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Abstract. Let

MC =
[
A C
0 B

]
: D(MC) ⊂ X ×X → X ×X

be a 2×2 unbounded upper triangular operator matrix on the complex Hilbert space X×X . We
investigate the conditions under which σ(MC) = σ(A)∪σ(B) holds in the diagonally dominant
(D(MC) = D(A)×D(B) ) and upper dominant case (D(MC) = D(A)×D(C) ). Some necessary
and sufficient conditions are obtained. The results generalize some results of Han, Du, and
Barraa in the bounded case.

1. Introduction

Because of the important applications of block operator matrices in mathematics
and physics, the spectral properties of block operator matrices are studied by many
researchers (see [1, 2], [4]–[8], [10]–[14]). Motivated by the description of the stability
of the spectrum, the spectral equality

σ(MC) = σ(A)∪σ(B) (1.1)

for bounded operators A,B,C , and MC =
[
A C
0 B

]
became an interesting research topic.

For instance, it was shown that if AZ − ZB = C or AC = CB or (A− μI)C = 0 or
C(D−μI) = 0 for some μ ∈ C , then (1.1) holds [1]; if A,B are normal operators, then
(1.1) is satisfied for every C ∈ B(X) [2]; if σ(A)∩σ(B) has no interior points, then
(1.1) holds [4]. However, a number of block operator matrices in theory or applications
are not bounded, and the above mentioned conclusions do not hold for unbounded block
operator matrices in general. Indeed, let

MC =
[
A C
0 B

]
�

[
I C
0 I

]
,
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where C is an unbounded operator in the Hilbert space X . Then A,B are selfadjoint
operators and hence σ(A)∩σ(B) has no interior points and AC = CB , but σ(MC) =
C �= σ(A)∪σ(B) = {1} . The main goal of this paper is to investigate the set of un-
bounded operators A,B and C for which (1.1) holds. Some necessary and sufficient
conditions are obtained. For a given upper triangular operator matrix

MC =
[
A C
0 B

]
,

its natural domain is
D(MC) = D(A)⊕ (D(C)∩D(B)).

However, in the description of E-characteristic operator function (or F-characteristic
operator function ([10]) and the perturbation theory for operator matrices always dis-
tinguish two classes of block operator matrices, diagonally dominant and upper domi-
nant ([13]). Hence, we investigate the necessary and sufficient conditions for spectral
equality (1.1) in diagonally dominant case and upper dominant case in this paper.

Throughout this paper X denotes a complex Hilbert space, ρ(T ) σ(T ) and N(T )
= {x ∈ D(T ) : Tx = 0} denote the resolvent set, the spectrum and the null space of a
linear operator T on X , respectively. We would like to point out that there are different
definitions of the resolvent set ρ(T ) and the spectrum σ(T ) for an unbounded operator
T . We adopt the definitions in [5, 6]. We say that λ ∈ ρ(T ) if T −λ I is injective,
R(T−λ I)=X and the inverse operator (T −λ I)−1 is bounded. Therefore the spectrum
σ(T ) = C \ ρ(T ) can be divided into the following three disjoint subsets: the point
spectrum, the residual spectrum, the continuous spectrum [3]. Precisely they are

σp(T ) = {λ ∈ C : T −λ I is not injective};
σr(T ) = {λ ∈ C : T −λ I is injective, R(T −λ I) �= X};
σc(T ) = {λ ∈ C : T −λ I is injective, R(T −λ I) = X ,(T −λ I)−1 is unbounded},

respectively.

REMARK 1.1. If T is closed, then λ ∈ ρ(T ) if and only if T −λ I is bijective;
λ ∈ σc(T ) if and only if T −λ I is injective, R(T −λ I) = X and R(T −λ I) �= X .

For a linear operator T , we define (see [15])

σp,1(T ) = {λ ∈ σp(T ) : R(T −λ I) = X};
σp,2(T ) = {λ ∈ σp(T ) : R(T −λ I) �= X ,R(T −λ I) = X};
σp,3(T ) = {λ ∈ σp(T ) : R(T −λ I) = R(T −λ I) �= X};
σp,4(T ) = {λ ∈ σp(T ) : R(T −λ I) �= R(T −λ I),R(T −λ I) �= X};
σr,1(T ) = {λ ∈ σr(T ) : R(T −λ I) is closed};
σr,2(T ) = {λ ∈ σr(T ) : R(T −λ I) is not closed},

and

σap(T ) = {λ ∈C : ∃{xn}+∞
n=1 ⊂D(T ),‖xn‖= 1,n = 1,2, · · · ,(T −λ I)xn → 0,n→+∞}.
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The set Γ(T ) = C\σap(T ) is called the set of points of regular type. A linear operator
T is said to be bounded below ([3]) if there exists a constant M > 0 such that

‖Tx‖ � M‖x‖, ∀x ∈ D(T ).

