matrices with entries from A . Note MN(A) can be identified
with a subspace of the bounded operators on H(N) = H⊕·· ·⊕H (N -copies) as well as
with MN ⊗A .
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DEFINITION 4. Suppose H and K are Hilbert spaces and A is a unital self-adjoint
subspace of B(H) . A mapping ρ : A → B(K) is called positive if it maps positive
elements to positive elements i.e. ρ(a) � 0 if a � 0. A mapping ρ : A → B(K) is
called completely positive if the mapping In⊗ρ : Mn ⊗A → Mn ⊗B(K) is positive for
all n ∈ N .

DEFINITION 5. Let n , N and M be given positive integers. An hereditary poly-
nomial p(x,y) (in two variables) of size n and bi-degree at most (M,N) in invertible
variables x1,y1,x2, and y2 such that y1 and y2 commute and x1 and x2 commute, is a
polynomial of the form

p(x1,y1,x2,y2) =
M,N

∑
δ ,γ=−M
α ,β=−N

pγ,α ,β ,δ yγ
2y

α
1 xβ

1 xδ
2 . (5)

Here the sum is finite and pγ,α ,β ,δ are n× n matrices over C . Again, let Pn be the
collection of 2-variable hereditary polynomials of size n and let P = (Pn)n denote
the collection of all hereditary polynomials.

Given a pair of commuting invertible operators T1 and T2 on the Hilbert space H ,
let

H (T1,T2) = span{T ∗γ
2 T ∗α

1 T β
1 T δ

2 : γ,α,β ,δ ∈ Z}. (6)

Note that H (T1,T2) is a unital self-adjoint subspace of B(H) . Recall that the Gelfand-
Naimark-Segal construction realizes an abstract C∗ -algebra as a subalgebra (unital and
self-adjoint) of some B(H) .

THEOREM 4. (Stinespring) Let A be a unital C∗ -algebra and φ : A → B(H)
a linear map. If φ is completely positive, then there exists a Hilbert space K , a
unital ∗ -homomorphism π : A → B(K ) , and a bounded operator V : H → K with
‖φ(1)‖ = ‖V‖2 such that

φ(a) = V ∗π(a)V.

We now present a version of the Arveson Extension Theorem for 2-tuples of oper-
ators.

THEOREM 5. (Arveson Extension Theorem) Suppose that T1 and T2 are invert-
ible operators on a Hilbert space H and J1 and J2 are invertible operators on a Hilbert
space K . There is a Hilbert space K , a representation π : B(K) → B(K ) , and an

isometry V : H → K such that VT β
1 T γ

2 = π(J1)β π(J2)γV for all β ,γ ∈ Z if and only if
the mapping ρ : H (J1, J2) → H (T1,T2) is completely positive.

Proof. Suppose the mapping ρ : H (J1, J2) → H (T1, T2) determined by

ρ(J∗γ
2 J∗α

1 Jβ
1 Jδ

2 ) = T ∗γ
2 T ∗α

1 Tβ
1 T δ

2 is well defined and completely positive. A seminal
result of Arveson implies that ρ extends to a completely positive map, still denoted by
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ρ , on B(H). In this case, by Theorem 4, there is a Hilbert space K , a representation
π : B(H) → B(K ) and an isometry V : H → K such that

V ∗π(J∗γ
2 J∗α

1 Jβ
1 Jδ

2 )V = ρ(J∗γ
2 J∗α

1 Jβ
1 Jδ

2 ) = T ∗γ
2 T ∗α

1 T β
1 T δ

2 .

Since π is an algebraic homomorphism which preserves the involution,

V ∗π(J2)∗γπ(J1)∗α π(J1)β π(J2)δV = T ∗γ
2 T ∗α

1 T β
1 T δ

2 . (7)

For each γ,β ∈ Z ,

V ∗π(J2)∗γπ(J1)∗β π(J1)β π(J2)γV = T ∗γ
2 T ∗β

1 T β
1 T γ

2

= V ∗π(J2)∗γ π(J1)∗βVV ∗π(J1)β π(J2)γV

by Equation (7). Hence

V ∗π(J2)∗γπ(J1)∗β π(J1)β π(J2)γV −V ∗π(J2)∗γ π(J1)∗βVV ∗π(J1)β π(J2)γV = 0.

Since I−VV ∗ is a projection and hence idempotent,

V ∗π(J2)∗γ π(J1)∗β (I−VV ∗)2π(J1)β π(J2)γV = 0.

Therefore
(I−VV ∗)π(J1)β π(J2)γV = 0.

Consequently
π(J1)β π(J2)γV = VV ∗π(J1)β π(J2)γV.

Again by Equation (7),
VT β

1 T γ
2 = π(J1)β π(J2)γV.

Since the converse is not needed for any of our theorems, we omit the straightfor-
ward proof. �

In [8], a strong variant of Theorem 5 was proven using Agler’s symmetrization
technique.

DEFINITION 6. Given a two-variable hereditary polynomial p(x1,x2,y1,y2) as in
Equation 5, define its symmetrization ps by

ps = ∑ pβ ,α ,α ,βyβ
2 yα

1 xα
1 xβ

2 . (8)

Similarly, let

Hs(T1, T2) = span{T ∗β
2 T ∗α

1 T α
1 T β

2 : α,β ∈ Z}. (9)

In order to prove a strong variant of Theorem (5) we will need several lemmas. They
are presented below.
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DEFINITION 7. (Pairwise rotationally symmetric) A pair of operators S1 and S2

is pairwise rotationally symmetric if for all t ∈ R2 , t = (t1,t2) , there exists a unitary
operator Ut such that

eit1S1 = U∗
t S1Ut and eit2S2 = U∗

t S2Ut .

EXAMPLE 1. Define on L 2(T2) the operators

Z1 : L 2(T2) → L 2(T2) Z1 f (z1,z2) = z1 f (z1,z2) (10)

and
Z2 : L 2(T2) → L 2(T2) Z2 f (z1,z2) = z2 f (z1,z2). (11)

Given t , define Ut on L 2(T2) by Ut f (ζ1,ζ2) = f (exp(it1)ζ1,exp(it2)ζ2) . A calcu-
lation shows UtZj = exp(it j)ZjUt . Hence the pair (Z1,Z2) is pairwise rotationally
symmetric.

LEMMA 1. If S1 and S2 are pairwise rotationally symmetric operators and T1

and T2 are operators on a common Hilbert space, then T̃1 = T1 ⊗S1 and T̃2 = T2⊗S2

are pairwise rotationally symmetric.

Proof. Since S1 and S2 are pairwise rotationally symmetric, for each t = (t1,t2)∈
R2 there exists a unitary operator Ut such that

eit1S1 = U∗
t S1Ut and eit2S2 = U∗

t S2Ut .

Since eit1 T̃1 = T1 ⊗ eit1S1 and eit2 T̃2 = T2 ⊗ eit2S2 , to see that T̃1 and T̃2 are pairwise
rotationally symmetric, consider the operators Ũt = (I⊗Ut) . �

Given a pair T = (T1,T2) , let Ť = Z⊗T = (Z1⊗T1,Z2⊗T2) , where Z is the tuple
in example 1. Thus Ť is rotationally symmetric. It is also straightforward to verify, if
T ∈ Fc,d , then so is Ť and similarly if T ∈ Jc,d , then so is Ť .

LEMMA 2. If J1 and J2 are pairwise rotationally symmetric, q∈P and q(J1,J2)
� 0, then qs(J1,J2) � 0 .

Let T1 and T2 be given invertible operators on the Hilbert space H and let W :
H → H ⊗L (T2) denote the isometry Wh = h⊗1 . If P ∈ Pn , then

Ps(T ∗
2 ,T ∗

1 ,T1,T2) = (In⊗W)∗P(Ť2
∗
, Ť1

∗
, Ť1, Ť2)(In⊗W ).

We will occasionally use the notation p(T ∗,T ) for p(T ∗
2 ,T ∗

1 ,T1,T2) .

Proof. For each t = (t1,t2) ∈ R2 there is a unitary operator Ut such that

eit1J1 = U∗
t J1Ut and eit2J2 = U∗

t J2Ut .

It follows that

q(e−it2J∗2 ,e−it1J∗1 ,eit1J1,e
it2J2) = (In⊗Ut)∗q(J∗2 ,J∗1 ,J1,J2)(1⊗Ut) � 0.
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Hence,

qs(J∗2 ,J∗1 ,J1,J2) =
1

4π2

∫ 2π

0

∫ 2π

0
q(e−it2J∗2 ,e−it1J∗1 ,eit1J1,e

it2J2) dt � 0.

To prove the second assertion, let p ∈ P1 and compute〈
p(Ť2

∗
, Ť1

∗
, Ť1, Ť2)Wh, W f

〉
=
〈

p(Ť2
∗
, Ť1

∗
, Ť1, Ť2)h⊗1, f ⊗1

〉
= ∑

γ,α ,β ,δ

〈
pγ,α ,β ,δ Tβ

1 T δ
2 h⊗ eit2δ eit1β , T α

1 T γ
2 f ⊗ eit2γeit1α

〉
=∑ pβ ,α ,α ,β

〈
T ∗β
2 T ∗α

1 Tα
1 T β

2 h, f
〉

=〈ps(T ∗
2 ,T ∗

1 ,T1,T2)h, f 〉 .

Applying this result entry-wise, we get the result for P . �

LEMMA 3. Suppose T1 , T2 are invertible commuting operators on a Hilbert space
H and J1 and J2 are invertible operators on a Hilbert space K . If J1 and J2 are pair-
wise rotationally symmetric and the mapping ρ : Hs(J1,J2) → Hs(T1,T2) determined

by ρ(Jβ∗
2 Jα∗

1 Jα
1 Jβ

2 ) = T β∗
2 Tα∗

1 T α
1 T β

2 is (well defined and) completely positive, then the
mapping ρ̌ : H (J1,J2) → H (Ť1, Ť2) determined by

ρ̌(Jγ∗
2 Jα∗

1 Jβ
1 Jδ

2 ) = Ť2
γ∗

Ť1
α∗

Ť1
β
Ť2

δ

is also (well defined and) completely positive.

