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MULTIPLIERS OF HILBERT SPACES OF ANALYTIC

FUNCTIONS ON THE COMPLEX HALF–PLANE
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Abstract. It follows, from a generalised version of Paley-Wiener theorem, that the Laplace
transform is an isometry between certain spaces of weighted L2 functions defined on (0,∞)
and (Hilbert) spaces of analytic functions on the right complex half-plane (for example Hardy,
Bergman or Dirichlet spaces). We can use this fact to investigate properties of multipliers and
multiplication operators on the latter type of spaces. In this paper we present a full character-
isation of multipliers in terms of a generalised concept of a Carleson measure. Under certain
conditions, these spaces of analytic functions are not only Hilbert spaces but also Banach alge-
bras, and are therefore contained within their spaces of multipliers. We provide some necessary
as well as sufficient conditions for this to happen and look at its consequences.

1. Introduction and notation

Banach spaces of analytic functions defined on the unit disk of the complex plane
and operators acting on them have been studied in great detail for the past hundred years
(most famous of them being the Hardy spaces Hp , [9], [20], [25]), and their properties
are well understood. Many of them can easily be applied to more general regions of the
complex plane, however it is not always possible if we also consider regions of infinite
measure, for example a complex half-plane with the Lebesgue area measure.

Let ν̃ be a positive regular Borel measure on [0,∞) satisfying the following (Δ2 )-
condition:

sup
r>0

ν̃[0,2r)
ν̃[0,r)

< ∞.

Let also ν be a positive regular Borel measure on C+ = [0,∞)× iR (the closed right
complex half-plane) given by dν = dν̃ ⊗dλ , where λ denotes the Lebesgue measure.
For 1 � p < ∞ a Zen space on C+ is the space

Ap
ν =
{

F : C+ −→ C analytic : ‖F‖p
Ap

ν
:= sup

ε>0

∫
C+

|F(z+ ε)|p dν(z) < ∞
}

.
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It was introduced in [22], and named after Zen Harper who constructed it in [17] and
[18]. Evidently A2

ν is a Hilbert space. There are several well-known examples of Zen
spaces, such as the Hardy spaces Hp(C+) (where ν̃ is the Dirac measure in 0) [9],
[20], [25], or the weighted Bergman spaces Bp

α(C+) (where dν̃(t) = tαdt, α > −1)
[10], [19]. In the Hilbertian setting, A2

ν spaces of functions on the complex half-plane
might be viewed as ”continuous” counterparts (in some sense) of spaces of analytic
functions on the complex unit disk. We notice that

‖ f‖2
H2(D) =

∞

∑
n=0

‖an‖2 ( f (z) =
∞

∑
n=0

anz
n ∈ H2(D))

or

‖ f‖2
B2

0(D) =
∞

∑
n=0

‖an‖2

n+1
( f (z) =

∞

∑
n=0

anz
n ∈ B2

0(D)).

Whereas

‖F‖2
H2(C+) =

∫ ∞

0
| f (t)|2 dt (F(z) =

∫ ∞

0
f (t)e−tz dt ∈ H2(C+), f ∈ L2(0,∞))

and

‖F‖2
B2

0(C+) =
∫ ∞

0
| f (t)|2 dt

t
(F(z) =

∫ ∞

0
f (t)e−tz dt ∈ B2

0(C+), f ∈ L2
1
t
(0,∞)).

It can be shown that the Laplace transform defines an isometric map from certain
weighted L2

w(0,∞) spaces into A2
ν [22], and thus indeed, the Zen spaces are half-plane

equivalents of some of the weighted Hardy spaces H2(β ) , that is the Hilbert space of
analytic functions on the disk with

‖ f‖2
H2(β ) =

∥∥∥∥∥
∞

∑
n=0

anz
n

∥∥∥∥∥
2

H2(β )

:=
∞

∑
n=0

‖an‖β (n)2 < ∞,

(for some real, positive sequence (β (n))∞
n=0 , for details see for example [6] or [7]);

linking the weighted L2 spaces on (0,∞) with spaces of analytic functions on the com-
plex half-plane in an analogous way as spaces of analytic functions on the complex unit
disk are linked to the weighted �2 spaces.

The Zen spaces, however, do not cover many important examples of spaces of
analytic functions on the complex half-plane, such as the Dirichlet space or Hardy-
Sobolev space, which are included in the definition of H2(β ) on the complex unit disk.
This is why in Section 2 of this paper we present a construction of more general Ba-
nach spaces, Ap(C+,(νn)m

n=0) , of which the Zen spaces are a special case (along with
Dirichlet, Hardy-Sobolev and many other types of spaces). We show the existence of an
isometry between closed subspaces A2

(m) of A2(C+,(νn)m
n=0) and weighted L2 spaces

on (0,∞) , again using the Laplace transform, and find their reproducing kernels. In
Section 3 we define and describe their multipliers, using the notion of a Carleson mea-
sure and its generalisations. The Carleson measures for the half-plane have important
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applications in control theory [21], particularly significant when dealing with controls
lying in weighted L2 spaces, with Laplace transforms in the spaces we consider in this
article (for example Hardy-Sobolev space) [22]. It was in fact control theory problems
in engineering and the role of Laplace-Carleson embeddings in controllability and ad-
missibility that lead towards the study of Zen spaces [23]. However, as said before, Zen
spaces are often insufficient when dealing with certain problems, and this is the main
motivation for studying A2

(m) spaces.