For a densely defined closed operator T in X , λ ∈ Γ(T ) ⇐⇒ T − λ I is bounded
below ⇐⇒ (T −λ I)−1 is bounded (see Problem 73 of [3]) and we also have

σ(T ) = σap(T )∪σr,1(T );
Γ(T ) = ρ(T )∪σr,1(T ).

The following lemma will be useful in the forthcoming discussion.

LEMMA 1.2. Let T be densely defined closed operator in X . Then

(i) λ ∈ σp,1(T ) if and only if λ ∈ σr,1(T ∗) ;

(ii) λ ∈ σp,2(T ) if and only if λ ∈ σr,2(T ∗) ;

(iii) λ ∈ σp,3(T ) if and only if λ ∈ σp,3(T ∗) ;

(iv) λ ∈ σp,4(T ) if and only if λ ∈ σp,4(T ∗) ;

(v) If σr,1(T ) is not empty, then it is an open set, and hence σp,1(T ) is also open.

Proof. For a densely defined closed operator T , R(T ) is closed if and only if
R(T ∗) is closed, so the proofs of (i), (ii), (iii) and (iv) are trivial. Next we will prove
that σr,1(T ) is an open set when it is not empty. Let λ ∈ Γ(T ) . Then there exists a
constant M > 0 such that

‖(T −λ I)x‖ � M‖x‖, ∀x ∈ D(T ).

For all |λ −λ ′| < M
2 , and x ∈ D(T ) , ‖x‖ = 1 we have

‖(T −λ ′I)x‖ � ‖(T −λ I)x‖− |λ −λ ′| � M
2

,

which implies that Γ(T ) is open. Since ρ(T ) is also open, ρ(T )∩σr,1(T ) = /0 and

Γ(T )\ρ(T) = (ρ(T )∪σr,1(T ))\ρ(T )

= σr,1(T )\ρ(T)
= σr,1(T ),

and thus σr,1(T ) is open. By (i) we have σr,1(T ∗) and σp,1(T ) are symmetric with
respect to the real axis, so σp,1(T ) is open and the proof is complete. �

The main results of this paper are the following:
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THEOREM 1.3. Let MC =
[
A C
0 B

]
: D(A)×D(B) → X ×X be a densely defined

upper triangular operator matrix, where A,B are densely defined closed and C is clos-
able. Then σ(MC) = σ(A)∪σ(B) if and only if (σr,1(A)∩σp,1(B))∪(ρ(A)∩σp,1(B))
= /0 or any λ ∈ (σr,1(A)∩σp,1(B))∪ (ρ(A)∩σp,1(B)) satisfies one of the following:

(i) N(C)∩N(B−λ I) �= {0} ;

(ii) CN(B−λ I)∩R(A−λ I) �= {0} ;

(iii) CN(B−λ I)+R(A−λ I) �= X .

REMARK 1.4. Under the additional condition D(A∗) ⊂ D(C∗) , any λ ∈ ρ(A)∩
σp,1(B) , let y0 ∈ N(B−λ I) . Then (A−λ I)−1Cy0 ∈ D(A) and

[
A−λ I C

0 B−λ I

][
−(A−λ I)−1Cy0

y0

]
= 0.

Thus CN(B−λ I)∩R(A−λ I) �= {0} . Therefore, Theorem 1.3 can be stated as σ(MC)=
σ(A)∪σ(B) if and only if σr,1(A)∩σp,1(B) = /0 or any λ ∈ σr,1(A)∩σp,1(B) satisfies
one of the three conditions (i), (ii) and (iii).

In general, the spectral property σ(MC)⊂ σ(A)∪σ(B) does not hold in the upper
dominant case. Therefore, to obtain the necessary and sufficient condition for

σ(MC) = σ(A)∪σ(B),

it needs to impose additional conditions on A,B and C .