Proof. Fix a positive integer n and a p ∈ Pn and suppose p(J∗,J) � 0. We are
to show p(Ť ∗, Ť ) � 0. Given a pair of integers (M,N) let P denote the (2M + 1)×
(2M +1) matrix whose entries are the (2N +1)× (2N +1) matrices whose entries are
n×n matrices,

P =
(((

In⊗ y j2
2

)(
In⊗ y j1

1

)
p(x,y)

(
In⊗ xk1

1

)(
In⊗ xk2

2

))N

j1,k1=−N

)M

j2,k2=−M
(12)

Thus P(T ∗,T ) is an operator on ((Cn ⊗H)⊗C2N+1)⊗C2M+1 and the entries of
P(T ∗,T ) are operators of (Cn ⊗H)⊗C2N+1 given by((

In⊗T ∗ j2
2

)(
In⊗T∗ j1

1

)
p(T ∗,T )

(
In⊗Tk1

1

)(
In⊗Tk2

2

))N

j1,k1=−N
. (13)

Note that P(J∗,J)� 0 and thus, by Lemma 2, Ps(J∗,J)� 0. Thus, by the hypotheses of
this lemma, Ps(T ∗,T )� 0. Let {e1, . . . ,en} denote the standard basis for Cn . Reusing
notation, let { f−N , . . . , f0, . . . , fN} and { f−M, . . . , f0, . . . , fM} denote the standard bases
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for C2N+1 and C2M+1 respectively. A generic vector in Cn⊗H⊗C2N+1⊗C2M+1 , the
space that P(T ∗,T ) acts upon, has the representation

h = ∑h j,a,α ⊗ e j ⊗ fa⊗ fα .

Let p j,k(Ť ∗, Ť ) denote the j,k -th entry of p(Ť ∗, Ť ) . Compute, using Lemma 2,

0 � 〈Ps(T ∗
2 ,T ∗

1 ,T1,T2)h, h〉
=
〈
P(Ť ∗

2 , Ť ∗
1 , Ť1, Ť2)h⊗1, h⊗1

〉
= ∑

a,b,α ,β
∑
j,k

〈
Ť ∗β
2 Ť ∗b

1 p j,k(Ť ∗, Ť ) Ť a
1 Ť α

2 h j,a,α ⊗1, hk,b,β ⊗1
〉

.

= ∑
a,b,α ,β

∑
j,k

〈p j,k(Ť ∗, Ť )T α
2 Ta

1 h j,a,b⊗ za
1z

α
2 , T β

2 Tb
1 hk,α ,β ⊗ zb

1z
β
2 〉

= ∑
j,k

〈p j,k(Ť ∗, Ť )[∑
a,α

T α
2 Ta

1 h j,a,b⊗ za
1z

α
2 ], [∑

b,β
T β
2 Tb

1 hk,b,β ⊗ zb
1z

β
2 ]〉

= 〈p(Ť ∗, Ť )g, g〉,

(14)

where

g =
n

∑
j=1

N

∑
a=−N

M

∑
α=−M

T α
2 Ta

1 h j,a,α ⊗ za
1z

α
2 ⊗ e j.

Since T1 and T2 are invertible, given vectors g j,a,α ∈H , there exists vectors h j,a,b such
that

g =
n

∑
j=1

N

∑
a=−N

M

∑
α=−M

gj,a,α ⊗ za
1z

α
2 ⊗ e j.

Finally, since vectors of the form g are dense in H ⊗ L2(T2)⊗Cd , it follows that
p(Ť ∗, Ť ) � 0; i.e., that map ρ̌ is completely positive. �

LEMMA 4. Suppose T1 and T2 are invertible operators in B(H) and p ∈ P . If
p(Ť2

∗
, Ť1

∗
, Ť1, Ť2) � 0 , then p(T2

∗,T1
∗,T1,T2) � 0 . In particular the mapping

τ : p(Ť2
∗
, Ť1

∗
, Ť1, Ť2) �→ p(T2

∗,T1
∗,T1,T2)

is well defined.

Proof. Let

DNM =
1√

2N +1

1√
2M +1

N

∑
j=−N

M

∑
k=−M

ei jt1eikt2 ∈ L2(T2).



406 B. RUSSO

If f ,h ∈ H, then for α,β ,γ,δ ∈ Z ,〈
Ť2

∗γ
Ť1

∗β
Ť1

α
Ť2

δ
h⊗DN,M, f ⊗DN,M

〉
=
〈
Ť1

α
Ť2

δ
h⊗DN,M, Ť1

β
Ť2

γ
f ⊗DN,M

〉
=
〈
T α
1 T δ

2 h, T β
1 T γ

2 f
〉〈

zα
1 zδ

2DN,M , zβ
1 zγ

2DN,M

〉
=
〈
T α
1 T δ

2 h, T β
1 T γ

2 f
〉( 1

(2M +1)(2N +1)

)
·
〈

N+|α−β |
∑

j=−N+|α−β |

M+|γ−δ |
∑

k=−M+|γ−δ |
ei jt1eikt2 ,

N

∑
j=−N

M

∑
k=−M

ei jt1eikt2

〉

=
〈
T α
1 T δ

2 h, T β
1 T γ

2 f
〉(2N +1−|α −β |

2N +1

)(
2M +1−|γ − δ |

2M +1

)
.

Thus if p ∈ P1 ,

lim
N→∞

lim
M→∞

〈
p(Ť ∗

2 , Ť ∗
1 , Ť1, Ť2)h⊗DN,M, f ⊗DN,M

〉
= 〈p(T ∗

2 ,T ∗
1 ,T1,T2)h, f 〉 .

Hence if p(Ť ∗
2 , Ť ∗

1 , Ť1, Ť2) � 0, then p(T ∗
2 ,T ∗

1 ,T1,T2) � 0 as well. The case for square
matrices is easily established. �

PROPOSITION 1. Suppose T1 and T2 are invertible commuting operators on a
Hilbert space H , and J1 and J2 are invertible commuting operators on a Hilbert space
K . If J1 and J2 are pairwise rotationally symmetric and the mapping ρ : Hs(J1,J2)→
Hs(T1,T2) determined by ρ(J∗β

2 J∗α
1 Jα

1 Jβ
2 ) = T ∗β

2 T ∗α
1 Tα

1 T β
2 is well defined and com-

pletely positive, then there is a Hilbert space K , a representation π : B(K) → B(K ) ,
and a isometry V such that VTm

2 Tn
1 = π(J1)nπ(J2)mV for m,n ∈ Z .

Proof. The mapping τ : H (Ť1, Ť2) → H (T1,T2) as described in Lemma 4, is
well defined and completely positive. The mapping ρ̌ : H (J1,J2) → H (Ť2, Ť2) as
described in 3 is also well defined and completely positive. Their composition

ρ = τ ◦ ρ̌

is well defined and completely positive. The proposition now follows from Theorem
5. �

Fix c,d > 0 and define, for 0 � i+ j � 2 (here i, j are non-negative integers), the
3×3 matrices Bi, j by

I + ∑
0<i+ j�2

Bi, jα iβ j =

⎛⎝ 1 α c β d
α c 1+ α2 c2 αβ cd
β d αβ cd 1+ β 2d2

⎞⎠ , (15)
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and B0,0 = I− 1
c2 B2,0− 1

d2 B0,2 . Define,

J1 =

⎛⎝U1 cU1 0
0 U1 0
0 0 U1

⎞⎠J2 =

⎛⎝U2 0 dU2

0 U2 0
0 0 U2

⎞⎠ , (16)

where U1 = Z1 and U2 = Z2 , the pairwise rotationally symmetric operators in Example
1. We note J1 and J2 are pairwise rotationally symmetric via Lemma 1. It is clear
that from the calculation done in Equation (4) that J = (J1,J2) ∈ Jc,d and

QJ (α,β ) =
(
I + ∑

0<i+ j�2

Bi, jα iβ j )⊗ I. (17)

In particular Bi, j(J ) = Bi, j ⊗ I and we define B0,0(J ) = B0,0⊗ I .

LEMMA 5. If T = (T1,T2) is in the class Fc,d , and

Q̂T (α,β ) = QT (α,β )− 1
c2 B2,0(T )− 1

d2 B0,2(T ) � 0

factors in the form,

Q̂T (α,β ) = (V0 + αV1 + βV2)∗(V0 + αV1 + βV2), (18)

then the map ρ(J ∗β
2 J ∗α

1 J α
1 J

β
2 ) = T ∗β

2 T ∗α
1 T α

1 T β
2 is well defined and completely

positive.

Proof. Suppose the 2-tuple T = (T1,T2) is in the class Fc,d and for notational
convenience let

B0,0(T ) = I− 1
c2 B2,0(T )− 1

d2 B0,2(T ) = I− 1
c2 B2(T1

∗,T1)− 1
d2 B2(T2

∗,T2).

Note that
B0,0(T ) � 0

since QT (α,β ) � 0 for α = β = 0. The spaces Hs(J1,J2) and Hs(T1,T2) are
spanned by

{B0,0(J ), B1,0(J ), B0,1(J ), B1,1(J ), B2,0(J ), B0,2(J )}

and
{B0,0(T ), B1,0(T ), B0,1(T ), B1,1(T ), B2,0(T ), B0,2(T )}

respectively. For positive integers n , let Mn denote the n× n matrices. The elements
X ∈ Mn ⊗Hs(J1,J2) have the form

X = ∑
0�i+ j�2

Xi, j ⊗Bi, j(J ).
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Equivalently,

X ∼=
⎛⎝ X0,0 cX1,0 dX0,1

cX1,0 c2X2,0 cdX1,1

dX0,1 cdX1,1 d2X0,2

⎞⎠⊗ I.