In Section 4 we investigate some Banach algebras contained within A2
(m) and show

that A2
(m) are sometimes, under certain conditions, Banach algebras themselves. And

finally in Section 5 we state some results about the ideals of the Banach algebra of
M (A2

(m)) . We also raise some important questions regarding the maximal ideal spaces

of M (A2
(m)) and the Corona Problem, which still remain to be answered.

Construction of the isometry in Section 2 was presented in [22], for the Laplace
transform and a Zen space. The characterisation of multipliers of the Dirichlet space on
the disk (D ) in terms of Carleson measures was initially given by David Stegenga in
[29], where Carleson measures for D are also described. And the idea of Carleson mea-
sures themselves was formed by Lennart Carleson in his solution of the Corona problem
[5] for H∞ . A good and very recently published reference for the Dirichlet space on
the disk (D ) is [12]. There is extensive literature devoted to the study of Banach al-
gebras, which are usually seen as spaces of bounded linear operators on some Hilbert
space, but Banach algebras which are also Hilbert spaces are not considered very often
(publications known to the author include a short article by Yu. N. Kuznetsova [24],
and some brief mentions in [4], [8] and [26]). We believe that the results presented
in Section 4 are mainly new, and were not published before, with the exception of the
equation (7) (which has been given in [4], [26] and [24]) and Theorem 5 (which has
been known, to some extent, for m = 0,1). The last theorem of Section 5 is a variant
of a well-known theorem from [20], but its proof had to be altered substantially, due to
difficulties arising from introduction of derivatives and unbounded domain.

2. Preliminaries

One of the most fundamental tools used to study Zen spaces with p = 2 is the fact
that the Laplace transform defines an isometric map L : L2

w(0,∞) −→ A2
ν , where

w(t) = 2π
∫ ∞

0
e−2rt dν̃(r) (t > 0)

(see [22]). In fact, we can extend this result to study more general spaces on the complex
half-plane.

THEOREM 1. The n-th derivative of the Laplace transform defines an isometric
map L(n) : L2

wn
(0,∞) −→ A2

ν , where

wn(t) = 2πt2n
∫ ∞

0
e−2rt dν̃(r) (t > 0). (1)
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Proof. The proof follows closely the proof of Proposition 2.3 in [22], using the
elementary relation between the Laplace and the Fourier transform (F), and that the
latter defines an isometry (by the Plancherel theorem [25]). Let f ∈ L2

wn
(0,∞) , gn(t) =

tn f (t) and z = r+ is ∈ C+ . Then

sup
ε>0

∫
C+

∣∣∣L(n)[ f ](z+ ε)
∣∣∣2 dν(z) = sup

ε>0

∫ ∞

0

∫ ∞

−∞

∣∣∣L(n)[ f ](r+ is+ ε)
∣∣∣2 dλ (s)dν̃(r)

= sup
ε>0

∫ ∞

0
‖(−1)nL[tn f ](r+ is+ ε)‖2

L2(iR) dν̃(r)

= sup
ε>0

∫ ∞

0
‖L[gn](r+ is+ ε)‖2

L2(iR) dν̃(r)

= sup
ε>0

∫ ∞

0

∥∥∥F[e−(r+ε)tgn

]∥∥∥2

L2(R)
dν̃(r)

= sup
ε>0

∫ ∞

0
2π
∥∥∥e−(r+ε)tgn

∥∥∥2

L2(0,∞)
dν̃(r)

= sup
ε>0

∫ ∞

0
|gn(t)|2 2π

∫ ∞

0
e−2(r+ε)t dν̃(r)dt

(1)
=
∫ ∞

0
| f (t)|2 wn(t)dt. �

This result allows us to generalise the notion of a Zen space, defining a new Hilbert
space. First, let (ν̃n)m

n=0 be a sequence (not necessarily finite) of positive regular Borel
measures on [0,∞) satisfying the (Δ2)-condition and let νn be a measure on C+ given
by dνn = dν̃n ⊗dλ (where λ is as above, the Lebesgue measure). Set

Ap (C+, (νn)m
n=0) =

{
F : C+ −→ C : F (n) ∈ Ap

νn , ∀0 � n � m
}

.

It is clearly a Banach space, with respect to the norm given by

‖F‖Ap(C+,(νn)mn=0) :=

(
m

∑
n=0

∥∥∥F(n)
∥∥∥p

Ap
νn

)1/p (
F ∈ Ap

(m)

)
.

Analogously, if p = 2, it is a Hilbert space, with the inner product given by

〈F, G〉A2(C+,(νn)mn=0) :=
m

∑
n=0

〈
F(n), G(n)

〉
A2

νn

∀F, G ∈ A2 (C+, (ν̃n)m
n=0) .

and as a consequence of the previous theorem, the Laplace transform defines an iso-
metric map L : L2

w(m)
(0,∞) −→ A2

(
C+, (νn)m

n=0

)
, where

w(m)(t) :=
m

∑
n=0

wn(t) and wn(t) := 2πt2n
∫ ∞

0
e−2rt dν̃n(r) (t > 0).