THEOREM 1.5. Let MC =
[
A C
0 B

]
: D(A)×D(C) → X ×X be a densely defined

closed upper triangular operator matrix, where A,B and C are densely defined closed.
If D(A∗) ⊂ D(C∗) , ρ(A)∩ρ(B) �= /0 and R((B− μI)|D(C)) = X for some μ ∈ ρ(A)∩
ρ(B) . Then σ(MC) = σ(A)∪σ(B) if and only if (σr,1(B∗)∩ σp,1(A∗))∪ (ρ(B∗)∩
σp,1(A∗)) = /0 or any λ ∈ (σr,1(B∗)∩σp,1(A∗))∪ (ρ(B∗)∩σp,1(A∗)) satisfies one of
the followings:

(i) N(C∗)∩N(A∗ −λ I) �= {0} ;

(ii) C∗N(A∗ −λ I)∩R(B∗−λ I) �= {0} ;

(iii) C∗N(A∗ −λ I)+R(B∗−λ I) �= X .

When A,B and C are everywhere defined bounded operators, the results of Han,
Du and Barraa’s can be deduced as a corollary.

COROLLARY 1.6. (see Theorem 1 in [1]) If the everywhere defined bounded
operators A,B and C satisfy one of the followings conditions:
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(i) There exists everywhere defined bounded operator Z such that C = AZ−ZB ,

(ii) AC = CB ,

(iii) (A− μI)C = 0 or C(B− μI) = 0 for some μ ∈ C ,

then σ(MC) = σ(A)∪σ(B) .

Proof. Since

(σ(A)∪σ(B))\ (σr,1(A)∩σp,1(B)) ⊂ σ(MC) ⊂ σ(A)∪σ(B),

under the condition (σr,1(A)∩σp,1(B))= /0 , the proof is trivial, so we assume (σr,1(A)∩
σp,1(B)) �= /0 .

(i) We prove this statement by using Theorem 1.3, rather than applying the simi-

larity of MC and

[
A 0
0 B

]
. If there exists everywhere defined bounded operator Z such

that C = AZ−ZB , then for any λ ∈ (σr,1(A)∩σp,1(B)) we have

CN(B−λ I) = ((A−λ I)Z−Z(B−λ I))N(B−λ I)
= (A−λ I)ZN(B−λ I)⊂ R(A−λ I),

which implies CN(B−λ I)+R(A−λ I) �= X . Hence by Theorem 1.3 and Remark 1.4,
we have σ(MC) = σ(A)∪σ(B) .

(ii) When AC =CB , let (σr,1(A)∩σp,1(B)) �= /0 and λ ∈ (σr,1(A)∩σp,1(B)) . Then
(A−λ I)C = C(B−λ I) and (A−λ I)Cy = 0 for any y ∈ N(B−λ I) . Since A−λ I is
injective, it follows that Cy = 0. Therefore, CN(B−λ I)+R(A−λ I) = R(A−λ I) �= X .
Hence by Theorem 1.3 and Remark 1.4, we have σ(MC) = σ(A)∪σ(B) .

(iii) When (A−μI)C = 0, for some μ ∈ C , let λ ∈ (σr,1(A)∩σp,1(B)) . Then we
have (A−λ I)C = (μ −λ )C . If μ = λ , then (A−λ I)C = 0 and thus C = 0, hence
σ(MC) = σ(A)∪σ(B) . If μ �= λ , then C = 1

μ−λ (A−λ I)C . Thus

R(C|N(B−λ I)) ⊂ R(A−λ I).

Hence CN(B−λ I)+R(A−λ I) �= X , and by Theorem 1.3 and Remark 1.4, we have
σ(MC) = σ(A)∪σ(B) .

When C(B− μI) = 0 for some μ ∈ C , let λ ∈ (σr,1(A)∩σp,1(B)) . Then

C(B−λ I) = (μ −λ )C.

If μ = λ , then C(B− λ I) = 0. In view of R(B− λ I) = X , we have C = 0. Thus
σ(MC) = σ(A)∪σ(B) . If μ �= λ , then C = 1

μ−λ C(B−λ I) . Thus

CN(B−λ I) = {0},

which implies N(C)∩N(B−λ I) �= {0} , and thus σ(MC) = σ(A)∪σ(B) . �
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COROLLARY 1.7. (see Corollary 8–11 in [4]) If the everywhere defined bounded
operators A and B satisfy one of the followings conditions:

(i) σ(A)∩σ(B) has no interior points,

(ii) ρ l
σ (A)∩ρ r

σ (B) = /0 ,

(iii) either A is cohyponormal (i.e., A∗ is hyponormal or AA∗ � A∗A) or B is hy-
ponormal (i.e., B∗B � BB∗ ),

then σ(MC) = σ(A)∪σ(B) , where ρ l
σ (A)= {λ ∈σ(A) : A−λ I is injective} , ρ r

σ (B) =
{λ ∈ σ(B) : B−λ I is surjective} .