If X � 0, then each Xi, j is self-adjoint. Further X � 0 if and only if

Y =

⎛⎝X0,0 X1,0 X0,1

X1,0 X2,0 X1,1

X0,1 X1,1 X0,2

⎞⎠
is as well. In this case, there exists 3n×n matrices Y0,Y1,Y2 such that⎛⎝X0,0 X1,0 X0,1

X1,0 X2,0 X1,1

X0,1 X1,1 X0,2

⎞⎠=

⎛⎝Y ∗
0

Y ∗
1

Y2

⎞⎠(Y0 Y1 Y2
)
.

Using the factorization (18),

1n⊗ρ(X) = ∑Xi, j ⊗Bi, j(T )

= X0,0⊗V ∗
0 V0 +X1,0⊗ (V ∗

0 V1 +V ∗
1 V0)+X0,1⊗ (V ∗

0 V2 +V ∗
2 V0)

+X1,1⊗ (V ∗
1 V2 +V ∗

2 V1)+X2,0⊗ (V ∗
1 V1)+X0,2⊗ (V ∗

2 V2)
= (Y0⊗V0 +Y1⊗V1 +Y2⊗V2)∗(Y0⊗V0 +Y1⊗V1 +Y2⊗V2).

(19)

Since the right hand side is evidently positive, the map ρ is completely positive. �
By Proposition 1 and Lemma 5 since J1 and J2 are pairwise rotationally sym-

metric, we have shown a factorization (18) implies there is a representation π such that
the 2-tuple T lifts to the 2-tuple π(J ) . It remains to show that any representation
applied to J = (J1,J2) produces a 2-tuple of the same form.

LEMMA 6. Let E be the Hilbert space that J1 and J2 act upon. If Ě is also
a Hilbert space and π : B(E) → B(Ě) is a unital ∗ -representation, then J1 = π(J1)
and J2 = π(J2) have, up to unitary equivalence, the same form as J1 and J2 given
by Equation (3) and in particular are in the class Jc,d .

Proof. The proof proceeds much in the same way as it does in [8] but with some
minor differences. The following relations are evident.

i) J = Wi +Ni where Wi is unitary, N 2
i = 0 for i = 1,2 .

ii) WiNi = NiWi for i = 1,2 .

iii) N1N
∗

1 = N2N
∗

2 .

iv) N1N
∗

1 +N ∗
1 N1 +N ∗

2 N2 = 1.

v) NiN j = 0 for i, j = 1,2.
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vi) NiN ∗
j = 0 for i, j = 1,2.

From these relations,
N ∗

1 N1,

N ∗
2 N2,

N1N
∗

1 = N2N
∗

2

are pairwise orthogonal projections. Let Ji = π(Ji), Ni = π(Ni) , and Wi = π(Wi) for
i = 1,2. These must satisfy the same algebraic relations, i.e.

i) J = Wi +Ni where Wi is unitary, N2
i = 0 for i = 1,2 .

ii) WiNi = NiWi for i = 1,2 .

iii) N1N∗
1 = N2N∗

2 .

iv) N1N∗
1 +N∗

1N1 +N∗
2N2 = 1.

v) NiNj = 0 for i, j = 1,2.

vi) NiN∗
j = 0 for i, j = 1,2.

From these relations,
N∗

1N1,

N∗
2N2,

N1N
∗
1 = N2N

∗
2

are pairwise orthogonal projections on Ẽ . For instance,

N∗
1 N1 = N∗

1 (N∗
1 N1 +N∗

2N2 +N1N
∗
1 )N1 = (N∗

1N1)2.

Now decompose the space H as H = ran(N1N∗
1 )⊕ ran(N∗

1 N1)⊕ ran(N∗
2 N2) .The map-

pings Nj are unitary maps Qj from the range of N∗
j to the range of Nj . Hence,

with respect to the orthogonal decomposition of H as H = ran(N1N∗
1 )⊕ ran(N∗

1 N1)⊕
ran(N∗

2N2) ,

N1 =

⎛⎝0 Q1 0
0 0 0
0 0 0

⎞⎠
and likewise,

N2 =

⎛⎝0 0 Q2

0 0 0
0 0 0

⎞⎠ .

Thus, up to unitary equivalence, it may be assumed that Qj = I (and each of the sum-
mands in the direct sum decomposition is the same Hilbert space). Write

W1 =

⎛⎝A1 B1 C1

D1 E1 F1

G1 H1 J1

⎞⎠
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for some A1 , B1 , C1 , D1 , E1 , F1 , G1 , H1 , and J1 operators. Since W1N1 = N1W1 ,

W1N1 =

⎛⎝A1 B1 C1

D1 E1 F1

G1 H1 J1

⎞⎠⎛⎝0 I 0
0 0 0
0 0 0

⎞⎠=

⎛⎝0 A1 0
0 D1 0
0 G1 0

⎞⎠ ,

and

N1W1 =

⎛⎝0 I 0
0 0 0
0 0 0

⎞⎠⎛⎝A1 B1 C1

D1 E1 F1

G1 H1 J1

⎞⎠=

⎛⎝D1 E1 F1

0 0 0
0 0 0

⎞⎠ ,

we conclude
A1 = E1

and
D1 = F1 = G1 = 0.

Similarly, since W1N2 = N2W1 ,
A1 = J1

and
H1 = 0.

Hence

W1 =

⎛⎝A1 B1 C1

0 A1 0
0 0 A1

⎞⎠ .

Since W1 is a unitary operator,

W1W
∗
1 =

⎛⎝A1 B1 C1

0 A1 0
0 0 A1

⎞⎠⎛⎝A∗
1 0 0

B∗
1 A∗

1 0
C∗

1 0 A∗
1

⎞⎠=

⎛⎝I 0 0
0 I 0
0 0 I

⎞⎠ ,

where I is the identity operator. Hence,

A1A
∗
1 +B1B

∗
1 +C1C

∗
1 = I,

A1A
∗
1 = I,

A1B
∗
1 = 0,

A1C
∗
1 = 0.

Note that the first two relations above show that B1 = C1 = 0 and A∗
1 is an isometry.

Hence W is diagonal with A1 down the diagonal. Since W is unitary, A1 is unitary. It
follows that

W1 =

⎛⎝U1 0 0
0 U1 0
0 0 U1

⎞⎠ ,
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where U1 is a unitary operator. A similar argument shows that

W2 =

⎛⎝U2 0 0
0 U2 0
0 0 U2

⎞⎠ ,

where U2 is a unitary operator. Since [W1,W2] = 0, it follows that [U1,U2] = 0. Hence,
up to unitary equivalence, the Ji have the form claimed. �

The forward direction of the main theorem has been established. We now need
only to prove that lifting implies factorization of the associated operator pencil. How-
ever, this is readily established. If T = (T1,T2) lifts to J = (J1J2) , then

V ∗(QJ(α,β )− 1
c2 B2,0(J)− 1

d2 B0,2(J)
)
V = QT (α,β )− 1

c2 B2,0(T )− 1
d2 B0,2(T ).

Hence any factorization of

Q̂J(α,β ) = (K0 + αK1 + βK2)∗(K0 + αK1 + βK2)

gives the factorization of Q̂T as

QT (α,β ) = V ∗(K0 + αK1 + βK2)∗(K0 + αK1 + βK2)V.

Since Q̂J factors as

Q̂J(α,β ) =

⎛⎝⎛⎝ 1
αc
βd

⎞⎠∗ (
1 αc βd

)⎞⎠⊗ I,

the conclusion follows.

3. The counter-example

This section has three parts. Let Q(α,β ) be an arbitrary two variable quadractic
pencil

Q(α,β ) = I + ∑
0< j+k�2

α jβ kB j,k (20)

with coefficients Bj,k operators on a separable Hilbert space H such that

Q̂(α,β ) = Q(α,β )− 1
c2 B2,0− 1

d2 B0,2 � 0 (21)

for all (α,β ) ∈ R2 . In the first part we show by construction there exists a com-
muting 2-tuple of 3-isometries T ∈ Fcd such that Q̂T factors if and only if Q̂ fac-
tors. In the second part we show that given a positive integer n and positive map
φ : Sym3(C) → Mn, if the canonical quadratic pencil it determines factors, then φ is
completely positive. Hence, an example of Choi [5] of a positive φ : Sym3 →Mn which
is not completely positive produces a quadratic two variable pencil which does not fac-
tor which in turn produces a counter-example to a natural generalization of the main
lifting result of [8]. This counter-example is strengthened in the last part.
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3.1. Constructing three isometries

Let F be a vector space with basis { f j : j ∈ Z} . In particular, the set { f j ⊗ fk :
j,k ∈Z} is a basis for the tensor product F⊗F . Define, on the algebraic tensor product
H⊗ (F ⊗F) the sesquilinear form[

h⊗ f j ⊗ fk,h
′ ⊗ f j′ ⊗ fk′

]
=
{ 〈Q( j,k)h, h′〉H if j = j′ and k = k′

0 otherwise
,

and the linear maps
T (h⊗ f j ⊗ fk) = h⊗ f j+1⊗ fk (22)

and
S(h⊗ f j⊗ fk) = h⊗ f j ⊗ fk+1. (23)

Note that this sesquilinear form is positive semi-definite since Q takes, by hypothesis,
positive semi-definite values. Let H be the Hilbert space obtained from H ⊗F ⊗F
by modding out by the null vectors and forming the completion. We continue to denote
the inner product on H by [·, ·] and let h⊗ f j ⊗ fk denote the equivalence class it
represents in the quotient. We use freely the fact that D , the linear span of {h⊗ f j⊗ fk :
j,k ∈ Z, h ∈ H}, is dense in H .

PROPOSITION 2. Given a 2-variable pencil in the form defined by (20), if there
exists c,d ∈ R such that c > 0 , d > 0 and

Q(α,β )− 1
c2 B2,0− 1

d2 B0,2 � 0

for all (α,β ) ∈ R2, then the operators S and T defined in (22) and (23) are well
defined and extend to invertible bounded operators H . Moreover S and T are 3-
isometries and〈

Q̂T,S(α,β )(h⊗ f j ⊗ fk), g⊗ fa⊗ fb
〉

= δ( j,k),(a,b)
〈
Q̂(α + j,β + k)h, h

〉
H ,

where δ is the Kronecker delta function. In particular, (S,T ) is in the class Fc,d .

