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FUNCTIONS AND exp{ f (x)} RELATED TO THE STOLARSKY MEAN
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(Communicated by S. McCullough)

Abstract. We consider operator monotonicity of a 2-parameter family of functions including the
representing function of the Stolarsky mean, which is constructed by integration of the function

[(1−α) + αxp]
1
p , representing the weighted power mean, of α ∈ [0,1] . We also think about

operator monotonicity of exp{ f (x)} for a continuous function f (x) defined on (0,∞) .

1. Introduction

Let H be a complex Hilbert space with an inner product 〈·, ·〉, and B(H ) be the
set of all bounded linear operators on H . An operator A∈B(H ) is said to be positive
if and only if 〈Ax,x〉 � 0 for all x ∈ H . We denote a positive operator A by A � O
and a set of all positive operators in B(H ) by B(H )+ . For self-adjoint operators
A,B ∈ B(H ), A � B means B−A is positive. A > 0 (A is strictly positive) means A
is positive and invertible. We assume that a function is not a constant throughout this
paper. A continuous function f (x) defined on an interval I in R is called an operator
monotone function, provided A � B implies f (A) � f (B) for every pair A,B∈B(H )
whose spectra σ(A) and σ(B) lie in I . We call f (x) a Pick function if f (x) has an
analytic continuation to the upper half-plane C+ = {z ∈ C | Im z > 0} and f (z) maps
from C+ into itself, where Im z means the imaginary part of z . It is well known that
a Pick function is an operator monotone function and conversely an operator monotone
function is a Pick function (Löwner’s theorem, cf. [3]). In this article we consider
operator monotonicity of some functions by using this fact.

A map M(·, ·) : B(H )2
+ → B(H )+ is called an operator mean [4] if the oper-

ator M(A,B) satisfies the following four conditions for A,B ∈ B(H )+;
(1) A � C and B � D imply M(A,B) � M(C,D),
(2) C(M(A,B))C � M(CAC,CBC) for all self-adjoint C ∈ B(H ),
(3) An ↘ A and Bn ↘ B imply M(An,Bn) ↘ M(A,B),
(4) M(I, I) = I.
Next theorem is so important to study operator means;
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THEOREM K-A. (Kubo-Ando [4]) For any operator mean M(·, ·) , there uniquely
exists an operator monotone function f � 0 on [0,∞) with f (1) = 1 such that

f (x)I = M(I,xI), x � 0.

Then the following hold:
(1) The map M(·, ·) �→ f is a one-to-one onto affine mapping from the set of

all operator means to the set of all non-negative operator monotone functions on [0,∞)
with f (1) = 1 . Moreover, M(·, ·) �→ f preserves the order, i.e., for M(·, ·) �→ f , N(·, ·)
�→ g,

M(A,B) � N(A,B) (A,B ∈ B(H )+) ⇐⇒ f (x) � g(x) (x � 0).

(2) When A > 0 , M(A,B) = A
1
2 f (A

−1
2 BA

−1
2 )A

1
2 .

The function f (x) is called the representing function of M(·, ·) . From this the-
orem, it is enough to consider operator monotone functions when we study operator
means.

The 1-parameter family of operator monotone functions {Sp(x)}p∈[−2,2] ([3]);

Sp(x) =
(

p(x−1)
xp−1

) 1
1−p

is one of the most famous family of operator monotone functions on (0,∞) . Sp(x) is
a representing function of the Stolarsky mean, and −2 � p � is optimal for which
Sp(x) is operator monotone [6]. Namely, Sp(x) is not operator monotone if p ∈
(−∞,−2)∪ (2,∞) . This family interpolates many famous operator monotone func-
tions, for example,

S1(x) := lim
p→1

Sp(x) = exp

(
x logx
x−1

−1

)
,

which is the representing function of the identric mean.The exponential function exp(x)
is well known as a function which is not operator monotone, in contrast with its inverse
function logx is so. But there exists a function f (x) such that exp{ f (x)} is an operator
monotone function besides constant, like S1(x) . In general, it is so difficult to check
operator monotonicity of exp{ f (x)} because exp{ f (x)} is a composite function of the
non-operator monotone function exp(x) with f (x) . In the following, we will obtain
a characterization of such functions by using Löwner’s theorem and Euler’s formula.
Thanks to this result, it has become easy to check operator monotonicity of exp{ f (x)}
by simple computation.