Proof. (i) Note that ((σr,1(A)∩σp,1(B))⊂σ(A)∩σ(B) and by Lemma 1.2 (σr,1(A)
∩σp,1(B)) is composed of interior points. Therefore, if σ(A)∩σ(B) has no interior
points, then

(σr,1(A)∩σp,1(B)) = /0.

Thus by Theorem 1.3 and Remark 1.4, we have σ(MC) = σ(A)∪σ(B) .
(ii) Note that ρ l

σ (A)∩ρ r
σ (B) = /0 implies σr,1(A)∩σp,1(B) = /0 . By Theorem 1.3

and Remark 1.4, we have σ(MC) = σ(A)∪σ(B) .
(iii) If A is cohyponormal, then we can claim that σr(A) = /0 . In fact, let λ ∈

σr(A) , then λ ∈ σp(A∗) . Then there exists x0 �= 0 such that (A∗ −λ I)x0 = 0. Since
A∗ −λ I is hyponormal, so

‖(A∗ −λ I)x0‖ � ‖(A−λ I)x0‖,

which contradicts with λ ∈ σr(A) . Hence σr(A) = /0 and thus σr,1(A)∩σp,1(B) = /0 .
Furthermore, D(A∗)⊂D(C∗) holds naturally, by Theorem1.3 and Remark 1.4, we have
σ(MC) = σ(A)∪σ(B) . When B is hyponormal, it is easy to show that σp,1(B) = /0
and we also have σ(MC) = σ(A)∪σ(B) . �

COROLLARY 1.8. (see [2]) If A,B are normal operators, then σ(MC) = σ(A)∪
σ(B) .

Proof. If A,B are normal operators, then σr(A),σr(B) are empty, so σr,1(A) = /0
and σp,1(B) = /0 . Thus σr,1(A)∩σp,1(B) = /0 , and by Remark 1.4 we have σ(MC) =
σ(A)∪σ(B) . �

By definition of the point spectrum, it is easy to show that MC =
[
A C
0 B

]
is injective

if and only if

(i) A is injective,

(ii) N(C)∩N(B) = {0} ,

(iii) R(A)∩CN(B) = {0} .
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Thus the following proposition follows.

PROPOSITION 1.9. Let MC =
[
A C
0 B

]
: D(A)× (D(C)∩D(B)) → X ×X be an up-

per triangular operator matrix, where A,B,C are linear operators. Then σp(MC) =
σp(A)∪σp(B) if and only if σp(B|D(C)∩D(B))⊂σp(A) or for any λ ∈σp(B|D(C)∩D(B))\
σp(A) such that N(C)∩N(B|D(C)∩D(B) −λ I) �= {0} or CN(B|D(C)∩D(B) −λ I)∩R(A−
λ I) �= {0} holds.

As an application of Proposition 1.9, the following corollary illustrates that the
conditions of [1] are sufficient to obtain the equality of point spectrum.

COROLLARY 1.10. If the everywhere defined bounded operators A,B and C sat-
isfy one of the followings conditions:

(i) there exists everywhere defined bounded operator Z such that C = AZ−ZB ,

(ii) AC = CB ,

(iii) (A− μI)C = 0 for some μ ∈ C ,

(iv) C(B− μI) = 0 for some μ ∈ C , μ /∈ σp,3(B)∪σp,4(B) ,

then σp(MC) = σp(A)∪σp(B) .

Proof. (i) This statement can be proved by the similarity of MC and

[
A 0
0 B

]
. How-

ever, we would like to give another method by Proposition 1.9. Without loss of gener-
ality, let λ ∈ σp(B)\σp(A) . Then

C = (A−λ I)Z−Z(B−λ I),

and
CN(B−λ I) = (A−λ I)ZN(B−λ I).