Proof. Let h = ĥ⊗ f j ⊗ fk be an elementary tensor and compute,

2(1+ c2)[h,h]− [Th,Th]

=
〈
(2Q( j,k)+2c2Q( j,k)−Q( j +1,k))ĥ, ĥ

〉
=
〈
(Q( j,k)+2c2Q( j,k)−B0,1− kB1,1−2 jB2,0−B2,0)ĥ, ĥ

〉
=
〈
(Q( j,k)+2c2Q( j,k)−B0,1− kB1,1−2 jB2,0 +B2,0−2B2,0)ĥ, ĥ

〉
=
〈
(Q( j−1,k)+2c2Q( j,k)−2B2,0)ĥ, ĥ

〉
.

Since Q(α,β )− 1
c2 B2,0− 1

d2 B0,2 � 0 for all (α,β ) ∈ R2, certainly Q− 1
c2 B2,0 � 0 and

Q� 0 for all (α,β ) ∈ R
2 . Hence, [2(1+ c2)[h,h]− [Th,Th] � 0. Using orthogonality
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of the subspaces {h⊗ f j ⊗ fk : h ∈ H} for j,k ∈ Z , it follows that for each h ∈ H ⊗
F ⊗F,

2(1+ c2)[h,h] � [Th,Th].

Thus T is bounded on the algebraic tensor product and thus extends to a bounded
operator, still denoted by T , on H by continuity. A similar computation shows that S
is also bounded.

It is straightforward to verify that

T ∗3T 3 −3T∗2T 2 +3T ∗T − I = 0,

a condition well known to be equivalent to T being a 3-isometry [2, 8]. Likewise
S is a 3-isometry. Since S and T are 3-isometries there exist B1(T ∗,T ) , B1(S∗,S) ,
B2(T ∗,T ) and B2(S∗,S) such that for all natural numbers m and n ,

S∗mSm = I +mB1(S∗,S)+m2B2(S∗,S)

T ∗nT n = I +nB1(T ∗,T )+n2B2(T ∗,T ).

Define, B̃1,0 = B1(T ∗,T ) , B̃0,1 = B1(S∗,S) , B̃2,0 = B2(T ∗,T ) , B̃0,2 = B2(S∗,S), and

B̃1,1 = B1,1⊗ I⊗ I. (24)

Direct computation shows

[B1(T ∗,T )(h⊗ f j ⊗ fk),(h⊗ fa⊗ fb)]
= δ( j,k),(a,b) 〈(B1,0 + kB1,1 +2 jB2,0)h, h〉H ,

(25)

[B1(S∗,S)(h⊗ f j ⊗ fk),g⊗ fa⊗ fb]
= δ( j,k),(a,b) 〈(B0,1 + jB1,1 +2kB0,2)h, g〉H ,

(26)

[B2(T ∗,T )(h⊗ f j ⊗ fk),g⊗ fa⊗ fb] = δ( j,k),(a,b) 〈B2,0h, g〉H , (27)

[B2(S∗,S)(h⊗ f j ⊗ fk),g⊗ fa⊗ fb] = δ( j,k),(a,b) 〈B0,2h, g〉H . (28)

By the definition of B1,1,[
B̃1,1(h⊗ f j ⊗ fk),g⊗ fa⊗ fb

]
= δ( j,k),(a,b) 〈B1,1h, g〉 . (29)

From the above equations it follows that

[(S∗mB1(T ∗,T )Sm)h⊗ f j ⊗ fk,g⊗ fa⊗ fb]
= δ( j,k),(a,b) 〈(B1,0 +(k+m)B1,1 +2 jB2,0)h, g〉H .

(30)

Likewise,

[S∗mB2(T ∗,T )Sm(h⊗ f j ⊗ fk),g⊗ fa⊗ fb] = δ( j,k),(a,b) 〈B2,0h, g〉 . (31)
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Hence, by equations (25),(26),(27), (28), (29), (30), and (31),

[(S∗mT ∗nTnSm)(h⊗ f j ⊗ fk),g⊗ fa⊗ fb]

=
[
S∗m(1+nB1(T )+n2B2(T ))Sm(h⊗ f j ⊗ fk),g⊗ fa⊗ fb

]
=
[
I +mB1(S)+m2B2(S)+nS∗mB1(T )Sm +n2B2(T )(h⊗ f j ⊗ fk),g⊗ fa⊗ fb

]
=
[
(I +mB̃0,1 +nB̃1,0 +mnB̃1,1 +m2B̃0,2 +n2B̃2,0)(h⊗ f j ⊗ fk),(g⊗ fa⊗ fb)

]
.

We conclude,

QT,S(α,β ) = I + αB̃1,0 + β B̃0,1 + αβ B̃1,1 + α2B̃2,0 + β 2B̃0,2

The above equations give the following relationship〈
QT,S(α,β )(h⊗ f j ⊗ fk), g⊗ fa⊗ fb

〉
= δ( j,k),(a,b) 〈Q(α + j,β + k)h, g〉H

and〈
Q̂T,S(α,β )(h⊗ f j ⊗ fk), g⊗ fa⊗ fb

〉
= δ( j,k),(a,b)

〈
Q̂(α + j,β + k)h, g

〉
H . �

PROPOSITION 3. Let Q(α,β ) be a quadratic pencil of the form (20) satisfying the
positivity condition (21) and let QT,S(α,β ) be the quadratic pencil for the 3-isometric
2-tuple (T,S) ∈ Fcd constructed in Proposition (2). The modified pencil Q̂(α,β ) fac-
tors if and only if the modified pencil Q̂T,S(α,β ) factors.

Proof. By the conclusion of Proposition (2),〈
Q̂T,S(α,β )(h⊗ f j ⊗ fk), (h⊗ fa⊗ fb)

〉
= δ( j,k),(a,b)

〈
Q̂(α + j,β + k)h, g

〉
H .

Suppose Q̂T,S(α,β ) factors as

Q̂T,S(α,β ) = (V0 + αV1 + βV2)∗(V0 + αV1 + βV2)

where Vj are bounded operators from H into some auxiliary Hilbert space. Define
U : H → H by

Uh = (h⊗ f0⊗ f0). (32)

To verify that U is an isometry, note

‖Uh‖ = ‖h⊗ f0⊗ f0‖ = ‖Q(0,0)
1
2 h‖ = ‖h‖.

Now for all g,h ∈ H

〈U∗(V0 + αV1 + βV2)∗(V0 + αV1 + βV2)Uh,g〉
=
〈
U∗Q̂T,S(α,β )Uh, g

〉
=
〈
Q̂T,S(α,β )Uh, Ug

〉
=
〈
Q̂T,S(α,β )(h⊗ f0⊗ f0), (g⊗ f0⊗ f0)

〉
=
〈
Q̂(α,β )h, g

〉
.
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Thus, Q̂ factors as

Q̂(α,β ) = [(V0 + αV1 + βV2)U ]∗ [(V0 + αV1 + βV2)U ].

Conversely, suppose that Q̂(α,β ) factors as

Q̂(α,β ) = (V0 + αV1 + βV2)∗(V0 + αV1 + βV2)

where the Vj are bounded operators from H into an auxiliary Hilbert space, which
we label K for convenience. Let �2 denote the Hilbert space �2(Z) with the standard
orthonormal basis {e j : j ∈ Z} and let K denote the Hilbert space tensor product
K ⊗ (�2 ⊗ �2) . Define, on the dense set D , equal to the span of elementary tensors
h⊗ f j ⊗ fk , of H into K the linear maps,

W0(∑h j,k ⊗ f j ⊗ fk) =∑(V0 + jV1 + kV2)h j,k ⊗ (e j ⊗ ek)

W�(∑h j,k ⊗ f j ⊗ fk) =∑V�h j,k ⊗ (e j ⊗ ek),

for � = 1,2. Since,

〈W0(∑h j,k ⊗ f j ⊗ fk),W0(∑ga,b⊗ fa⊗ fb)〉
=∑

j,k

〈Q( j,k)h j,k, ga,b〉

=[∑h j,k ⊗ f j ⊗ fk, ∑ha,b⊗ fa⊗ fb],

W0 is an isometry on D and thus extends to an isometry, still denoted W0, from H
into K . Similarly,

〈W1(∑h j,k ⊗ f j ⊗ fk),W1(∑ha,b⊗ fa⊗ fb)〉
=∑

j,k

〈V1h j,k, V1h j,k〉

=∑
j,k

〈B2(S∗,S)h j,k, h j,k〉

�c2 ∑
j,k

〈Q( j,k)h j,k, h j,k〉

=c2[∑h j,k ⊗ f j ⊗ fk, ∑ha,b⊗ fa⊗ fb].

Thus W1 is bounded on D and thus extends to a bounded linear operator, still denoted
W1 , from H to K . Of course a similar statement holds for W2.

Finally,

〈(W0 + αW1 + βW2)∗(W0 + αW1 + βW2)(h j,k ⊗ f j ⊗ fk),(ga,b⊗ fa⊗ fb)〉
=
〈
(W0 + αW1 + βW2)(h jk ⊗ f j ⊗ fk), (W0 + αW1 + βW2)(ha,b⊗ fa⊗ fb)

〉
=
〈
(V0 +(α + j)V1 +(β + k)V2)h j,k, (V0 +(α + j)V1 +(β + k)V2)ha,b

〉
=δ( j,k),(a,b)

〈
Q̂(α + j,β + k)h j,k, h j,k

〉
=
〈
Q̂T,S(h j,k ⊗ f j ⊗ fk), (ha,b⊗ fa⊗ fb)

〉
.

Hence Q̂T,S has the factorization (W0 + αW1 + βW2)∗(W0 + αW1 + βW2) . �
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3.2. A positive but not completely positive map

In this section an example of Choi is used to produce a two-variable quadratic
pencil which takes positive semidefinite values on R2 , but does not factor. In turn this
pencil is used, in Proposition 5, to give a counter-example to a natural generalization of
the main result of [8].