On the other hand, the 2-parameter family of operator monotone functions
{Fr,s(x)}r,s∈[−1,1] ;

Fr,s(x) :=
(

r(xr+s −1)
(r+ s)(xr −1)

) 1
s

is constructed in [7] by integration the function [(1−α) + αxp]
1
p , which represent-

ing the weighted power mean, of the parameter α ∈ [0,1] . This family interpolates
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many well-known operator monotone functions except {Sp(x)}p∈[−2,2] , for example,
F−1,−1(x) = 2(x−1 + 1)−1 . Moreover, {Fr,s(x)}r,s∈[−1,1] has monotonicity of r and s ,
namely, −1 � r1 � r2 � 1, −1 � s1 � s2 � 1 imply Fr1,s1(x) � Fr2,s2(x) . From this
fact, we can easily get the following inequalities;

2x
x+1

� x logx
x−1

� x
1
2 � x−1

logx
� exp

(
x logx
x−1

−1

)
� x+1

2
. (�)

If we put r = 1 and s = p− 1, then Fr,s(x) coincides with Sp(x) , and we obtain the
fact that Sp(x) is operator monotone for 0 � p � 2. But we cannot prove operator
monotonicity of Sp(x) for −2 � p < 0 by the same way, because s = p−1 ∈ [−1,1] .
So we think that the range of parameter of {Fr,s(x)}r,s∈[−1,1] such that Fr,s(x) is operator
monotone is not optimal.

In this article we treat this family as the following form

Sp,α(x) :=
(

p(xα −1)
α(xp−1)

) 1
α−p

.

In [5], they have obtained an equivalent condition of (p,α) such that Sp,α(x) is
operator monotone. However, their characterization have not given any concrete form
of the range of (p,α) , i.e., we have not known the complete form of the range of (p,α)
such that Sp,α(x) is operator monotone, yet. On the other hand, we have obtained a part
of the range of (p,α) such that Sp,α(x) is operator monotone in [7]. In this article, we
shall extend the range of (p,α) from the results in [7].

In Section 2, we consider the range of parameter of {Sp,α(x)} in which the func-
tion is operator monotone, and try to extend it by using operator monotonicity of Sp(x)
and Fr,s(x) for p ∈ [−2,2] and r,s ∈ [−1,1] , respectively. In Section 3, we give a
characterization of f (x) such that exp{ f (x)} is operator monotone, and by applying
this result we get some examples of functions f (x) such that exp{ f (x)} is operator
monotone.

2. Extension of the range of parameter (p,α) of {Sp,α(x)}

In this section we try to extend the range of parameter (p,α) such that Sp,α(x) is
operator monotone. So far, we have known that Sp,α(x) is operator monotone if

p−1 � α � p+1, p ∈ [−1,1]

from the operator monotonicity of Fr,s(x) shown in [7]. In [5], they showed that the
following function

hp,α(x) =
α(xp−1)
p(xα −1)

is operator monotone if and only if (p,α) ∈ {
(p,α) ∈ R2

∣∣ 0 < p−α � 1, p � −1,and
α � 1

}∪ ([0,1]× [−1,0]) \ {(0,0)}. Also, if (p,α) ∈ {(p,α) ∈ R2|0 � p � 1,−1 �
α � 0 and α � p− 1} , then 1

p−α ∈ [ 1
2 ,1] . From these results and Löwner-Heinz
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inequality, we can find that Sp,α(x) = hp,α(x)
1

p−α is operator monotone if (p,α) ∈
{(p,α) ∈ R2|0 � p � 1, −1 � α � 0 and α � p− 1} . Therefore, we obtain the fact
that Sp,α(x) is operator monotone if

(p,α) ∈ {
(p,α) ∈ R

2
∣∣ p−1 � α � p+1, p ∈ [−1,1]

}∪ ([0,1]× [−1,0]). (∗)
Firstly we think about a trivial part and a part to which the range of parameter

cannot be extended.