We shall thereby restrict our attention to

A2
(m) := L

(
L2

w(m)
(0,∞)

)
⊆ A2 (C+, (νn)m

n=0) ,
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where the inclusion becomes equality if and only if L is a surjective map. It is the
case, for example, when ν̃0 = δ0 (the Dirac delta function at 0), by Paley-Wiener The-
orem [9], [20], [25], or dν̃0(r) = rαdr,(α > −1) [11], [16]. The surjectivity of L :
L2

w(0,∞) −→ A2
ν is discussed in [17]. A2

(m) is a closed subspace of A2
(
C+, (νn)m

n=0

)
,

and hence a Hilbert space on its own right. It is in fact a reproducing kernel Hilbert
space, and we can easily find its kernels. Given F = L[ f ] ∈ A2

(m) , we have

F(z) =
∫ ∞

0
f (t)

e−tz

w(m)(t)
w(m)(t)dt

=

〈
f (t),

e−tz

w(m)(t)

〉
L2

w(m)
(0,∞)

Thm 1=

〈
F(ζ ),L

[
e−tz

w(m)(t)

]
(ζ )

〉
A2

(m)

.

So, by the uniqueness of reproducing kernels [2], [27], we have that the reproducing
kernel of A2

(m) at z ∈ C+ is given by

k
A2

(m)
z (ζ ) :=

∫ ∞

0

e−t(ζ+z)

w(m)(t)
dt. (2)

This kernel coincides with the reproducing kernel of A2(C+, (νn)m
n=0) if and only if

L is surjective, which extends the Paley-Wiener theorem to more general spaces of
analytic functions defined on the half-plane, and it is clear that L is onto in case of
Hardy or weighted Bergman spaces, and consequently in case of any space contained
within them (in subset sense), by Theorem 1.

3. Multipliers

One of the main advantages of introducing the notion of the space A2
(m) is that it is

a generalisation of the Dirichlet space on the right complex half-plane (amongst many
others). Recall that a function F is said to be in the Dirichlet space D(C+) if

‖F‖2
D(C+) := ‖F‖2

H2(C+) +
∫

C+

∣∣F ′(z)
∣∣2 dz < ∞.

So if ν̃0 = 1
2π δ0 (Dirac delta at 0) and ν̃1 is the Lebesgue measure (with weight 1/π ),

then indeed A2
(1) = D(C+) . Therefore we may often adopt tools used in the study of

the latter space (usually defined on the unit disk of the complex plane though), to study
more general examples.

We define

M (A2
(m)) :=

{
h : C+ −→ C : hF ∈ A2

(m), ∀F ∈ A2
(m)

}
,
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that is the space of multipliers of A2
(m) . Clearly if h ∈ M (A2

(m)) , then it must be ana-

lytic (since A2
(m) �= {0} ). For each h ∈ M (A2

(m)) we can also define the multiplication

operator, Mh ∈B(A2
(m)) (i.e. the Banach algebra of bounded linear operators on A2

(m) ),

by MhF := hF, F ∈ A2
(m) . We may associate the space of multipliers with the space of

multiplication operators, equipping it with the multiplier norm

‖h‖M (A2
(m))

:= ‖Mh‖B(A2
(m))

= sup
‖F‖

A2
(m)

�1
‖hF‖A2

(m)
.

The following two lemmata are well-known and evidently hold for any reproduc-
ing kernel Hilbert space (see for example Theorems 5.1.4 and 5.1.5 from [12] in case
of D ).

LEMMA 1. Let Mh be a multiplication operator on A2
(m) . Then(

M∗
hk

A2
(m)

z

)
(ζ ) = h(z)k

A2
(m)

z (ζ ).

Proof. Let F ∈ A2
(m) .〈

F, M∗
h(k

A2
(m)

z )
〉

=
〈

Mh(F), k
A2

(m)
z

〉
= h(z)F(z) =

〈
F, h(z)k

A2
(m)

z

〉
,

and since it holds for all F in A2
(m) , we can deduce the desired result. �

LEMMA 2. If h ∈ M (A2
(m)) , then h is bounded and ‖h‖H∞ � ‖h‖M (A2

(m))
.

Proof. Let h∈M (A2
(m)) . Then M∗

h is a bounded operator on A2
(m) , so its eigenval-

ues are bounded, and of modulus no bigger than ‖Mh‖B(A2
(m))

. By the previous lemma it

follows that the values of h are bounded and of modulus no more than ‖h‖M (A2
(m))

. �

These results used to prove the following theorem, characterising the multipliers
of A2

(m) . Versions of this theorem for Hardy and Bergman spaces are obvious (see
for example Proposition 1.13 in [1]) and can easily be extended to all Zen spaces.
The version for the Dirichlet space is given in [12] (Theorem 5.1.7), and describes
multipliers using Carleson measures. Recall that a positive Borel measure μ on Ω ⊆C

is called a Carleson measure for a Hilbert space H of (complex-valued) functions
defined on Ω if there exists a constant C such that∫

Ω
| f |2 dμ � C‖ f‖2

H ( f ∈ H ).

Let us now state and prove the characterisation of multipliers for the general case,
A2

(m) .
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THEOREM 2.

1. M (A2
(0)) = H∞(C+) and ‖h‖M (A2

(0))
= ‖h‖H∞(C+) .

2. If, for all 0� k � n � m < ∞ , μn,k , given by dμn,k(z) :=
∣∣∣h(k)

∣∣∣2 dνn , is a Carleson

measure for A2
νn−k

, then h ∈ M (A2
(m)) .