DEFINITION 8. An operator system S is a unital selfadjoint (vector) subspace of
the bounded operators on a Hilbert space. Let Ei, j denote the matrix units for Mn . The
matrix

Cφ = (φ(Ei j))i, j ∈ Mn⊗S

is the Choi matrix of the linear map φ : Mn → S .

The following lemma can be found in [9, p. 35]

LEMMA 7. Let S be an operator system. A map φ : Mn → S is completely positive
if and only if Cφ is positive semidefinite.

Recall the definitions of the 3×3 matrices Bi, j from equation (15). They form a
basis for Sym3(C) , the symmetric 3×3 complex matrices.

LEMMA 8. Suppose S is an operator system and φ : Sym3(C) → S is a unital
positive linear map. If the canonical pencil

Q̂φ (α,β ) =

[
I + ∑

0<i+ j�2
α iβ jφ(Bi, j)

]
− 1

c2 φ(B0,2)− 1
d2 φ(B2,0)

= ∑
0� j+k�2

α jβ kφ(Bjk)

associated to φ factors as

Q̂φ (α,β ) = (V0 + αV1 + βV2)∗(V0 + αV1 + βV2),

where the Vj are operators into an auxiliary space, then the map φ is completely
positive.

Conversely, if the map φ is completely positive, then Q̂φ factors.

Proof. Suppose that the canonical pencil factors as

Q̂φ (α,β ) = (V0 + αV1 + βV2)∗(V0 + αV1 + βV2).

An element X ∈ Mn⊗Sym3(C) has the following form

X ∼=
⎛⎝X0,0 X1,0 X0,1

X1,0 X2,0 X1,1

X0,1 X1,1 X0,2

⎞⎠ .
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If X � 0, then each Xi, j is self-adjoint and⎛⎝X0,0 X1,0 X0,1

X1,0 X2,0 X1,1

X0,1 X1,1 X0,2

⎞⎠=

⎛⎝Y0

Y1

Y2

⎞⎠∗ (
Y0 Y1 Y2

)
,

where the Yj are 3n×n matrices. Thus,

(1n⊗φ)(X) = ∑Xi, j ⊗φ(Bi, j)

= X0,0⊗V ∗
0 V0 +X1,0⊗ (V ∗

0 V1 +V ∗
1 V0)+X0,1⊗ (V ∗

0 V2 +V ∗
2 V0)

+X1,1⊗ (V ∗
1 V2 +V ∗

2 V1)+X2,0⊗ (V ∗
1 V1)+X0,2⊗ (V ∗

2 V2)
= (Y0 ⊗V0 +Y1⊗V1 +Y2⊗V2)∗(Y0 ⊗V0 +Y1⊗V1 +Y2⊗V2) � 0.

(33)

Hence φ is completely positive.
We pause at this point to note some differences between the finite and infinite

dimensional cases. There is a Hilbert space E such that S ⊂ B(E ) and the Vj map into
an auxiliary Hilbert space K . In fact,

Vj : E →
2∨

i=0

ranVi.

Thus, replacing K by
∨2

i=0 ranVi , it can be assumed that Vj map into E 3 . Thus, if E
is finite dimensional, say S ⊂Mk (in which case there is no harm in assuming S = Mk ),
then it can be assumed that Vj map into an auxiliary space of dimension of at most 3k .
If E is an infinite dimensional space, then E 3 can be identified with E .

Now suppose that the map φ : Sym3 C → S is completely positive and S ⊂ B(E ) .
By Lemma 7, the Choi matrix Cφ is positive semidefinite and hence factors,

Cφ =

⎛⎝φ(E00) φ(E01) φ(E02)
φ(E10) φ(E11) φ(E12)
φ(E20) φ(E21) φ(E22)

⎞⎠=

⎛⎝V0

V1

V2

⎞⎠∗ (
V0 V1 V2

)
where Vj map E into an auxiliary Hilbert space. To complete the proof, observe that

Q̂φ (α,β ) = (V0 + αV1 + βV2)∗(V0 + αV1 + βV2). �

We now present a map on Sym3(C) that is positive but not completely positive.
By Lemma 8 this map produces a pencil that does not factor. The following theorem
can be found in [5].

THEOREM 6. (Choi) There exists a positive linear map Φ : Sym3(R)→ Sym3(R)
that does not admit an expression as Φ(A) = ∑V�

i AVi with 3×3 matrices Vi . The map

(α jk) jk �→ 2

⎛⎝α11 + α22 0 0
0 α22 + α33 0
0 0 α33 + α11

⎞⎠− (α jk) jk

is such an example.
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Choi’s map is not unital, since it sends the I to 3I . We correct this defect by
multiplying by a positive scalar.

We will show that a variation of this map is not completely positive.

PROPOSITION 4. The unital positve map Φ : Sym3(C) → Sym3(C) given by

(α jk) jk �→ 2
3

⎛⎝α11 + α22 0 0
0 α22 + α33 0
0 0 α33 + α11

⎞⎠− 1
3
(α jk) jk α jk ∈ C (34)

is not completely positive.

Proof. For a matrix A , let A denote the matrix whose entries are the conjugates
of the entries of A . The notation A∗ and A� will denote the conjugate transpose and
transpose of A respectively. Now suppose that Φ is completely positive and thus ex-
tends, via Arveson’s extention theorem [9], to a completely positive map also denoted
by Φ from M3(C) to M3(C) . Thus, CΦ , the Choi matrix of Φ, is positive semidefi-

nite. Consider the matrix C̃ = CΦ+C�
Φ

2 . We note that C̃ is the Choi matrix for some map

Ψ : M3(C) → M3(C) . From this point onward we will denote C̃ as CΨ . Since trans-
position is a positive map, CΨ is also a positive matrix and hence Ψ is a completely
positive map. Hence by Choi’s Theorem [4], there exist finitely many matrices (of the
appropriate size) such that, for A ∈ M3(C) ,

Ψ(A) = ∑
i

V ∗
i AVi. (35)

To be clear, writing CΦ = (Cjk)3
j,k=1 where the Ci j 3×3 are matrices, and using Cjk =

C∗
k j (since C = C∗ )

CΨ =
CΦ +C�

Φ
2

=
1
2

⎛⎝C11 C12 C13

C∗
12 C22 C23

C∗
13 C∗

23 C33

⎞⎠+
1
2

⎛⎝C�
11 (C∗

12)
� (C∗

13)
�

C�
12 C�

22 (C∗
23)

�
C�

13 C�
23 C�

33

⎞⎠ .

In particular,

CΨ =
CΦ +CΦ

2
. (36)

We first show that the map Ψ when restricted to Sym3(R) is the same map as Φ
restricted to Sym3(R) . Let Ejk be the standard matrix basis elements and note the

following basis for the symmetric complex matrices, {Ejk+Ek j
2 : 1 � j � k � 3} . For

i, j = 1,2,3, Φ(Ejk + Ek j) = Cjk +C∗
jk ∈ Sym3(R) by definition as seen from (34).

Hence

Cjk +C∗
jk = (Cjk +C∗

jk)
�.
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Thus,

Ψ(Ejk +Ek j) =
Cjk +(C∗

jk)
�

2
+

C∗
jk +C�

jk

2

=
Cjk +C∗

jk

2
+

(Cjk +C∗
jk)

�

2
=Cjk +C∗

jk = Φ(Ejk +Ek j).

Hence,
Ψ|Sym3(R) = Φ|Sym3(R).

By (36) CΨ is a real symmetric matrix. Since CΨ is positive it has a factorization
into two real matrices. This is equivalent to the fact that CΦ = ∑i w

�
i wi where each wi

is a 1× 9 matrix with real entries. Write wi = (xi
1,x

i
2,x

i
3) where each xi

j is a 1× 3
matrix. For 1 � i � 3, form the 3× 3 matrices Wi whose j -th row is xi

j . Note that

Ψ(Ej,k) = ∑iW
�
i E j,kWi and by linearity Ψ(A) = ∑iW

�
i AWi

Hence, the matrices Vi in the representation of Ψ in (35) can be replaced by real
matrices Wi and

Ψ(A) = ∑
i

W�
i AWi.

Since
Ψ|Sym3(R) = Φ|Sym3(R),

this is a contradiction of Theorem 6. �

PROPOSITION 5. For each c,d > 0 there exists a 3-isometric 2-tuple of invert-
ible operators (T,S) in the a class Fc,d such that the pencil Q̂T,S does not factor. In
particular, the 2-tuple (T,S) does not lift to a 2-tuple (J1,J2) in the class Jc,d .

Proof. Given c,d > 0, consider the following basis for Sym3(C) ,

B0,1 =

⎛⎝0 c 0
c 0 0
0 0 0

⎞⎠ ; B1,0 =

⎛⎝0 0 d
0 0 0
d 0 0

⎞⎠ ; B1,1 =

⎛⎝0 0 0
0 0 cd
0 cd 0

⎞⎠ ;

B0,0 =

⎛⎝1 0 0
0 0 0
0 0 0

⎞⎠ ; B0,2 =

⎛⎝0 0 0
0 c2 0
0 0 0

⎞⎠ ; B2,0 =

⎛⎝0 0 0
0 0 0
0 0 d2

⎞⎠ .

(37)

We note B0,0 = I− 1
c2 B0,2 − 1

d2 B2,0 . By Proposition 4 there exists a unital positive but
not completely positive linear map Φ : Sym3(C) → M3(C) . Thus,

0 � Φ

⎛⎝⎛⎝ 1 αc βd
αc α2c2 αβcd
βd αβcd β 2d2

⎞⎠⎞⎠= Φ

(
∑

0�i+ j�2
α iβ jBi, j

)
= ∑

0�i+ j�2

α iβ jΦ(Bi, j) = Q̂Φ(α,β ).