Thus CN(B− λ I) ⊂ R(A− λ I) , and CN(B− λ I)∩R(A− λ I) = CN(B− λ I). If we
assume N(C)∩N(B−λ I) = {0} . Then CN(B−λ I) �= {0} , and thus CN(B−λ I)∩
R(A−λ I) �= {0} . By Proposition 1.9, we have σp(MC) = σ(A)p ∪σp(B) . Similarly,
if we assume CN(B−λ I)∩R(A−λ I) = {0} , then we have N(C)∩N(B−λ I) �= {0} .
By Proposition 1.9, we also have σp(MC) = σ(A)p∪σp(B) .

(ii) Let λ ∈ σp(B)\σp(A) . Then

(A−λ I)C = C(B−λ I)

and
(A−λ I)CN(B−λ I) = 0.

Since λ /∈ σp(A) , CN(B−λ I) = 0 and thus N(C)∩N(B−λ I) �= {0} . By Proposition
1.9, we have σp(MC) = σ(A)p ∪σp(B) .
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(iii) When (A− μI)C = 0 for some μ ∈ C , let λ ∈ σp(B) \σp(A) . Then in the
case of μ = λ , the conclusion is trivial. Hence we assume that λ �= μ . In view of
(A−λ I)C = (μ −λ )C , we have (A−λ I)CN(B−λ I) = (μ −λ )CN(B−λ I) . Thus

CN(B−λ I)∩R(A−λ I) = CN(B−λ I).

If CN(B − λ I) �= {0} , by Proposition 1.9, we have σp(MC) = σ(A)p ∪ σp(B) . If
CN(B−λ I) = {0} , then N(C)∩N(B−λ I) �= {0} , and also have σp(MC) = σ(A)p ∪
σp(B) .

(iv) When C(B−μI) = 0 for some μ ∈ C,μ /∈ σp,3(B)∪σp,4(B) , let λ ∈ σp(B)\
σp(A) . Then

C(B−λ I) = (μ −λ )C.

Case 1: μ �= λ . Then

1
μ −λ

C(B−λ I)N(B−λ I) = CN(B−λ I) = {0}.

Thus N(C)∩N(B−λ I) �= {0} , and by Proposition 1.9, we have σp(MC) = σ(A)p ∪
σp(B) .

Case 2: μ = λ . Then C(B − λ I) = 0, and we can claim that C = 0. Thus
σp(MC) = σ(A)p ∪σp(B) . Indeed, λ /∈ σp,3(B)∪σp,4(B) . Thus the range R(B−λ I)
is dense in X . In view of C is everywhere defined bounded, we have C = 0. �

The following example illustrates that Theorem 1.3 and Proposition 1.9 are also
useful to characterize the spectra of unbounded operator matrices.

EXAMPLE 1.11. Consider the PDE of rectangular plate with two opposite edges
simply supported

E
( ∂ 2

∂x2 +
∂ 2

∂y2

)2
w = f (x,y), (1.2)

where the boundary conditions for the simply supported edges are

w = 0,
∂ 2w
∂y2 = 0, for y = 0 and y = 1.

Set that θ = ∂w
∂x , q = E( ∂ 3w

∂x3 + ∂ 3w
∂x∂ 2y

) , p = −E( ∂ 2w
∂x2 + ∂ 2w

∂y2 ) . Then the Hamiltonian
system (see [8]) of (1.2) is

∂
∂x

⎡
⎢⎢⎣

w
θ
p
q

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 1 0 0

− ∂ 2

∂y2 0 0 − 1
E

0 0 0 ∂ 2

∂y2

0 0 −1 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

w
θ
p
q

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0
0

f (x,y)
0

⎤
⎥⎥⎦ ,

and the corresponding Hamiltonian operator in L2[0,1]×L2[0,1]×L2[0,1]×L2[0,1] is

H =
[
A C
0 B

]
,
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where A =

[
0 I

− d2

dy2 0

]
, C =

[
0 0
0 − 1

E

]
, B =

[
0 d2

dy2

−I 0

]
. In view of the boundary condi-

tions, we can see B = −A∗ and

σ(A) = σ(B) = σp(A) = {kπ : k = ±1,±2, · · ·}.

that is, σr,1(A) = /0 and thus σ(H) = σ(A)∪σ(B) = {kπ : k = ±1,±2, · · ·} .

2. The proof of main results

To prove the main results, we start with the following lemma:

LEMMA 2.1. Let MC =
[
A C
0 B

]
: D(A)×D(B)→X×X be a densely defined upper

triangular operator matrix, where A,B are densely defined closed and C is closable.
Then 0 ∈ ρ(MC) if and only if

(i) A is bounded below,

(ii) B is surjective,

(iii) N(C)∩N(B) = {0} ,

(iv) CN(B)⊕R(A) = X .