Trivial part. If α = 1, then Sp,1(x) coincides with Sp(x) , so that Sp,α(x) is oper-
ator monotone if α = 1, −2 � p � 2 by operator monotonicity of Sp(x) . Moreover,
since Sp,−1(x) coincides with S−p(x−1)−1 and S−p(x−1)−1 is operator monotone too,
Sp,α(x) is operator monotone if α = −1, −2 � p � 2. We can also find that Sp,α(x)
is operator monotone if p = 1, −2 � α � 2 and p = −1, −2 � α � 2.

If α → 0, then

Sp,0(x) := lim
α→0

Sp,α(x) =
(

xp−1
p logx

) 1
p

(0 < x).

It is well known that the set of operator monotone functions is closed in the topology
of pointwise convergence, and if p = 2, then

S2,0(x) =
(

x+1
2

× x−1
logx

) 1
2

.

It is easy to check that S2,0(x) is operator monotone. Also, if f (x) is operator mono-

tone, then f (xp)
1
p is operator monotone for all p ∈ [−1,1] . So we can find Sp,α(x) is

operator monotone if α = 0, −2 � p � 2.
On the other hand, there is a case where Sp,α(x) is operator monotone regardless

of the value of p or α . If α = −p , then

Sp,−p(x) =
(

p(x−p−1)
(−p)(xp−1)

) 1
−2p

=
(

p(1− xp)
(−p)xp(xp −1)

) 1
−2p

=
(

1
xp

) 1
−2p

= x
1
2 .

Hence, we find that operator monotonicity of Sp,α(x) always holds if α = −p .

A part to which the range of parameter cannot be extended. If α = 2p , then

Sp,2p(x) =
(

p(x2p−1)
2p(xp−1)

) 1
2p−p

=
(

(xp +1)(xp−1)
2(xp−1)

) 1
p

=
(

xp +1
2

) 1
p

.
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This function induces the power mean and is operator monotone if and only if p ∈
[−1,1] ([2]) . So we can not extend the range of paramter (∗) such that Sp,α(x) is
operator monotone when α = 2p .

If α = p , then

Sp,p(x) := lim
α→p

Sp,α(x) = exp

{
1
p

(
xp logxp

xp −1
−1

)}
.

We will show that this function is operator monotone if p∈ [−1,1] , and is not if 5
4 < |p|

in Section 3. For example, when p = 2, Sp,p(x) coincides with

exp

{
1
2

(
x2 logx2

x2 −1
−1

)}
= exp

{
1
2

(
2x

x+1
x logx
x−1

−1

)}
,

and it is not operator monotone.

Extension from operator monotonicity of {Sp(x)}p∈[−2,2] . From Löwner’s theorem
and operator monotonicity of the 1-parameter family {Sp(x)}p∈[−2,2] , z ∈ C+ implies
Sp(z) ∈ C+ for all p ∈ [−2,2] , namely, the argument of Sp(z) has the following prop-
erty

0 < arg

(
p(z−1)
zp−1

) 1
1−p

(
=

1
1− p

arg

(
p(z−1)
zp−1

))
< π

(z ∈ C+, −2 � p � 2) . So we get

0 < arg

(
p(z−1)
zp−1

)
< (1− p)π (−2 � p < 1),

0 < arg

(
zp −1

p(z−1)

)
< (p−1)π (1 < p � 2),

respectively. By these inequalities we obtain

0 < arg

(
p(zα −1)
α(zp −1)