(38)
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Here we have used the notation in Lemma 8. By Lemma 8 the canonical pencil
Q̂Φ(α,β ) does not factor since Φ is not a completely positive map. Let

Q = I + ∑
0<i+ j�2

B̃i, j

where
B̃i, j = Φ(Bi, j).

Note

Q(α,β )− 1
c2 B̃0,2− 1

d2 B̃2,0 = ∑
0�i+ j�2

α jβ kΦ(Bi, j) = Q̂Φ(α,β ).

By Proposition 2, since Q̂(α,β ) � 0 we can construct a 2-tuple (T,S) in the class
Fc,d such that Q̂T,S(α,β ) does not factor. By Theorem 3, the 2-tuple (T,S) does not
lift. �

3.3. Strengthening the counter-example

While the counter-exampleof Propostion 5 answers the natural question of whether
2-tuples T in Fc,d always lift to a 2-tuple J in the class Jc,d , we will actually construct
a stronger counter-example. Given a quadratic pencil which does not factor we will
construct a 2-tuple of commuting 3-isometries that does not lift to a 2-tuple J in any of
the classes Jc,d . Let

Q(α,β ) = ∑
0�i+ j�2

α iβ jBi j � 0 for all (α,β ) ∈ R
2 (39)

be a not necessarily monic quadratic pencil with Bi j ∈ B(H) which does not factor.
The existence of such objects is given by Proposition 4. We begin with the following
lemma.

LEMMA 9. If Q(α,β ) does not factor in the form

Q(α,β ) = (V0 + αV1 + βV2)∗(V0 + αV1 + βV2)

and if Γ ∈ B(H) is positive semidefinite, then Q(α,β )−Γ does not factor in the form

Q(α,β )−Γ = (W0 + αW1 + βW2)∗(W0 + αW1 + βW2).

Proof. We prove the contrapositive. Accordingly, suppose

Q(α,β )−Γ = (W0 + αW1 + βW2)∗(W0 + αW1 + βW2),

in which case

Q(α,β ) = (W0 + αW1 + βW2)∗(W0 + αW1 + βW2)+ Γ.
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Since, Γ � 0, there exists Δ ∈ B(H) such that Γ = Δ∗Δ . Hence,

Q(α,β ) =
((

W0

Δ

)
+ α

(
W1

0

)
+ β

(
W2

0

))∗((
W0

Δ

)
+ α

(
W1

0

)
+ β

(
W2

0

))
. �

We now show there exists a monic pencil Q(α,β ) such that Q(α,β )− 1
c2 B2,0 −

1
d2 B0,2 does not factor for all c,d for which

Q− 1
c2 B2,0− 1

d2 B0,2 � 0 for all (α,β ) ∈ R
2.

THEOREM 7. For each c0,d0 > 0 there exists a monic quadratic pencil

Q(α,β ) = I + ∑
0<i+ j�2

α iβ jBi j

such that

(i)

Q(α,β )− 1

c2
0

B0,2− 1

d2
0

B2,0 � 0

for all (α,β ) ∈ R2

(ii) if c,d > 0 , then there does not exist an auxiliary Hilbert space K and operators
V0,V1,V2 ∈ B(H,K) such that

Q(α,β )− 1
c2 B0,2− 1

d2 B2,0 = (V0 + αV1 + βV2)∗(V0 + αV1 + βV2).

Proof. Let Q(α,β ) be the non-monic matrix valued pencil that does not factor,
i.e.

Q(α,β ) := Q̂Φ(α,β ) = Φ

(
∑

0�i+ j�2
α iβ jBi, j

)
where Φ is the map from Proposition 4 and Q̂Φ(α,β ) is the pencil defined by Equation
(38) in the proof of Proposition 5. The first step is to show that we can assume that Q
is monic and that there exists a δ > 0 such that

Q(α,β ) � δ I

for all α,β ∈ R . For an operator A ∈ B(H) the notation A � 0 will mean that for all
x ∈ H

〈Ax,x〉 � 0.

We start by considering the following pencil

Qε(α,β ) = Q(α,β )+ εI � 0.
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Here we need to choose ε > 0 so that the Q(α,β )+εI still does not factor. By Lemma
8 Q(α,β ) will factor if and only if the map Φ is completely positive. The map Φ is
completely positive if and only if its Choi matrix CΦ is positive semidefinite by Lemma
7. Since Φ is a unital map, and by definition of Q(α,β ) , we will have that Q(α,β )+εI
will not factor if CΦ + εI is not positive. Since CΦ is not positive in the first place, we
simply need to pick an ε > 0 small enough so that CΦ + εI is not positive. We note
that

Q(α,β ) = Φ

⎛⎝⎛⎝ 1 αc0 βd0

αc0 α2c2
0 αβc0d0

βd0 αβc0d0 β 2d2
0

⎞⎠⎞⎠
where c0 and d0 come from the choice of basis as in (37). Since Φ is a unital map

Qε(α,β ) = Φ

⎛⎝⎛⎝1+ ε αc0 βd0

αc0 α2c2
0 + ε αβc0d0

βd0 αβc0d0 β 2d2
0 + ε

⎞⎠⎞⎠ .

Let
Qε(α,β ) = ∑

0�i+ j�2
α iβ jB̃i, j.

In particular
Qε(0,0) = B̃00 � ε � 0.

Let Δ = B̃
− 1

2
0,0 � 0 and note that

Q̃ε(α,β ) := Δ∗[Q(α,β )+ εI]Δ � 0

and is monic. Now choose a δ > 0 such that εΔ∗Δ � δ I . Hence Q̃ε(α,β ) is monic
and Q̃ε(α,β ) � δ I .

With our assumptions validated from this point on we will assume we have a monic
matrix pencil Q(α,β ) such that

Q(α,β ) � δ I

for all (α,β ) ∈ R2 . Let

Q(α,β ) = I + ∑
0<i+ j�2

α iβ jBi, j.

For all (c,d) ∈ R2 such that

δ I �
(

1
c2 B0,2 +

1
d2 B2,0

)
the pencil Q is monic,

Q(α,β )− 1
c2 B0,2− 1

d2 B2,0 � 0,

and does not factor by Lemma 9. �
We summarize in the following proposition.
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PROPOSITION 6. There exists c0,d0 > 0 and a 3-isometric 2-tuple of invertible
operators (T,S) in the class Fc0,d0 such that (T,S) does not lift to any 2-tuple J in any
class Jc,d .

Proof. The proof follows from an application of Propositions 2 and 3 and Theorem
7. �

4. Spectral considerations and 3-symmetric operator tuples

Given a 2-tuple of 3-isometries in a class Fc,d that lifts to a 2-tuple of commuting
Jordan operators we will first show some control over the joint spectrum of the Jordan
2-tuple. Secondly, we will establish, by a holomorphic functional calculus argument, a
lifting theorem analogous to Theorem 3 holds for 3-symmetric 2-tuples.

4.1. Spectral considerations

Let σTay(T ) denote the Taylor spectrum of the tuple T of operators on a Hilbert
space. For an inviting exposition of the Taylor joint spectrum see [6].

PROPOSITION 7. Suppose T is a 2-tuple of invertible operators and c,d > 0 . If
T lifts to a 2-tuple J ∈ Jc,d , then σTay(T )⊆ σTay(J) . Moreover, in this case there exists
a 2-tuple J ∈ Jc,d such that T lifts to J and σTay(T ) = σTay(J) .

Let U = (U1,U2) be the unitary commuting tuple appearing in J = (J1,J2) . By
the form of J it is easy to see,

σ(Ui) = σ(Ji).

However a result involving the Taylor spectrum of U and J can be achieved.

PROPOSITION 8. For Jordan 2-tuple of the form (3)

σTay(U) = σTay(J)

where U = (U1,U2) is the 2-tuple of unitary operators appearing in J = (J1,J2) .

Proof. By Proposition 7, σTay(U) ⊆ σTay(J) . On the other hand, as seen in [6],
for operators A , B and C on Hilbert space,

σTay

((
A C
0 B

))
⊆ σTay(A)∪σTay(B).

In our case this shows that σTay(J) ⊆ σTay(U) and the proof is complete. �
The proof of Propostion 7 occupies the remainder of this subsection and is broken

down into a series of subresults.
For a compact set K , let co(K) denote the convex hull of K . If K ⊂ Cn is com-

pact, then, by Caratheodory’s Theorem, co(K) is also compact (and hence closed). For
a closed convex set K, let Ext(K) denote the set of extreme points of the K .
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LEMMA 10. The set of extreme points of co(T2) is T2 .

Proof. The convex hull of a cartesian product is the cartesian product of the convex
hulls. The set of extreme points of a cartesian product is the cartesian product of the
extreme points. Since the extreme points of co(T) = T the result follows. �

LEMMA 11. If K is a compact subset of T2 ⊂ C2, then

Ext(co(K)) = K.

Proof. Since K ⊂T2 , if z∈K , then z is an extreme point of co(T2) by Lemma 10
and therefore of co(K) . Hence K ⊂ Ext(co(K)) . On the other hand, Ext(co(K)) ⊂ K
for any compact subset K of C

n . �

DEFINITION 9. The joint approximate point spectrum for a 2-tuple T is defined
to be the set of points λ ∈ C

2 such that there exist unit vectors {xk} such that

‖(Ti−λi)xk‖→ 0 for i = 1,2.

We denote joint approximate point spectrum as σap(T ).

The following two lemmas are well known. Among the many references, see
[6, 5]. The theorem following these lemmas can be found in a paper of Wrobel [10].

LEMMA 12. The approximate point spectrum of a commuting tuple T of opera-
tors on Hilbert space lies in the Taylor spectrum of T .

LEMMA 13. The Taylor spectrum of a commuting tuple T of operators on Hilbert
space is nonempty and compact.

THEOREM 8. If T is a commuting tuple of operators on Hilbert space, then

Ext(co(σTay(T ))) = Ext(co(σap(T ))).

The following lemma is a first step in applying these results to the study of com-
muting 3-isometries.

