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Abstract. We study the connectedness and the diameter of orthogonality graphs of upper trian-
gular matrix algebras over arbitrary fields.

1. Introduction

Nowadays binary relations on associative rings, in particular, on the matrix alge-
bra can be investigated with the help of graph theory if we study the so-called relation
graph whose vertices are the elements of some set and two vertices are connected by an
edge if and only if the corresponding elements are in this relation. Commuting graphs
and zero divisor graphs are the examples of relation graphs that have been studied in-
tensively during the last 20 years. This article concerns orthogonality graphs. In the
paper [6] the notion of graph generated by the mutual orthogonality relation for the ele-
ments of an associative ring was introduced. The authors of [6] computed the diameters
of orthogonality graphs of the full matrix algebra over an arbitrary field and its subsets
consisting of diagonal, diagonalizable, triangularizable, nilpotent, and niltriangular ma-
trices. The relation of orthogonality can be found in [9, 13, 14] where some partial or-
ders on matrix algebra and matrix transformations which are monotone with respect to
these orders are studied. Matrix orders are widely used in various fields of algebra and
have applications in mathematical statistics and many other areas of mathematics [7].
For the detailed and self-contained information on this topic see [1, 2, 3, 4, 6] and the
references therein.

The main subject of our research is connected with triangular matrices. In [5] Ak-
bari and Raja proved that if n � 2 and U is the set of all upper triangular matrices, then
for every algebraic division ring D the commuting graph of U is connected. Besides,
the zero divisor graph of upper triangular matrices over commutative rings was also
investigated in papers [12, 11, 8]. The aim of this paper is to prove the connectedness
and calculate the diameter of orthogonality graphs of upper triangular matrix algebras
over arbitrary fields.

Recall some definitions from graph theory. The notions of graph theory used in
this article can be found for example in [10, Chapter 2].
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A graph Γ is a non-empty set of vertices V(Γ) and edges E(Γ) . If v1 , v2 are two
vertices and e = (v1,v2) is the edge connecting them, then the vertex v1 and the edge e
are incident, the vertex v2 and the edge e are also incident. A path (walk) is a sequence
of vertices and edges v0,e1,v1,e2,v2, . . . ,ek,vk , where any two neighbor elements are
incident. If v0 = vk , then the path is closed. The length of a path, denoted by d , is
the number of edges that it uses, under the condition that each edge is counted as many
times as it occurs in the path. For the path M = v0,e1,v1,e2,v2, . . . ,ek,vk the length
of M equals k , regardless of whether the edges are repeated or not in the path. The
graph is said to be connected if it is possible to establish a path from any vertex to any
other vertex of the graph. The distance d(u,v) between two vertices u and v in a graph
Γ is the length of the shortest path between them. If u and v are unreachable from
each other, d(u,v) = ∞ . It is assumed that d(u,u) = 0 for any vertex u . The diameter
diam(Γ) of a graph Γ is the maximum of distances between vertices for all pairs of
vertices in the graph.

Let us introduce some notations that will be needed in this paper. Throughout our
paper, F and R denote an arbitrary field and an arbitrary associative ring with unity,
respectively. Mm,n (F) is the set of m× n matrices over F , Mn (F) = Mn,n(F) is the
ring (or algebra) of n×n matrices over F , GLn (F) is the group of invertible matrices
in Mn(F) . Tn denotes the set of all upper triangular matrices in Mn(F) . Ei j (or Ei, j ) is
a matrix whose (i, j)-entry is 1 and other entries are 0. If A is a matrix, then At denotes
the transpose of A . It is considered that F

n = Mn,1(F) . 0n×m and 0n are zero matrices
of sizes n×m and n×n , respectively, and Ir denotes the identity matrix of size r× r .

The following definition is well-known.

DEFINITION 1.1. Two elements r1 ∈ R and r2 ∈ R are orthogonal if r1r2 =
r2r1 = 0.

OR (X) denotes the set of elements of R which are orthogonal to all elements of
X , where X is a subset of R .

The definition of orthogonality graphs was introduced and investigated by the
present author, A. Guterman, and O. Markova in [6].

DEFINITION 1.2. ([6, Definition 2.15]) With every ring R one can associate the
orthogonality graph O(R) with vertex set consisting of all non-zero two-sided zero
divisors of R , in which two vertices are connected by an edge if and only if the corre-
sponding elements of R are orthogonal.