Proof. Since A,B are densely defined closed, C is closable and D(B)⊂D(C) , we

can claim that MC is closed. In fact, let

{[
xn

yn

]}∞

n=1
⊂ D(MC) ,

[
xn

yn

]
→

[
x0

y0

]
and

[
A C
0 B

][
xn

yn

]
→

[
f0
g0

]
.

In view of closedness of B we have y0 ∈ D(B) . In addition, C closable and D(B) ⊂
D(C) imply that C is B-bounded (see Remark 1.5 in [9]). Thus {Cyn}∞

n=1 is a Cauchy
sequence, and hence {Cyn}∞

n=1 is convergent. Let Cyn → h0 . Then

Axn → f0 −h0

and x0 ∈ D(A) , which imply

[
x0

y0

]
∈ D(MC) . Thus MC is closed. When 0 ∈ ρ(MC) ,

the proofs of (i), (ii) and (iii) are trivial. Next we will prove CN(B)⊕R(A) = X . Let
y0 ∈CN(B)∩R(A) . Then there exist x1 ∈ D(A) , x2 ∈ N(B) such that

Ax1 = Cx2 = y0,

and [
A C
0 B

][−x1

x2

]
= 0,
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which implies x1 = x2 = 0, and thus CN(B) ∩ R(A) = {0} . Moreover, in view of
0∈ ρ(MC) and MC is closed, for any f ∈ X there exist x1 ∈D(A),x2 ∈ N(B) such that[

A C
0 B

][
x1

x2

]
=

[
f
0

]
,

which implies CN(B)⊕R(A) = X .
To prove the necessity part, it suffices to show that MC is bijective. Let[

A C
0 B

][
x
y

]
= 0.

Then Ax =B(−y)∈R(A)∩CN(B) , and Ax = 0 and thus x = 0. Furthermore, in view of

N(C)∩N(B) = {0} , we also have y = 0. Hence MC is injective. For any

[
f
g

]
∈ X ×X ,

considering the surjectiveness of B , there exists x3 ∈ D(B) such that

Bx3 = g.

Furthermore, since CN(B)⊕R(A) = X , there exist x1 ∈ D(A),x2 ∈ N(B) such that

Ax1 +Cx2 = f −Cx3.

Thus [
A C
0 B

][
x1

x2 + x3

]
=

[
f
g

]
,

which implies that MC is surjective. The proof is complete. �

We are going to give a proof of Theorem 1.3.

Proof of Theorem 1.3. When σ(MC) = σ(A)∪σ(B) , without loss of generality,
let (σr,1(A)∩σp,1(B))∪ (ρ(A)∩σp,1(B)) �= /0 . Then

(σr,1(A)∩σp,1(B))∪ (ρ(A)∩σp,1(B)) ⊂ σ(MC).

Suppose that λ ∈ ((σr,1(A)∩σp,1(B))∪ (ρ(A)∩σp,1(B)) satisfies N(C)∩N(B−λ ) =
{0} , CN(B−λ )∩R(A−λ ) = X and CN(B−λ )+R(A−λ ) = X . Then by Lemma
2.1 we have λ ∈ ρ(MC) , which contradicts with λ ∈ σ(MC) .

We are now going to prove the necessity part. When (σr,1(A)∩σp,1(B))∪(ρ(A)∩
σp,1(B)) = /0 , to prove σ(MC) = σ(A)∪σ(B) , it suffices to show that λ ∈ ρ(MC)
implies λ ∈ ρ(A)∩ρ(D) . Let λ ∈ ρ(MC) . Then by Lemma 2.1 we have λ ∈ (ρ(A)∪
σr,1(A))∩ (ρ(B)∪σp,1(B)) . Suppose λ ∈ σr,1(A)∩ρ(B) . Then in view of D(B) ⊂
D(C) we have [

A−λ I C
0 B−λ I

]
=

[
I C(B−λ I)−1

0 I

][
A−λ I 0

0 B−λ I

]
.

In view of λ ∈ ρ(MC)∩ρ(B) , we have λ ∈ ρ(A) , which contradicts with λ ∈ σr,1(A) .
Hence λ ∈ ρ(A)∩ρ(B) .
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When (σr,1(A)∩σp,1(B))∪(ρ(A)∩σp,1(B)) �= /0 , let λ ∈ ρ(MC) . Then by Lemma
2.1 we have A−λ I is bounded below and B−λ I is surjective, that say

λ ∈ (ρ(A)∪σr,1(A))∩ (σp,1(B)∪ρ(B)).