3. If 1 � m < ∞ , then h∈M (A2
(m)) if and only if for all F ∈A2

(m) and all 1 � n � m
there exists cn > 0 such that

∫
C+

∣∣∣∣∣
n

∑
k=1

(
n
k

)
F(n−k)h(k)

∣∣∣∣∣
2

dνn � cn ‖F‖2
A2

(m)
. (3)

In particular, if m = 1 , then h ∈ M (A2
(1)) if and only if the measure μ on C+ ,

defined by dμ = |h′(z)|2dν1 , is a Carleson measure for A2
(1) .

Proof. The first part is obvious. For the second, let F ∈ A2
(m) , then there exist

constants cn,k , for 0 � k � n � m , such that

‖Fh‖2
A2

(m)
=

m

∑
n=0

∫
C+

∣∣∣(Fh)(n)
∣∣∣2 dνn

� 2m
m

∑
n=0

n

∑
k=0

(
n
k

)2 ∫
C+

∣∣∣F(n−k)h(k)
∣∣∣2 dνn

� 2m
m

∑
n=0

n

∑
k=0

(
n
k

)2

cn,k

∥∥∥F (n−k)
∥∥∥2

A2
νn−k

< ∞.

For the last part suppose that (3) holds for some h . Then

‖Fh‖2
A2

(m)
=

m

∑
n=0

∫
C+

∣∣∣(Fh)(n)
∣∣∣2 dνn

�
m

∑
n=0

∫
C+

∣∣∣∣∣
n

∑
k=0

(
n
k

)
F(n−k)h(k)

∣∣∣∣∣
2

dνn

(3)
� 2

m

∑
n=0

(
‖h‖2

H∞(C+)

∫
C+

∣∣∣F (n)
∣∣∣2 dνn + cn‖F‖2

A2
(m)

)

= 2

(
‖h‖2

H∞(C+) +
m

∑
n=0

cn

)
‖F‖2

A2
(m)

< ∞,
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thus h ∈ M (A2
(m)) . Conversely, suppose that h ∈ M (A2

(m)) . Then

∫
C+

∣∣∣∣∣
n

∑
k=1

(
n
k

)
F(n−k)h(k)

∣∣∣∣∣
2

dνn =
∫

C+

∣∣∣(Fh)(n)−F(n)h
∣∣∣2 dνn

� 2

(
‖Fh‖2

A2
(m)

+‖h‖2
H∞(C+) ‖F‖2

A2
(m)

)
� 2
(
‖Mh‖2 +‖h‖2

H∞(C+)

)
‖F‖2

A2
(m)

. �

4. Banach algebras

In an analogous way as in the previous section we can define the space of multi-
pliers M (H ) for an arbitrary Hilbert space of analytic functions H . If H is a re-
producing kernel Hilbert space, then M (H ) is a unital Banach subalgebra of B(H ) ,
which is closed in the weak operator topology (see [27], Corollary 5.24, p. 79). It is
clear that unlike M (D)⊂D , M (A2

(m)) is never a subset of A2
(m) (since constant func-

tions are always in M (H ) , but can never be in A2
(m) ). So we may ask a question: is

it possible to have the reverse inclusion, i.e. A2
(m) ⊂ M (A2

(m))? And if so, what criteria
need to be satisfied? It turns out that it is possible. We can choose measures ν̃0, . . . , ν̃m

such that A2
(m) is a Banach algebra and hence, being closed under multiplication, it

must be a (proper) subset M (A2
(m)) . It was said above that A2

(m) is a reproducing ker-

nel Hilbert space. We now want to find (νn)m
n=0 such that A2

(m) is also a Banach algebra.
Let us start with the following observation.

THEOREM 3. Let H be a Hilbert space of complex-valued functions defined on
a domain Ω ⊆ C , which is also a Banach algebra with respect to pointwise multipli-
cation. Then H is a reproducing kernel Hilbert space, and if kz is the reproducing
kernel of H at z ∈ Ω , then

sup
z∈Ω

‖kz‖H � 1, (4)

and consequently all elements of H are bounded.

Proof. First, note that the evaluation functional Eλ : H −→ C, f
Eλ�→ f (λ ) is

bounded for every λ ∈ Ω , since it is a multiplicative functional on a Banach algebra
H and hence ‖Eλ‖ � 1 (see [3], §16, Proposition 3, p. 77), so H is a reproducing
kernel Hilbert space (see [2], [27]). Let kz denote the reproducing kernel of H at
z ∈ Ω . Then we have

‖kz‖2
H = |kz(z)| � sup

ζ∈Ω
|kz(ζ )| . (5)
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Also, by the Cauchy-Schwarz inequality and the fact that H is a Banach algebra, we
get

|kz(ζ )|∥∥kζ
∥∥2

H
=
∣∣kz(ζ )kζ (ζ )

∣∣
=
∣∣〈kzkζ , kζ

〉∣∣
�
∥∥kzkζ

∥∥
H

∥∥kζ
∥∥

H

� ‖kz‖H

∥∥kζ
∥∥2

H
,

and since it holds for all z,ζ ∈ Ω , after canceling
∥∥kζ
∥∥2

H
and taking the supremum,

we get
sup
ζ∈Ω

|kz(ζ )| � ‖kz‖H . (6)

From (5) and (6) we get

‖kz‖2
H � sup

ζ∈Ω
|kz(ζ )| � ‖kz‖H

and consequently
‖kz‖H � 1.