EXAMPLE 1.3. Let R = M2(Z2) . Denote A01 =
(

1 1
1 1

)
, A11 =

(
1 0
1 1

)
, A12 =(

0 1
1 1

)
, A13 =

(
1 1
0 1

)
, A14 =

(
1 1
1 0

)
, A21 =

(
0 0
1 1

)
, A22 =

(
1 1
0 0

)
, A23 =

(
0 1
0 1

)
,

A24 =
(

1 0
1 0

)
, A25 =

(
0 1
1 0

)
, A31 =

(
0 0
0 1

)
, A32 =

(
0 0
1 0

)
, A33 =

(
0 1
0 0

)
, A34 =(

1 0
0 0

)
. Then for R we have the following relation graphs:
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where Pic. 1, Pic. 2, and Pic. 3 correspond to orthogonality, zero divisor, and commuting
graphs, respectively.

2. Orthogonality graph of the algebra of upper triangular matrices

Recall the result from [6] which will be used later.

LEMMA 2.1. ([6, Lemma 4.1]) The orthogonality graph O(Mn (F)) is empty for
n = 1 . For n = 2 the graph O(Mn (F)) is not connected and is the union of its con-
nected subgraphs with the following sets of vertices:

1. The set

V1 =
{(

a 0
0 0

)∣∣∣0 �= a ∈ F

}⋃{(
0 0
0 b

)∣∣∣0 �= b ∈ F

}
;

2. The set

V2 =
{(

0 0
a 0

)∣∣∣0 �= a ∈ F

}
;

3. The set

V3 =
{(

0 a
0 0

)∣∣∣0 �= a ∈ F

}
;

4. For every 0 �= α ∈ F the set

V4,α =
{(

c cα
0 0

)∣∣∣0 �= c ∈ F

}⋃{(
0 d
0 −d/α

)∣∣∣0 �= d ∈ F

}
;
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5. For every 0 �= α ∈ F the set

V5,α =
{(

0 0
c cα

)∣∣∣0 �= c ∈ F

}⋃{(
d 0

−d/α 0

)∣∣∣0 �= d ∈ F

}
;

6. For all 0 �= α,β ∈ F the set

V6,α ,β =
{( −αa a

−αβa βa

)∣∣∣0 �= a ∈ F

}⋃{( −βb b
−αβb αb

)∣∣∣0 �= b ∈ F

}
.

The diameter of the connected component corresponding to each of the vertex sets
V1 , V4,α , V5,α equals 1 if F = Z2 , and equals 2 if |F| > 2 .

The vertex sets V6,α ,β with α �= β are defined over fields with |F| > 2 , and the
diameters of the corresponding connected components equal 2 .

The diameter of the connected component corresponding to any of the vertex sets
V2 , V3 , and V6,α ,α equals 0 if F = Z2 , and equals 1 if |F| > 2 .

LEMMA 2.2. Let F be a field. Then the graph O(T2) is disconnected, and it is a
union of its connected subgraphs with the following sets of vertices:

1. The set

V1 =
{(

a 0
0 0

)∣∣∣0 �= a ∈ F

}⋃{(
0 0
0 b

)∣∣∣0 �= b ∈ F

}
;

2. The set

V3 =
{(

0 a
0 0

)∣∣∣0 �= a ∈ F

}
;

3. For every 0 �= α ∈ F the set

V4,α =
{(

c cα
0 0

)∣∣∣0 �= c ∈ F

}⋃{(
0 d
0 −d/α

)∣∣∣0 �= d ∈ F

}
.

The diameters of the connected components corresponding to all of the vertex sets
V1 , V4,α equal 1 if F = Z2 and 2 if |F|> 2 . The diameter of the connected component
corresponding to the vertex set V3 equals 0 if F = Z2 and 1 if |F| > 2 .

Proof. The assertion follows from Lemma 2.1 because the graph O(T2(F)) is a
subgraph of O(M2(F)) and, for all 0 �= α,β ∈ F , the vertex sets V1, V3, V4,α belong
to T2(F) , whereas V2, V5,α , V6,α ,β contain no upper triangular matrix. �

LEMMA 2.3. Let F be a field, n � 3 , and matrices A,B ∈ Tn have the following
block forms:

A =
(

0 a
0(n−1)×1 A1

)
, B =

(
B1 b

01×(n−1) 0

)
,
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where A1,B1 ∈ Tn−1 are invertible matrices, a ∈ M1,n−1(F), b ∈ Mn−1,1(F). Then

1. OTn(A) =
{(

c0 c
0(n−1)×1 0n−1

) ∣∣∣ c = −c0aA−1
1 , c0 ∈ F, c ∈ M1,n−1(F)

}
,

2. OTn(B) =
{(

0n−1 c
01×(n−1) c0

) ∣∣∣ c = −B−1
1 bc0, c0 ∈ F, c ∈ Mn−1,1(F)

}
.