Suppose λ ∈ (σr,1(A)∩σp,1(B))∪ (ρ(A)∩σp,1(B)) . Then in view of given condition,
we have λ ∈ σ(MC) , which contradicts with λ ∈ ρ(MC) . Similarly, λ /∈ (σr,1(A)∩
ρ(B)) so λ ∈ ρ(A)∩ρ(B) and proof is complete. �

To prove the Theorem 1.5, we introduce following lemma.

LEMMA 2.2. Let MC =
[
A C
0 B

]
: D(A)×D(C) → X × X be a densely defined

closed upper triangular operator matrix, where A,B and C are densely defined closed.
If ρ(A) ∩ ρ(B) �= /0 and R((B− μI)|D(C)) = X for some μ ∈ ρ(A)∩ ρ(B) . Then

M∗
C =

[
A∗ 0
C∗ B∗

]
.

Proof. Since

[
A∗ 0
C∗ B∗

]
⊂M∗

C is trivial, to prove M∗
C =

[
A∗ 0
C∗ B∗

]
, it suffices to show

that D(M∗
C) ⊂ D

([
A∗ 0
C∗ B∗

])
. Let

[
x∗
y∗

]
∈ D(M∗

C) . Then in view of R(A∗ − μI) = X

and R(B∗ − μI) = X , we have

R

([
A∗ − μI 0

C∗ B∗ − μI

])
= X ×X .

Thus there exists

[
x
y

]
∈ D(A∗)×D(B∗) such that

[
A∗ − μI 0

C∗ B∗ − μI

][
x
y

]
= (M∗

C − μI)
[
x∗
y∗

]
. (2.1)

Furthermore, from R(A− μI) = X , R((B− μI)|D(C)) = X and the closedness of MC

we can claim that M∗
C − μI is injective. Indeed, let

[
f
g

]
∈ X ×X . Then there exists

{yn} ⊂ D(C) such that
(B− μI)yn → g.

Since R(A− μI) = X , there exists xn ∈ D(A) , n = 1,2, · · · such that

(A− μI)xn = g−Cyn, n = 1,2, · · · ,

which implies

[
A− μI C

0 B− μI

][
xn

yn

]
→

[
f
g

]
. Thus R(MC − μI) = X ×X . Suppose

M∗
C − μI is not injective. Then there exists V0 ∈ D(M∗

C) , V0 �= 0 such that

((M∗
C − μI)V0,U) = 0
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holds for all U ∈ D(MC) and hence

(V0,(MC − μI)U) = 0,

which contradicts with R(MC − μI)= X×X . Thus M∗
C−μI is injective. Since

[
A∗ 0
C∗ B∗

]
⊂ M∗

C , by equation (2.1), we have

(M∗
C − μ)

([
x∗
y∗

]
−

[
x
y

])
= 0.

Thus

[
x∗
y∗

]
=

[
x
y

]
∈ D

([
A∗ 0
C∗ B∗

])
and so M∗

C =
[
A∗ 0
C∗ B∗

]
. �

Finally we give a proof of Theorem 1.5.

Proof of Theorem 1.5. By Lemma 2.1 M∗
C =

[
A∗ 0
C∗ B∗

]
, and similar to the proof of

Theorem 1.3, we have σ(M∗
C) = σ(A∗)∪σ(B∗) if and only if (σr,1(B∗)∩σp,1(A∗))∪

(ρ(B∗)∩σp,1(A∗)) = /0 or for any λ ∈ (σr,1(B∗)∩σp,1(A∗))∪ (ρ(B∗)∩σp,1(A∗)) sat-
isfies one of the followings:

(i) N(C∗)∩N(A∗ −λ I) �= {0} ;

(ii) C∗N(A∗ −λ I)∩R(B∗−λ I) �= {0} ;

(iii) C∗N(A∗ −λ I)+R(B∗−λ I) �= X .

Furthermore, since MC is closed, λ ∈ ρ(MC) if and only if λ ∈ ρ(M∗
C) , λ ∈ ρ(A)∩

ρ(B) if and only if λ ∈ ρ(A∗)∩ρ(B∗) . Hence σ(MC) = σ(A)∪σ(B) if and only if
σ(M∗

C) = σ(A∗)∪σ(B∗) , and the proof is complete. �
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