) 1
α−p

=
1

α − p

{
arg

(
p(z−1)
zp −1

)
+ arg

(
zα −1

α(z−1)

)}

<
1

α − p

{
(α −1)π +(1− p)π

}
= π

for the case −2 � p < 1, 1 < α � 2. On the other hand,

S−p(x−1)−1 =
(

(−p)(x−1−1)
(x−1)−p−1

) −1
1−(−p)

=
(

(−p)(1− x)
x(xp−1)

) −1
1+p

=
(

x(xp−1)
p(x−1)

) 1
1+p
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is operator monotone for −2 � p � 2 too. So we have

0 <
1

1+ p
arg

(
z(zp −1)
p(z−1)

)
< π (z ∈ C

+, −2 � p � 2)

and get the following relation similarly for the case −1 < p � 2, −2 � α < −1;

0 < arg

(
p(zα −1)
α(zp−1)

) 1
α−p

=
1

p−α

{
arg

(
z(zp−1)
p(z−1)

)
+ arg

(
α(z−1)
z(zα −1)

)}

<
1

p−α
{
(1+ p)π − (1+ α)π

}
= π .

Moreover, since Sp,α(x) is symmetric for p,α , we can extend the range of parameter
(∗) symmetrically from the above results. Namely, we have

(−2 � p < 1, 1 < α � 2) −→ (−2 � α < 1, 1 < p � 2),

(−1 < p � 2, −2 � α < −1) −→ (−1 < α � 2, −2 � p < −1),

(p,α) ∈ {(p,α) ∈ R
2 | 0 � p � 1, −1 � α � 0 and α � p−1}

−→ (p,α) ∈ {(p,α) ∈ R
2 | 0 � α � 1, −1 � p � 0 and p � α −1}.

 

 

0 

 

  

 

Figure 1: Parameter range proved in [5] , [7]
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Figure 2: Extended parameter range of
Sp,α (x)

From the above results, we regard Sp,α(x) as the representing function of the 2-
parameter Stolarsky mean.
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THEOREM 1. Let

Sp,α(x) =
(

p(xα −1)
α(xp −1)

) 1
α−p

(x > 0).

Then Sp,α(x) is operator monotone if (p,α) ∈ A ⊂ R
2 , where

A =
(
[−2,1]× [−1,2]

)∪ (
[−1,2]× [−2,1]

)∪{
(p,α) ∈ R

2
∣∣ α = −p

}
.

3. Operator monotonicity of exp{ f (x)}

3.1. Characterization

Here we give a characterization of a continuous function f (x) on (0,∞) such that
exp{ f (x)} is an operator monotone function. It is clear that f (x) = logx satisfies this
condition. The principal branch of Logz is defined as

Logz := logr+ iθ (z := reiθ , 0 < θ < 2π).

It is an analytic continuation of the real logarithmic function to C . Moreover it is a
Pick function, namely an operator monotone function, and satisfies ImLogz = θ . In
the following we think about the case f (x) is not the logarithmic function:

THEOREM 2. Let f (x) be a continuous function on (0,∞) . If f (x) is not a con-
stant or log(αx) (α > 0) , then the following are equivalent:

(1) exp{ f (x)} is an operator monotone function,
(2) f (x) is an operator monotone function, and there exists an analytic continu-

ation satisfying
0 < v(r,θ ) < θ ,

where
f (reiθ ) = u(r,θ )+ iv(r,θ ) (0 < r, 0 < θ < π).

REMARK 1. In the above theorem, functions u(r,θ ) and v(r,θ ) are real-valued
continuous functions.

REMARK 2. In [1] Hansen proved a necessary and sufficient condition for
exp{F(logx)} to be an operator monotone function, that is, F admits an analytic con-
tinuation to S = {z ∈ C | 0 < Im z < π} and F(z) maps from S into itself. A condition
of Theorem 2 is more rigid than this statement.