Proof. 1. Assume that C ∈ Tn has the following block form:

C =
(

c0 c
0(n−1)×1 C1

)
, C1 ∈ Tn−1.

Then

AC =
(

0 aC1

0(n−1)×1 A1C1

)
, CA =

(
0 c0a + cA1

0(n−1)×1 C1A1

)
.

If C ∈ OTn(A) , AC = CA = 0. Since A1 is invertible, C1 = 0 and c = −c0aA−1
1 .

2. Assume that C ∈ Tn has the following block form:

C =
(

C1 c
01×(n−1) c0

)
, C1 ∈ Tn−1.

Then

BC =
(

B1C1 B1c + bc0

01×(n−1) 0

)
, CB =

(
C1B1 C1b

01×(n−1) 0

)
.

If C ∈OTn(B) , BC =CB = 0. Since B1 is invertible, C1 = 0 and c =−B−1
1 bc0, which

completes the proof. �

DEFINITION 2.4. Matrices A , B ∈ Tn satisfying the conditions of the previous
lemma will be called bad-1 and bad-2, respectively. All the other matrices of Tn are
good. A good matrix is called s-good (special good) if it has zero entries in the positions
(1,1) and (n,n) . A good matrix is called ns-good (not special good) if it is not s-good.

REMARK 2.5. Note that matrices of O(Tn) have at least one zero entry on their
diagonal. Besides, bad (i.e. bad-1 and bad-2) matrices have only one zero entry that is
either (1,1) or (n,n) . Moreover, for each ns-good matrix there exists i∈ {2, . . . ,n−1}
such that its (i, i)-entry is zero.

LEMMA 2.6. For any non-zero singular matrix A ∈ Tn there exists a rank 1 ma-
trix Ri ∈ Tn , corresponding to the zero (i, i)-entry of A, such that d(A,Ri) � 1 in
O(Tn) .

Proof. By Remark 2.5 the zero (i, i)-entry of A exists. Assume that A has the

following block form A =
(

A1 A2

0(n−i)×i A3

)
. Then i× i block A1 is singular. Therefore,
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there exists a non-zero vector x̂ ∈ F
i such that A1x̂ = 0. Hence A annihilates a vector

x = x̂⊕0n−i . Likewise we argue for transpose of A which annihilates a non-zero vector

f = 0i−1 ⊕ f̂ . Then Ri = x f
t

is the desired upper triangular matrix of rank 1, since

ARi = (Ax) f
t
= 0 = x

(
At f

)t
= RiA . �

REMARK 2.7. If i �= 1, then the first column of Ri is zero, and if i �= n , then the
last row of Ri is zero.

THEOREM 2.8. Let F be a field and n � 3 . Then the graph O(Tn) is connected
and diamO(Tn) = 4 .

Proof. Let A , B ∈ Tn be two non-zero singular matrices. We show that there is a
path between A and B in O(Tn) of length at most 4. The general situation splits into
the 3 following cases.

1. First, assume that both A and B are good. We have the following subcases.
1.1. Suppose that both A and B are s-good. Since the last row and the first column

of both matrices are zero, we have the path

A−E1n−B.

1.2. Suppose that both A and B are ns-good. Then by Remark 2.5 there ex-
ist i, j ∈ {2, . . . ,n − 1} such that (i, i)-entry of A and ( j, j)-entry of B are zero.

By Lemma 2.6 we can find non-zero upper triangular rank 1 matrices Ri = x f
t

and

Rj = yh
t

corresponding to the zero (i, i)-entry of A and the zero ( j, j)-entry of B ,
respectively, with d(A,Ri) � 1, d(B,Rj) � 1 in O(Tn) . Since 1 < i, j < n , by Re-
mark 2.7 the last row and the first column of both Ri and Rj are zero. Hence we have
the path

A−Ri−E1n−Rj −B.

1.3. Without loss of generality suppose that A is s-good and B is ns-good. As in
item 1.2, we can find the matrix Rj that is orthogonal to B and E1n . Hence we have
the path

A−E1n−Rj −B.