And for any f ∈ H we also have

sup
z∈Ω

| f (z)| = sup
z∈Ω

|〈 f , kz〉| � ‖ f‖H . �

THEOREM 4. If A2
(m) is a Banach algebra then

∫ ∞

0

dt
w(m)(t)

� 1,

and therefore

L2
w(m)

(0,∞) ⊆ L1(0,∞) and A2
(m) ⊆ M (A2

(m))∩H∞(C+)∩C0(iR).

Conversely, if for all t > 0 (
1

w(m)
∗ 1

w(m)

)
(t) � 1

w(m)(t)
, (7)

then A2
(m) is a Banach algebra.

Proof. Suppose that A2
(m) is a Banach algebra, then by the previous theorem

∫ ∞

0

1
w(m)(t)

dt = sup
z∈C+

∫ ∞

0

e−2Re(z)t

w(m)(t)
dt

(2)
= sup

ζ∈C+

∥∥∥∥kA2
(m)

ζ

∥∥∥∥
A2

(m)

(4)
� 1. (8)
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By Hölder’s inequality we also get

∣∣∣∣∫ ∞

0
f (t)e−tz dt

∣∣∣∣� ∫ ∞

0
| f (t)| dt

(8)
�
(∫ ∞

0
| f (t)|2 w(m)(t)dt

) 1
2

,

and on the boundary

F(Im(z)) =
∫ ∞

0
f (t)e−i Im(z)t dt ∈ C0(iR).

The converse follows from the fact that multiplication in A2
(m) is equivalent to convolu-

tion in L2
w(m)

(0,∞) , for which the sufficient condition to be a Banach algebra was given
in [26] and in [4] (Lemma 8.11) and its proof is quoted here. Suppose that (7) holds for
all t > 0. Using Hölder’s inequality and that (L1(0,∞),∗) is a Banach algebra [8], we
get

‖ f ∗ g‖2
L2

w(m)
(0,∞) =

∫ ∞

0

∣∣∣∣∫ t

0
f (τ)g(t − τ)dτ

∣∣∣∣2 w(m)(t)dt

�
∫ ∞

0

∫ t

0
| f (τ)|2 w(m)(τ) |g(t− τ)|2 w(m)(t − τ)dτ

×
∫ t

0

dτ
w(m)(τ)w(m)(t− τ)

w(m)(t)dt

=
∫ ∞

0
(| f |2 w(m) ∗ |g|2 w(m))(t)

(
1

w(m)
∗ 1

w(m)

)
(t)w(m)(t)dt

(7)
�
∥∥∥| f |2 w(m)

∥∥∥
L1(0,∞)

∥∥∥|g|2 w(m)

∥∥∥
L1(0,∞)

= ‖ f‖2
L2

w(m)
(0,∞)‖g‖2

L2
w(m)

(0,∞)

for all f ,g in L2
w(m)

(0,∞) , and hence A2
(m) is a Banach algebra. �

EXAMPLE 1. H2(C+), B2
α(C+) are not Banach algebras. In fact, no Zen space

can be a Banach algebra, since

w0(t)
defn= 2π

∫ ∞

0
e−2rt dν̃0(r)

is a decreasing function. D(C+) is not a Banach algebra either. The above necessary
condition is a good tool in disqualifying given A2

(m) from being a Banach algebra. The
sufficient condition is somehow less useful in producing examples of Banach algebras
and it was not even clear if they existed. They do, and there is an alternative way to
produce them.
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THEOREM 5.

1. A2
ν ∩H∞(C+) is a Banach algebra with norm given by

‖F‖A2
ν∩H∞(C+) := ‖F‖H∞(C+) +‖F‖A2

ν
(∀F ∈ A2

ν ∩H∞(C+)).

2. Suppose that for all 1 � k < n � m−1 < ∞ and all t > 0 we have∫ ∞

0
e−2rt dν̃n(r) �

∫ ∞

0
e−2rt dν̃n−k(r), (9)

then

Algm :=
m−1⋂
n=0

{
F ∈ A2

(m) : F (n) ∈ H∞(C+)
}

is a Banach algebra with respect to the norm given by

‖F‖Algm
:=

m−1

∑
n=0

∥∥∥F(n)
∥∥∥

H∞(C+)

n!
+

m

∑
n=0

∥∥∥F (n)
∥∥∥

A2
νn

n!
.

Proof. Those are clearly Banach spaces. For all F and G in A2
ν ∩H∞(C+)

‖FG‖A2
ν∩H∞(C+)

defn= ‖FG‖H∞(C+) +‖FG‖A2
ν

� ‖F‖H∞(C+) ‖G‖H∞(C+) +‖F‖H∞(C+) ‖G‖A2
ν

�
(
‖F‖H∞(C+) +‖F‖A2

ν

)(
‖G‖H∞(C+) +‖G‖A2

ν

)
defn= ‖F‖A2

ν∩H∞(C+) ‖G‖A2
ν∩H∞(C+) ,

proving 1. To prove 2., let F and G be in Algm , and let

fn =

∥∥∥F(n)
∥∥∥

H∞(C+)

n!
for 0 � n < m and fm = 0,

f ′n =

∥∥∥F(n)
∥∥∥

A2
νn

n!
,

gn =

∥∥∥G(n)
∥∥∥

H∞(C+)

n!
for 0 � n < m and gm = 0,

g′n =

∥∥∥G(n)
∥∥∥

A2
νn

n!
.