Proof. (1) =⇒ (2) . Since exp{ f (x)} is operator monotone, log{exp{ f (x)}} =
f (x) is operator monotone, too. Also exp{ f (x)} is a Pick function, so there exists an
analytic continuation to the upper half plane C+ and z ∈ C+ implies exp{ f (z)} ∈ C+ .
For z = s+ it ∈C+ (s∈R, 0 < t) , let f (z) = f (s+ it) = p(s,t)+ iq(s,t) . Using Euler’s
formula, we obtain

exp{ f (z)} = exp{p(s,t)}(cos{q(s,t)}+ isin{q(s,t)}).
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So we have Imexp{ f (z)}= exp{p(s,t)}sin{q(s,t)} , and hence 0 < sin{q(s,t)} . Also,
q(s,t) belongs to C1 , so q(s,t) is continuous on its domain. From these facts, we can
find that 2nπ < q(s, t) < (2n+1)π holds for the unique n ∈ N∪{0} . Here by putting
z = reiθ (0 < r , 0 < θ < π) , f (z) = f (reiθ ) = u(r,θ )+ iv(r,θ ) again,

2nπ < v(r,θ ) < (2n+1)π

holds for the unique n ∈ N∪{0} . On the other hand, from the operator monotonicity
of exp{ f (x)} and the assumption of Theorem 2, x[exp{ f (x)}]−1 is a positive operator
monotone function on (0,∞) , too. So we get

z[exp{ f (z)}]−1 = exp{Logz− f (z)}
= exp{(logr−u(r,θ ))+ i(θ − v(r,θ ))}
= exp{logr−u(r,θ )}(cos{θ − v(r,θ )}+ isin{θ − v(r,θ )}).

From the above,
2mπ < θ − v(r,θ ) < (2m+1)π

holds for the unique m ∈ N∪{0} . Moreover, 0 < v(r,θ ) and 0 < θ < π are required
from the assumption, and hence

θ − v(r,θ ) < θ < π .

From these facts, v(r,θ ) must satisfy

0 < θ − v(r,θ ) < π , (∗∗)
so we get

0 < v(r,θ ) < θ
by the left side inequality of (∗∗) .

(2)=⇒ (1) . Since f (x) is a Pick function, and the set of all holomorphic functions
is closed under composition, exp{ f (z)} is a holomorphic function on the upper half
plane C+ . Let z = reiθ ∈ C+ . From the assumption 0 < v(r,θ ) < π ,

0 < sin{v(r,θ )} � 1.

So we have
0 < exp{u(r,θ )}sin{v(r,θ )} = Imexp{ f (z)}

and find
z ∈ C

+ =⇒ exp{ f (z)} ∈ C
+. �

COROLLARY 1. Let f (x) be a continuous function on (0,∞) , and assume f (x)
is not a constant or log(αx) (α > 0) . If f (x) is not an operator monotone function or
is an operator monotone function which does not satisfy

v(r,θ ) < π ,

then exp{ f (x)} is not operator monotone, where

f (reiθ ) = u(r,θ )+ iv(r,θ ) (0 < r, 0 < θ < π).
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3.2. Applications

By Theorem 2, we can check numerically that exp{ f (x)} is operator monotone or
not if the imaginary part of f (z) can be expressed concretely. Now we apply Theorem
2 and get some examples by “only” using simple computation.

EXAMPLE 1. (Harmonic mean)

H(x) =
2x

x+1

is an operator monotone function on [0,∞) , but exp{H(x)} is not operator monotone.
Actually, by putting z = reiθ (0 < r , 0 < θ < π) , we have

H(z) =
2(r2 + rcosθ )+ i(2r sinθ )

r2 +1+2rcosθ

and

v(r,θ ) := Im H(z) =
2r sinθ

r2 +1+2rcosθ
.

When r = 1, θ =
5
6

π , we get v

(
1,

5
6

π
)

= 2+
√

3 >
5
6

, hence we can find exp{H(x)}
is not an operator monotone function by Theorem 2.