LEMMA 14. Suppose T is a commuting 2-tuple of invertible operators on a Hilbert
space H and c,d > 0 and T lifts to a 2-tuple J ∈ Jc,d acting on the Hilbert space K ,
i.e. there is an isometry V : H → K such that

VT α = JαV

for every multi-index α . If λ ∈ σap(T ), then λ ∈ σap(J); i.e., σap(T ) ⊂ σap(J) .



LIFTING 3 -ISOMETRIC TUPLES 425

Proof. For i = 1,2,
V (Ti −λi) = (Ji −λi)V.

If ‖(Ti − λi)xk‖ → 0 as k → ∞ , then ‖V (Ti − λi)xk‖ → 0 as k → ∞ since V is an
isometry. Hence for the unit vectors yk = Vxk ,

‖(Ji−λi)Vxk‖→ 0

as k → ∞ . �
We are now in position to show σTay(T ) ⊆ σTay(J) . Since Ti and Ji are invertible

for i = 1,2, both σTay(T ) and σTay(J) are subsets of T2 , since for instance σTay(T ) ⊆
σ(T1)×σ(T2) ⊆ T2 . In particular, by Theorem 8 and Lemma 12,

σTay(A) = Ext(co(σTay(A))) = Ext(co(σap(A))) = σap(A),

where A is either T or J . An application of Lemma 14 now gives σTay(T ) ⊂ σTay(J),
completing the proof of the first part of Proposition 7.

We will now complete the proof of Proposition 7 by showing that we can alter
the 2-tuple J so that σTay(J) ⊆ σTay(T ) . We will state this as a proposition whose
proof will require several lemmas and occupy the remainder of this section. Suppose
T = (T1,T2) is a commuting tuple of invertible operators which lift to a commuting
tuple of invertible operators J = (J1,J2) ∈ Jc,d of the form (3) i.e. there exists an
isometry V such that

VT1T2 = J1J2V.

Let U = (U1,U2) be the tuple of unitary operators appearing in J . As in [8] we will
show that each Ui can be replaced with Wi = (I −P)Ui(I −P) , where P is the joint
spectral projection for the complement of σTay(T ) .

PROPOSITION 9. If a commuting tuple of invertible operators T lifts to a com-
muting tuple of operators J ∈ Jc,d , then there exists a tuple of commuting invertible
operators J = (J1,J2) ∈ Jc,d such that T lifts to J and σTay(T ) = σTay(J) .

Since the inclusion σTay(T ) ⊂ σTay(J) has already been established, it remains to
prove that J can be chosen in such a way that the reverse inclusion holds.

Assuming T1 and T2 are both invertible, by Theorem 3 there is a commuting 2-
tuple of unitary operators U1 and U2 acting on a Hilbert space F and an isometry
V : H → F ⊕F ⊕F such that

VTn
1 Tm

2 = Jn
1Jm

2 V

for all m,n ∈ N where the Ji have Ui as entries for i = 1,2. If σTay(T ) = T2, then
there is not much to prove since σTay(J)⊆ σTay(U)⊆T2 and the proof is complete. So
from this point onward we assume otherwise.

As shown in [8] given an arc A in the complement of the spectrum of a 3-isometry
T (σ(T ) ⊆ T), there is a holomorphic function f such that | f | � 1 on the arc A and
| f | < 1 on and inside Γ , where Γ is a curve containing the spectrum.

Let D denote the closed unit disk, {z ∈ C : |z| � 1} , in the complex plane C .
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LEMMA 15. Let p = (eiθ1 ,eiθ2) be a point of T2 in the complement of the Taylor
spectrum of T . If Ωi, for i = 1,2 , are open sets containing D and 2eiθi /∈Ωi, then there
exists an open set Op ⊂ T2 (open in the topology of T2 ) such that Op ∩σTay(T ) = /0
and a holomorphic function fp : Ω1 ×Ω2 → C such that | fp| � 1 on Op and | fp| < 1
on σTay(T ) . Moreover there exist holomorphic functions fpi : Ωi → C such that

fp(z1,z2) = fp1(z1) · fp2(z2).

Proof. Given p = (eiθ1 ,eiθ2) ∈ T2 consider the functions

hi : Ωi → C, hi(z) =
1

(2− e−iθiz)
for i = 1,2

and define h : Ω1×Ω2 → C by

h(z1,z2) = h1(z1) ·h2(z2) =
1

(2− e−iθ1z1)(2− e−iθ2z2)
.

We note that h(p) = 1 and |h(z)| < 1 whenever z �= p and z in the bidisk. Let K be a
compact subset of T2 not containing p and note |hn| → 0 uniformly on K as n → ∞.
Hence, |hN(z)| < 1

2 for some N large enough and all z ∈ σTay(T ) . Let C be a positive
number such that 1 <C < 2 and let Op be an open set disjoint from the Taylor spectrum
containing p such that C|hN | � 1 on Op . Such an open set exists by continuity. Now
define fp(z) = ChN(z) and note fp and Op satisfy the conditions of the lemma. It is
clear there exists a fpi for i = 1,2 such that fp(z1,z2) = fp1(z1) · fp2(z2) . �

We now choose Ω1 = Ω2 = 3
2D . Since each Ui is unitary we can define fi(Ui)

through the holomorphic functional calculus or by the power series functional calculus.
Of course both will give the same operator value for fi(Ui) . At the same time we may
define each fpi(Ji) via the power series calculus. It is straight forward to verify

fp1(J1) =

⎛⎝ fp1(U1) cU1 f ′p1
(U1) 0

0 fp1(U1) 0
0 0 fp1(U1)

⎞⎠ ,

fp2(J2) =

⎛⎝ fp2(U2) 0 dU2 f ′p2
(U2)

0 fp2(U2) 0
0 0 fp2(U2)

⎞⎠ .

Define fp(J) by
fp(J) = fp1(J1) · fp2(J2).

Similarly we may define fpi(Ti) and hence f (T ) by the power series functional calcu-
lus as well. We note that any other functional calculus used to define f (J) and f (T )
must agree with the values given by the power series calculus.

Now write with respect to the decomposition F ⊕F ⊕F

V =

⎛⎝V2

V1

V0

⎞⎠ .
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LEMMA 16. Let p ∈ T2 be in the complement of σTay(T ) with fp and Op ⊂ T2

as described in Lemma 15, then E(Op)V� = 0 for � = 0,1,2 where E is the joint
spectral measure for U .

Proof. We will surpress the p in the notation for the functions fp , fp1 , and fp2 ,
writing f , f1, f2 instead. By the holomorphic functional calculus we know f n

i (Ti) con-
verges to zero in the operator norm since each f n

i converges to 0 uniformly on the
Taylor spectrum for T . Since

V f n
i (Ti) = f n

i (Ji)V for i = 1,2,

f n
i (Ji)V also tends to 0 in operator norm. Hence f n(J)V also tends to 0 in the operator

norm. Let E be the unique joint spectral measure for the 2-tuple U such that

E(A×B) = E1(A)E2(B)

where Ei is the spectral measure for Ui , i = 1,2. Let P be the spectral projection for
U corresponding to Op ,

P =
∫

Op

dE = E(Op).

Consider, with respect to the decomposition K = F ⊕F ⊕F

0⊕0⊕P =

⎛⎝0 0 0
0 0 0
0 0 P

⎞⎠ ,

0⊕P⊕0 =

⎛⎝0 0 0
0 P 0
0 0 0

⎞⎠ ,

and

P⊕0⊕0 =

⎛⎝P 0 0
0 0 0
0 0 0

⎞⎠ .

Since f n(J)V converges to zero so do

V ∗ f n(J)∗(0⊕0⊕P)(0⊕0⊕P) f n(J)V,

V ∗ f n(J)∗(0⊕P⊕0)(0⊕P⊕0) f n(J)V,

and

V ∗ f n(J)∗(P⊕0⊕0)(P⊕0⊕0) f n(J)V.



428 B. RUSSO

By calculation

f n(J)∗(0⊕0⊕P)(0⊕0⊕P) f n(J)

=

⎛⎝ f n(U)∗ 0 0
∗ f n(U)∗ 0
∗ 0 f n(U)∗

⎞⎠⎛⎝0 0 0
0 0 0
0 0 P

⎞⎠⎛⎝ f n(U) ∗ ∗
0 f n(U) 0
0 0 f n(U)

⎞⎠
=

⎛⎝0 0 0
0 0 0
0 0 f n(U)∗P f n(U)

⎞⎠ .

It follows that P f n(U)V0 tends to 0 in operator norm. However, P f n(U) f n(U)P =
f ∗n(U)P f n(U), since P is the spectral projection associated with U . Consequently,

V ∗
0 P| f n|2PV0 = V ∗

0 f n(U)∗P f n(U)V0
‖·‖−→ 0.

But P| f n|2P � P since | f n| � 1 on the support Op of P . Thus PV0 = 0. Similarly,

V ∗ f n(J)∗(0⊕P⊕0)(0⊕P⊕0) f n(J)V
‖·‖−→ 0

and

V ∗
1 P| f n|2PV1 = V ∗

1 f n(U)∗P f n(U)V1
‖·‖−→ 0.

Hence by a similar argument PV1 = 0. Lastly since

V ∗ f n(J)∗(P⊕0⊕0)(P⊕0⊕0) f n(J)V
‖·‖−→ 0,

by using the fact that PV1 = PV0 = 0 and arguing similarly to the previous cases we
have that PV2 = 0. �

LEMMA 17. If A is a compact subset of T such that A∩ σTay(T ) = /0, then
E(A)V� = 0 for � = 0,1,2 .

Proof. Since A is covered by finitely many Opi , indexed by a finite set F we have

E(A)V� � E

( ⋃
pi∈F

Opi

)
V� � ∑

pi∈F
E(Opi)V�

hence E(A)V� = 0 for � = 1,2. �

Since the proof of the following lemma carries over from [8] with only superficial
modifications, we simply state the result here.