Then (9) implies ∫
C+

∣∣∣F (n−k)
∣∣∣2 dνn �

∫
C+

∣∣∣F(n−k)
∣∣∣2 dνn−k,
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and then

‖FG‖Algm

defn=
m−1

∑
n=0

∥∥∥(FG)(n)
∥∥∥

H∞(C+)

n!
+

m

∑
n=0

∥∥∥(FG)(n)
∥∥∥

A2
νn

n!

�
m−1

∑
n=0

1
n!

n

∑
k=0

(
n
k

)∥∥∥F(n−k)
∥∥∥

H∞(C+)

∥∥∥G(k)
∥∥∥

H∞(C+)

+
m

∑
n=0

1
n!

n

∑
k=0

(
n
k

)(∫
C+

∣∣∣F(n−k)G(k)
∣∣∣2 dνn

)1/2

�
m−1

∑
n=0

n

∑
k=0

∥∥∥F (n−k)
∥∥∥

H∞(C+)

(n− k)!

∥∥∥G(k)
∥∥∥

H∞(C+)

k!
+‖F‖A2

ν0
‖G‖H∞(C+)

+
m

∑
n=1

1
n!

n−1

∑
k=0

(
n
k

)∥∥∥F(n−k)
∥∥∥

A2
νn−k

∥∥∥G(k)
∥∥∥

H∞(C+)

+
m

∑
n=1

1
n!

‖F‖H∞(C+)

∥∥∥G(n)
∥∥∥

A2
νn

=
m−1

∑
n=0

n

∑
k=0

fn−kgk + f ′0g0 +
m

∑
n=1

n−1

∑
k=0

f ′n−kgk + f0
m

∑
n=1

g′n

�
m

∑
n=0

n

∑
k=0

( fn−kgk + f ′n−kgk + fn−kg
′
k + f ′n−kg

′
k)

=

[
m

∑
n=0

(
fn + f ′n

)][ m

∑
n=0

(
gn +g′n

)]
defn= ‖F‖Algm

‖G‖Algm
,

as required. �

THEOREM 6. Let m ∈ N and let (νn)m
n=0 be a finite sequence of positive regular

Borel measures. Suppose that for all 1 � k < n � m−1 and all t > 0 (9) holds (up to
a constant). If ∫ ∞

0

dt
wm−1(t)+wm(t)

� 1 (10)

then there exists a constant C > 0 such that

(
A2

(m),C‖·‖A2
(m)

)
is a Banach algebra.

Proof. Given 0 � n � m , let

B2
(m−n) =

{
G : C+ −→ Canalytic : ‖G‖2

B2
(m−n)

=
m−n

∑
k=0

∫
C+

∣∣∣G(k)
∣∣∣2 dνn+k < ∞

}
,
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(so it is a truncated A2
(m) space, with first n measures removed). Note that if F ∈ A2

(m) ,

then F(n) is in B2
(m−n) and for all z ∈ C+

∣∣∣F (n)(z)
∣∣∣2 =

∣∣∣∣
〈

F (n), k
B2

(m−n)
z

〉∣∣∣∣2 (2)
�
∥∥∥F (n)

∥∥∥2

B2
(m−n)

∫ ∞

0

e−2t Re(z)

wn(t)+ . . .+wm(t)
dt,

so clearly

∥∥∥F(n)
∥∥∥2

H∞(C+)
�
∥∥∥F (n)

∥∥∥2

B2
(m−n)

∫ ∞

0

e−2t Re(z)

wm−1(t)+wm(t)
dt

(10)
� ‖F‖2

A2
(m)

for all 0 � n � m− 1. Now let F, G ∈ A2
(m) and let dν ′

n := n!dνn . Then for any
0 � k � m

∥∥∥(FG)(k)
∥∥∥2

A2
νk

�
m−1

∑
n=1

‖(FG)(n)‖H∞(C+)

n!
+

m

∑
n=1

‖(FG)(n)‖A2
ν′n

n!

Thm 5
�

⎛
⎝m−1

∑
n=1

‖F(n)‖H∞(C+)

n!
+

m

∑
n=1

‖F(n)‖A2
ν′n

n!

⎞
⎠

×
⎛
⎝m−1

∑
n=1

‖G(n)‖H∞(C+)

n!
+

m

∑
n=1

‖G(n)‖A2
ν′n

n!

⎞
⎠

�
(

m

∑
n=1

‖F(n)‖A2
νn

)(
m

∑
n=1

‖G(n)‖A2
νn

)

� ‖F‖A2
(m)
‖G‖A2

(m)
,

summing the above expression over all k between 0 and m and taking the square roots
proves the claim. Or, to be precise, by multiplying the weights by appropriate constants,
we can assure that A2

(m) is a Banach algebra. �

COROLLARY 1. A2
(1) is a Banach algebra (after possibly adjusting its norm/weights)

if and only if ∫ ∞

0

dt
w(1)(t)

< ∞.