EXAMPLE 2. (Logarithmic mean)

L(x) =
x−1
logx

is an operator monotone function on [0,∞) , but exp{L(x)} is not operator monotone.
Actually, by putting z = reiθ (0 < r , 0 < θ < π) , we have

L(z) =

{
(logr)(rcosθ −1)+ rθ sinθ

}
+ i

{
(r logr)sinθ −θ (rcosθ −1)

}
(logr)2 + θ 2

and

v(r,θ ) := Im L(z) =
(r logr)sinθ −θ (rcosθ −1)

(logr)2 + θ 2 .

When r = exp
{π

2

}
, θ =

π
2

, we get v
(
exp

{π
2

}
,

π
2

)
=

exp{ π
2 }+1

π
>

π
2

from

π2 < 10 = 2× (4+1)< 2×
(
exp

{π
2

}
+1

)
.

So we find that exp{L(x)} is not an operator monotone function by Theorem 2.
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EXAMPLE 3. (Dual of Logarithmic mean)

DL(x) =
x logx
x−1

is an operator monotone function on [0,∞) and exp{DL(x)} is operator monotone, too.
In the following we verify that DL(x) satisfies the condition of Theorem 2:

By putting z = reiθ (0 < r , 0 < θ < π) , we have

DL(z) =
r
[{

(r− cosθ ) logr+ θ sinθ
}

+ i
{

θ (r− cosθ )− (logr)sinθ
}]

r2 +1−2rcosθ

and

v(r,θ ) := Im DL(z) =
r

r2 +1−2rcosθ
{

θ (r− cosθ )− (logr)sinθ
}
.

In the following we show 0 < v(r,θ ) < θ .
(1) Proof of v(r,θ ) < θ ; v(r,θ ) < θ is equivalent to r

{
θ cosθ − (logr)sinθ

}
< θ . By using the following inequalities

θ cosθ � sinθ < θ (0 < θ < π), r(1− logr) � 1 (0 < r),

we obtain

r
{

θ cosθ − (logr)sinθ
}

� r
{
sinθ − (logr)sinθ

}
= r(1− logr)sinθ
� sinθ < θ .

(2) Proof of 0 < v(r,θ ) ; 0 < v(r,θ ) is equivalent to (logr)sinθ < θ (r− cosθ ).
When 1 � r , since θ cosθ � sinθ < θ (0 < θ < π) , 0 � logr � r−1, we have

(logr)sinθ < (r−1)θ < θ (r− cosθ ).

When 0 < r < 1, since θ cosθ � sinθ < θ (0 < θ < π) , logr < r−1 < 0, we have

(logr)sinθ < (r−1)sinθ
� (r−1)θ cosθ
= θ (rcosθ − cosθ ) < θ (r− cosθ ).

From (1) and (2) , we have 0 < v(r,θ ) < θ .

EXAMPLE 4.

IL(x) := −L(x)−1 = − logx
x−1

is a negative operator monotone function on (0,∞) and exp{IL(x)} is operator mono-
tone, too. In the following we verify that IL(x) satisfies the condition of Theorem
2:
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By putting z = reiθ (0 < r , 0 < θ < π) , we have

IL(z) = −{(logr)(rcosθ −1)+ rθ sinθ}+ i{θ (rcosθ −1)− (r logr)sinθ}
r2 +1−2rcosθ

and

v(r,θ ) := Im IL(z) =
(r logr)sinθ −θ (rcosθ −1)

r2 +1−2rcosθ
.

In the following we show 0 < v(r,θ ) < θ .
(1) Proof of v(r,θ ) < θ ; v(r,θ ) < θ is equivalent to (logr)sinθ +θ cosθ < rθ .

By using the following inequalities

θ cosθ � sinθ < θ (0 < θ < π), logr � r−1 (0 < r),

we obtain

(logr)sinθ + θ cosθ � (logr)sinθ + sinθ
= sinθ (logr+1)
� r sinθ < rθ .