LEMMA 18. Suppose A1 ⊆ A2 ⊆ . . . is an increasing sequence of Borel subsets of
T

2 and let A = ∪ jA j . If E(Aj)V� = 0 for all j and � = 0,1,2 , then E(A)V� = 0 .
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The complement of σTay(T ) can be written as an increasing sequence of closed
(compact) sets. By an application of Lemmas 18 and 17

E(σTay(T )c)V� = 0, for � = 0,1,2.

Let P = E(σTay(T )c). Each Wi = (I−P)Ui(I−P) is unitary and

J1 =

⎛⎝W1 cW1 0
0 W1 0
0 0 W1

⎞⎠ , J2 =

⎛⎝W2 0 dW2

0 W2 0
0 0 W2

⎞⎠
have the appropriate form. Finally, by Proposition 8, σTay(J) = σTay(W ) ⊆ σTay(T ) .

4.2. 3-symmetric operators tuples

We will now go more in depth into using the holomorphic functional calculus for
T and J . For i = 1,2 let Ωi be a simply connected open subset of the plane. While the
power series functional calculus was sufficient previously, in the forth coming section
we will need to consider logarithms and a power-series approach is not viable. Given a
2-tuple of commuting operators T = (T1,T2) with each σ(Ti)⊆ Ωi , let gi , for i = 1,2,
be analytic functions. By use of the holomorphic functional calculus we can define the
operators gi(Ti) . By Runge’s Theorem there is a sequence of polynomials (si,n) which
converge uniformly on compact subsets of Ωi to gi for both i = 1,2. The sequences
of operators si,n(Ti) converge in norm to gi(Ti) for i = 1,2, by the standard properties
of the holomorphic functional calculus. Consider a 2-tuple of operators J = (J1,J2) of
the forms (3) with σ(Ui)⊂ Ωi for i = 1,2, where each Ωi is an open simply connected
subset of C . For the analytic functions gi defined on Ωi for i = 1,2, with polynomials
(si,n) converging uniformly,

g1(J1) = lims1,n(J1) =

⎛⎝g1(U1) cU1g′1(U1) 0
0 g1(U1) 0
0 0 g1(U1)

⎞⎠ ,

g2(J2) = lims2,n(J2) =

⎛⎝g2(U2) 0 dU2g′2(U2)
0 g2(U2) 0
0 0 g2(U2)

⎞⎠ .

For a normal operator T the operator gi(T ) is normal as well. Moreover, the spectrum
of gi(T ) is given by the spectral mapping theorem as gi(σ(T )) . Hence, given a tuple
J = (J1,J2) and holomorphic functions g1 and g2 we have a formula for g1(J1) and
g2(J2) as well as their respective spectra.

To get some information about the individual spectra, we will use the projection
property for the Taylor joint spectrum. As seen in Curto [6], let A and B be a n -tuple
and k -tuple respectively i.e. A = (A1, . . . ,An) and B = (B1, . . . ,Bk) . Let (A,B) denote
the tuple (C1, . . . ,Cn+k) where

Ci = Ai for i = 1, . . .n
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and
Ci = Bi−n for i = n+1, . . . ,n+ k.

The projection property for the Taylor joint spectrum is as follows,

π1,...,nσTay(A,B) = σTay(A)

and
πn+1,...,n+kσTay(A,B) = σTay(B)

where we define π1,...,n : Cn ×Ck → Cn , (z1, . . . ,zn,z1+n, . . . ,zn+k) �→ (z1, . . . zn) and
similarly for πn+1,...,n+k . For us this projection property implies

πiσTay(T1,T2) = σTay(Ti) = σ(Ti)

for i = 1,2. In the context of Proposition 9, if T = (T1,T2) lifts to a tuple J ∈ Jc,d ,
then there exists a Jordan tuple J ∈ Jc,d such that

σTay(J) = σTay(T ).

Since σTay(J1,J2) = σTay(T1,T2), by the projection property,

σ(Ji) = πiσTay(J1,J2) = πiσTay(T1,T2) = σ(Ti),

for j = 1,2. Let U = (U1,U2) be the unitary commuting tuple appearing in J =
(J1,J2) . Since it will be of relevance in the exposition to follow we recall for the
reader the equality

σ(Ui) = σ(Ji).

DEFINITION 10. A tuple of commuting operators T = (T1,T2) will be called a
commuting 3-symmetric tuple if there exist bounded operators Bj,k such that,

exp(is2T2)∗ exp(is1T1)∗ exp(is1T1)exp(is2T2) = I + ∑
0< j+k�2

s j
1s

k
2Bj,k

for all (s1,s2) ∈ R2 .

It is clear that if T = (T1,T2) is a commuting 3-symmetric tuple, then T =
(eiT1 ,eiT2) is a 3-isometric tuple.

THEOREM 9. Tuples of 3-symmetric operators (T1,T2) will lift to a 2-tuple
(J1,J2) of the forms

J1 =

⎛⎝A1 −ic 0
0 A1 0
0 0 A1

⎞⎠ J2 =

⎛⎝A2 0 −id
0 A2 0
0 0 A2

⎞⎠
where the Ai are self-adjoint commuting operators, if and only if the polynomial

Q̂T (α,β ) = I + αB1,0 + βB0,1 + αβB1,1 + α2B2,0 + β 2B0,2− 1
c2 B2,0− 1

d2 B0,2 � 0
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factors in the form,

Q̂T (α,β ) = (V0 + αV1 + βV2)∗(V0 + αV1 + βV2)

for some operators V0 , V1 and V2 in B(H) .

Proof. Consider commuting 2-tuples of 3-symmetric operators (T1,T2) whose
spectra lie in [a1,b1] and [a2,b2] respectively. We note that the Taylor joint spectrum
for (T1,T2) must be contained in [a1,b1]× [a2,b2] . Let G(z) = exp(iz) and let Si =
G([ai,bi]) . Suppose the length of each [ai,bi] is strictly less than 2π . In this case Si is
a proper subset of the unit circle T . For each i there exists Ωi ⊃ [ai,bi] and Ω∗i ⊃ Si ,
open simply connected subsets of C such that

G1 = G|Ω1 : Ω1 → Ω∗1

G2 = G|Ω2 : Ω2 → Ω∗2

are bi-analytic. For the operator 2-tuple of commuting 3-symmetric operators T =
(T1,T2) with σ(Ti) ⊆ [ai,bi] the operators Gi(Ti) are defined by the holomorphic
functional calculus and σ(Gi(Ti)) ⊆ Si ⊂ T . Let Ti = Gi(Ti) and suppose the com-
muting 3-isometric 2-tuple T = (T1,T2) lifts, i.e. there exists an isometry V and a
Jordan tuple J such that

VTn
1 Tm

2 = Jn
1Jm

2 V.

By Proposition 9 and the projection property there exist unitary operators W1 and W2

and an isometry V such that

VT1 =

⎛⎝W1 cW1 0
0 W1 0
0 0 W1

⎞⎠V = J1V

VT2 =

⎛⎝W2 0 dW2

0 W2 0
0 0 W2

⎞⎠V = J2V

where σ(Wi) = σ(Ti) . Again each Gi is bi-analytic in the neighborhood of the spec-
trum of each Ji hence

VT1 = VG−1
1 (T1) = G−1

1 (J1)V

VT2 = VG−1
2 (T2) = G−1

2 (J2)V.
(40)

Let Ai = G−1
i (Wi) and note (G−1

i )′(Wi) = −iW∗
i . Hence,

VT1 =

⎛⎝A1 −ic 0
0 A1 0
0 0 A1

⎞⎠V
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VT2 =

⎛⎝A2 0 −id
0 A2 0
0 0 A2

⎞⎠V,

with the Ai i = 1,2 being commuting self-adjoint operators.
If the spectrum of each Ti does not have length less than 2π we can do the same

analysis on the operators T̃i = tiTi where each ti is chosen so that σ(T̃i) is of length
less than 2π . As shown in [8] these are also 3-symmetric operators. The Taylor spec-
trum of the 3-symmetric tuple T̃ = (T̃1,T̃2) is contained in some [a1,b2]× [a2,b2]
where each [ai,bi] is of length less than 2π . Again T̃ = (exp(ıT̃1),exp(ıT̃2)) is a 3-
isometric tuple and suppose they lift by Theorem 3, i.e. there exists an isometry V and
Jordan tuple J̃ such that

VT̃ n
2 T̃ m

1 = J̃m
1 J̃n

2V

and moreover
VT̃i = J̃iV.

By applying the same argument as in (40) we have

V T̃i = J̃iV

and thus

VTi =
1
ti
J̃iV.

Note that T and T = exp(iT ) share the same operator pencil. We now need
only prove one additional statement, that with T1 = exp(iT1) and T2 = exp(iT2) that
T = (T1,T2)∈ Fc,d for some c,d > 0. However, this is rather simple. For (s1,s2)∈R2 ,
let

Q(s1,s2) := I + ∑
0< j+k�2

s j
1s

k
2Bj,k = exp(is2T2)∗ exp(is1T1)∗ exp(is1T1)exp(is2T2).

By definition,

exp(it2T2)∗ exp(it1T1)∗Q(s1,s2)exp(it1T1)exp(it2T2) = Q(s1 + t1,s2 + t2).

Hence by term comparison

exp(it2T2)∗ exp(it1T1)∗B0,2 exp(it1T1)exp(it2T2) = B0,2

and
exp(it2T2)∗ exp(it1T1)∗B2,0 exp(it1T1)exp(it2T2) = B2,0.

If c and d are large enough such that

I− 1
c2 B2,0− 1

d2 B0,2 � 0,

then

exp(it2T2)∗ exp(it1T1)∗
(

I− 1
c2 B2,0− 1

d2 B0,2

)
exp(it1T1)exp(it2T2) � 0.
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The existence of such c and d is easy enough to show, and thus T = (eiT1 ,eiT2) =
(T1,T2) ∈ Fc,d . �

In the context of Helton and Ball’s conjecture 1 we have established a necessary
and sufficient condition in the case {Tn} has cardinality two. Hence, any attempt to
solve this conjecture will be met with our factoring condition.
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