Proof. It follows from Theorems 4 and 6. �

EXAMPLE 2. If ν̃0 = ν̃1 = δ0 , then A2
(1) (that is a Hardy-Sobolev space) is a

Banach algebra, since
1
2π

∫ ∞

0

dt
1+ t2

=
1
4
.
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It is easy to see that no adjustment in norm is necessary, as for any F, G ∈ A2
(1) we have

‖FG‖2
A2

ν0
+‖(FG)′‖2

A2
ν1

�
‖F‖2

H∞(C+)‖G‖2
A2

ν0
+‖G‖2

H∞(C+)‖F‖2
A2

ν0

2

+2‖F‖2
H∞(C+)‖G′‖2A2

ν1
+2‖G‖2

H∞(C+)‖F ′‖2
A2

ν1

� ‖F‖2
H∞(C+)

⎛
⎝‖G‖2

A2
ν0

2
+2‖G′‖2A2

ν1

⎞
⎠

+‖G‖2
H∞(C+)

⎛
⎝‖F‖2

A2
ν0

2
+2‖F ′‖2A2

ν1

⎞
⎠

� 1
4
‖F‖2

A2
(1)
·2‖G‖2

A2
(1)

+
1
4
‖G‖2

A2
(1)
·2‖F‖2

A2
(1)

= ‖F‖2
A2

(1)
‖G‖2

A2
(1)

EXAMPLE 3. If ν̃0 = δ0 and dν̃1(r) = rαdr (−1 < α < 0) , then A2
(1) is a Banach

algebra.

5. Spectra and ideals

Recall that the spectrum of an element a of an algebra A over C is the set

σ(A,a) :=
{

λ ∈ C : (a−λ )−1 /∈ A
}

if A is unital, and

σ(A,a) := {0}∪{λ ∈ C : a+ λb−ab �= 0, ∀b ∈ A} .

otherwise. The spectral radius, r(a), of a is defined by

r(a) := sup{λ ∈ σ(A,a)} .

It is well known that
sup

ϕ∈M(A)
|φ(a)| = r(a),

where M(A) is the maximal ideal space of A , i.e. the set of algebra homomorphisms
defined on A (for details, see for example [3]).

THEOREM 7.

1. If h ∈ M (A2
(m)) , then

h(C+) ⊆ σ(M (A2
(m)),h),

with equality at least for m � 1 .
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2. If F ∈ A2
(m) , then F−1 /∈ A2

(m) .

Proof. Let h ∈ M (A2
(m)) . We have that (h− λ )−1 ∈ H∞(C+) , for some λ ∈

C , if and only if infz∈C+ |h(z)−λ | > 0, and consequently σ(H∞(C+),h) = h(C+) .
If λ ∈ σ(H∞(C+),h) , then (h− λ )−1 /∈ H∞(C+) ⊇ M (A2

(m)) , so clearly h(C+) =
σ(H∞(C+),h) ⊆ σ(M (A2

(m)),h) . For the reverse inclusion recall that M (A2
(0)) =

H∞(C+) , and also observe that if h−1 ∈ H∞(C+) , then

∫
C+

∣∣∣∣
(

F
h

)′∣∣∣∣2 dν1 �
(∥∥∥∥1

h

∥∥∥∥2

H∞(C+)

∫
C+

∣∣h′F∣∣2 dν1 +‖h‖2
H∞(C+)

)∫
C+

∣∣F ′∣∣2 dν1

(3)
�
(∥∥∥∥1

h

∥∥∥∥2

H∞(C+)
+‖h‖2

H∞(C+)

)
‖F‖2

A2
(1)

< ∞.

That is h−1 ∈ M (A2
(1)) . For the second part, note that for every F ∈ A2

(m) and each
ε > 0 there exists a domain Ωε ⊆ C+ with infinite measure, such that |F(z)| < ε , for
all z ∈ Ωε , but then |1/F(z)| > ε on the same region, so it cannot be in A2

(m) . �

For the remaining part of this paper we shall assume that A2
(m) is a Banach algebra.

REMARK 1. If A2
(m) is an algebra, then it must, by definition, be an ideal in

M (A2
(m)) . A natural question to ask here is: whether it could be a maximal ideal.

If that was the case, then it would be the kernel of an algebra homomorphism, so
codimM (A2

(m))
A2

(m) = 1, and since A2
(m) ⊂A2

(m)+C⊆M (A2
(m)) , we must have M (A2

(m))=

A2
(m) +C . Conversely A2

(m) +C is the canonical unitisation of A2
(m) , so if M (A2

(m)) =
A2

(m) +C , then A2
(m) must be a maximal ideal there. In the simplest case, when m = 1

and ν0 = ν1 we have that{
g ∈ H∞(C+) : g′ ∈ H∞(C+)

}⊆ M (A2
(1)),

so A2
(1) cannot be a maximal ideal (take for example e−z /∈ A2

(m) + C , which is obvi-
ously a multiplier). It still remains unclear whether there exists a sequence of measures
(νn)m

n=0 such that A2
(m) would be a maximal ideal in the space of its multipliers.

THEOREM 8. Suppose that for each a > 0 there exists K > 0 such that w(m)(t) �
Keat , for all t > 0 . Let π : M(A2

(m)) −→ D (the closed unit disk of the complex plane)
be given by

π(ϕ) = ϕ
(

1− z
1+ z

)
(ϕ ∈ M(M (A2

(m))))

(that is, π is the Gel’fand transform of the function (1− z)/(1+ z) . Then

1. π is surjective.
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2. If m = 1 or (ν̃n)m
n=0 satisfy (9), then π is injective over the open unit disk D and

(π |D)−1 (that is, the inverse of the restriction of π to D in its image) maps D

homeomorphically onto an open subset Δ ⊂ M(M (A2
(m))) .