2. Consider the case when both A and B are bad. We have the following subcases.
2.1. Suppose that both A and B are bad-1. By Lemma 2.3 we can find non-zero

matrices

A1 =
(

a10 a1

0(n−1)×1 0n−1

)
, B1 =

(
b10 b1

0(n−1)×1 0n−1

)

that are orthogonal to A and B , respectively. Since n � 3, there exists a non-zero
element d ∈ F

n such that A1d = B1d = 0. If D is a matrix with first n− 1 zero
columns and its last column is d , then we have the path

A−A1−D−B1−B.
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2.2. Suppose that both A and B are bad-2. By Lemma 2.3 we can find non-zero
matrices

A2 =
(

0n−1 a2

01×(n−1) a20

)
, B2 =

(
0n−1 b2

01×(n−1) b20

)

that are orthogonal to A and B , respectively. Since n � 3, there exists a non-zero
element d′ ∈ M1,n(F) such that d′A7 = d′B5 = 0. If D′ is a matrix whose first row is

d′ and the other rows are zero, then we have the path

A−A2−D′ −B2−B.

2.3. Without loss of generality suppose that A is bad-1 and B is bad-2. As in items
2.1 and 2.2, we can find non-zero matrices

A1 =
(

a10 a1

0(n−1)×1 0n−1

)
, B2 =

(
0n−1 b2

01×(n−1) b20

)

that are orthogonal to A and B , respectively. Let the first entry of the vector a1 be
a11 , and let the first two entries of the vector b2 be b21 and b22 . There exists a

non-zero matrix L′ ∈ M2(F) such that
(
a10 a11

)
L′ = L′

(
b21

b22

)
= 0. Then if we put

L =
(

02×(n−2) L′
0(n−2)×(n−2) 0(n−2)×2

)
, we have the path

A−A1−L−B2−B.

3. Now without loss of generality suppose that A is good and B is bad. We have
the following subcases.

3.1. Suppose that A is ns-good and B is bad-1. As in items 1.2 and 2.1, we can
find non-zero matrices

Ri = x f
t
=

(
0(n−1)×1 R′

i
0 01×(n−1)

)
, B1 =

(
b10 b1

0(n−1)×1 0n−1

)

that are orthogonal to A and B , respectively. Since R′
i is singular, there exists a non-

zero element c ∈ F
n−1 such that R′

i c = 0. If we put C =
(

01×(n−1) c0

0n−1 c

)
, where

c0 = −b1c/b10 , we have the path

A−Ri−C−B1−B.

3.2. Suppose that A is s-good and B is bad-1. Since the matrix A is orthogonal

to E1n =
(

0(n−1)×1 E ′
1n

0 01×(n−1)

)
, where E ′

1n = E1,n−1 ∈Mn−1(F)\GLn−1(F) , then, as in

item 3.1, we can find the path

A−E1n−C′ −B1−B.
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3.3. Suppose that A is ns-good and B is bad-2. As in items 1.2 and 2.2, we can
find non-zero matrices

Ri = x f
t
=

(
0(n−1)×1 R′

i
0 01×(n−1)

)
, B2 =

(
0n−1 b2

01×(n−1) b20

)

that are orthogonal to A and B , respectively. Since R′
i is singular, there exists a non-

zero element c1 ∈ M1,n−1(F) such that c1R′
i = 0. If we put C1 =

(
c1 c10

0n−1 0(n−1)×1

)
,

where c10 = −c1b2/b20 , we have the path

A−Ri−C1−B2−B.

3.4. Suppose that A is s-good and B is bad-2. Since the matrix A is orthogonal

to E1n =
(

0(n−1)×1 E ′
1n

0 01×(n−1)

)
, where E ′

1n = E1,n−1 ∈Mn−1(F)\GLn−1(F) , then, as in

item 3.3, we can find the path

A−E1n−C′′ −B2−B.

Thus we have shown that that diamO(Tn) � 4 in all cases as desired.

Now we claim that diamO(Tn) = 4. Let Â = In−E11 and B̂ =
n−1
∑
i=1

Ei,i+1. Straight-

forward computations show that

OTn(Â) =
{

αE11

∣∣∣α ∈ F

}
, OTn(B̂) =

{
αE1n

∣∣∣α ∈ F

}
.

Clearly, E11E1n �= 0, hence d(Â, B̂) > 3 and the proof is completed. �
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