Proof. First, note that, for all α ∈ C+ , 1
z+α is in A2

(m) , since

∫ ∞

0

∣∣e−αt
∣∣2 w(m)(t)dt �

∫ ∞

0
e−t Re(α) dt =

1
Re(α)

so e−αt ∈ L2
w(m)

(0,∞) , and hence

1− z
1+ z

=
2

1+ z
−1 ∈ A2

(m) +C ⊆ M (A2
(m)).

We know that σ
(
M (A2

(m)),
1−z
1+z

)
⊇σ

(
H∞(C+), 1−z

1+z

)
. And if

(
1−z
1+z −λ

)−1 ∈H∞(C+) ,
for some λ ∈ C , then(

1− z
1+ z

−λ
)−1

=
1+ z

1−λ − z(1+ λ )
=

1
1+ λ

[
− 2

1+ λ

(
z− 1−λ

1+ λ

)−1

︸ ︷︷ ︸
∈A2

(m)

−1

]

is a multiplier on A2
(m) . So we actually have

σ
(

M (A2
(m)),

1− z
1+ z

)
= σ

(
H∞(C+),

1− z
1+ z

)
and hence

|π(ϕ)| � sup
ϕ∈M(M (A2

(m)))

∣∣∣∣ϕ
(

1− z
1+ z

)∣∣∣∣= r

(
1− z
1+ z

)
= 1.

Since the evaluation homomorphisms are in M(M (A2
(m))) , every point of the open unit

disk is in the image of π . Also, M (A2
(m)) is unital, and hence compact, so its image

under π must also be compact and thus π is surjective. For the second part, let |λ |< 1
and suppose that π(ϕ) = λ . Then for any F ∈ A2

(m) vanishing at κ = 1−λ
1+λ ∈ C+ , we

have F = z−κ
z+κ G , with G ∈ H∞(C+) (see [25], p. 293). Let Br(κ) be the closed ball,

centred at κ , with radius r > 0. Choose r small enough to get Br(κ) ⊂ C+ , then

∫
C+

|G|2 dν0 =
∫

Br(κ)
|G|2 dν0 +

∫
C+\Br(κ)

∣∣∣∣ z+ κ
z−κ

F

∣∣∣∣2 dν0.

The first integral is finite, since G is bounded and Br(κ) is compact. The second one
is also finite, since z+κ

z−κ is bounded on C+ \Br(κ) . Let

c := sup
z∈C+\Br(κ)

∣∣∣∣ z+ κ
z−κ

∣∣∣∣ .
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Then we have

∫
C+

∣∣G′∣∣2 dν1 =
∫

Br(κ)

∣∣G′∣∣2 dν1 +
∫

C+\Br(κ)

∣∣∣∣F ′ z+ κ
z−κ

−F
2Reκ

(z−κ)2

∣∣∣∣2 dν1

�
∫

Br(κ)

∣∣G′∣∣2 dν1 + c2
∥∥F ′∥∥2

A2
ν1

+4(cRe(κ))2 ‖F‖2
H∞(C+)

∫
C+

∣∣(z+ κ)−2
∣∣ dν1

which is also finite, since |G′|2 is continuous, Br(κ) is compact and (z+ κ)−1 ∈ A2
(m)

implies (z+ κ)−2 ∈ A2
ν1

. If n > 1, then

∫
C+

∣∣∣G(n)
∣∣∣2 dνn =

∫
Br(κ)

∣∣∣G(n)
∣∣∣2 dνn

+
∫

C+\Br(κ)

∣∣∣∣∣
n

∑
k=0

(
n
k

)
F (n−k)

(
z+ κ
z−κ

)(k)
∣∣∣∣∣
2

dνn

�
∫

Br(κ)

∣∣∣G(n)
∣∣∣2 dνn +

n−1

∑
k=1

∥∥∥F(n−k)
∥∥∥2

A2
νn−k

+‖F‖2
H∞(C+)

∥∥(z+ κ)−n
∥∥2

A2
νn

< ∞.

Therefore G ∈ A2
(m) . Let

H := − (1+ z)(1+ κ)
2(z+ κ)︸ ︷︷ ︸

∈M (A2
(m))

G ∈ A2
(m).

Then

ϕ(F) = ϕ
(

1− z
1+ z

−λ
)

ϕ(H) = 0.

For any h ∈ M (A2
(m)) , which vanishes at κ we then have

0 = ϕ
(

h
z+1

)
= ϕ(h)ϕ

(
1

1+ z

)
=

ϕ(h)
2

ϕ
(

1− z
1+ z

+1

)
= ϕ(h)

λ +1
2

,

so ϕ must in fact be the evaluation homomorphism, proving injectivity. For the remain-
ing part, let Δ := (π |D)−1(D) . Then π maps Δ homeomorphically onto D , since the
topology of Δ is the weak topology defined by Gel’fand transforms of functions from
M (A2

(m)) , and the topology of D is the weak topology defined by bounded functions

in M (A2
(m)) . �

The above theorem shows the existence of the analytic disk inside the character
space M(M (A2

(m))) , and therefore it would be a natural question to ask whether this
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disk is dense therein, that is to see if the Corona Theorem could hold in this setting.
The answer to this question is of course well-known and affirmative for M (H2) = H∞

and M (D) , and thus one could make a similar conjecture about the multiplier space
of A2

(m) , but the techniques used to prove it for these two previous space are insuffi-
cient here, and it is not clear how their shortcomings could potentially be bypassed.
Therefore, for now, it must remain an open question.
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