(2) Proof of 0 < v(r,θ ) ; 0 < v(r,θ ) is equivalent to r
{

θ cosθ − (logr)sinθ
}

<
θ . Since θ cosθ � sinθ < θ (0 < θ < π) , r(1− logr) � 1 (0 < r) , we have

r
{

θ cosθ − (logr)sinθ
}

� r
{
sinθ − (logr)sinθ

}
= sinθ

{
r(1− logr)

}
� sinθ < θ .

From (1) and (2) , we obtain 0 < v(r,θ ) < θ .

Results of Example 3 and Example 4 are extended as the following;

THEOREM 3. Let

DLp(x) =
xp logx
xp−1

.

Then exp{DLp(x)} is an operator monotone function for all p ∈ [−1,1]\ {0} .

Proof. Firstly we show that DLp(x) satisfies the condition of Theorem 2 for the
case p ∈ (0,1] :

By putting z = reiθ (0 < r , 0 < θ < π) , we have

DLp(z)=
rp

[{
(rp−cos(pθ )) logr+θ sin(pθ )

}
+i

{
θ (rp−cos(pθ ))−(logr)sin(pθ )

}]
r2p+1−2rp cos(pθ )

and

v(r,θ ) := Im DLp(z) =
rp

r2p +1−2rpcos(pθ )
{

θ (rp− cos(pθ ))− (logr)sin(pθ )
}
.
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In the following we show 0 < v(r,θ ) < θ .

(1) Proof of v(r,θ )< θ ; v(r,θ )< θ is equivalent to rpθ cos(pθ )−(rp logr)sin(pθ )
< θ .

rpθ cos(pθ )− (rp logr)sin(pθ ) � rp
(

1
p

)
sin(pθ )− (rp logr)sin(pθ )

= sin(pθ )
(

1
p

)
(rp − rp logrp)

� sin(pθ )
(

1
p

)
< (pθ )

(
1
p

)
= θ .

(2) Proof of 0 < v(r,θ ) ; 0 < v(r,θ ) equivalent to (logr)sin(pθ )< θ (rp−cos(pθ )).

When r = 1, the inequality holds clearly.

When 1 < r ,

(logr)sin(pθ ) =
(

1
p

)
(logrp)sin(pθ ) <

(
1
p

)
(rp −1)sin(pθ )

�
(

1
p

)
(rp − cos(pθ ))sin(pθ ) � (rp− cos(pθ ))θ .

When 0 < r < 1,

(logr)sin(pθ ) =
(

1
p

)
(logrp)sin(pθ ) <

(
1
p

)
(rp −1)sin(pθ )

�
(

1
p

)
(rp −1)(pθ )cos(pθ ) = θ

(
rp cos(pθ )− cos(pθ )

)

� θ (rp− cos(pθ )).

When p ∈ [−1,0) ,

DLp(z) =
zpLogz
zp−1

=
z−pzpLogz
z−p(zp −1)

=
Logz

1− z|p|

and

v′(r,θ ) := Im DLp(reiθ ) =
θ (1− r|p|cos(|p|θ ))+ (r|p| logr)sin(|p|θ )

r2|p| +1−2r|p|cos(|p|θ )
.

In the following we show 0 < v′(r,θ ) < θ .
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(3) Proof of v′(r,θ )< θ ; v′(r,θ )< θ is equivalent to θ cos(|p|θ )+(logr)sin(|p|θ )
< θ r|p|.

θ cos(|p|θ )+ (logr)sin(|p|θ ) � sin(|p|θ )
|p| +(logr)sin(|p|θ )

=
sin(|p|θ )

|p| (1+ logr|p|)

� sin(|p|θ )
|p| (1+ r|p| −1)

=
sin(|p|θ )

|p| r|p| < θ r|p|.

(4) Proof of 0<v′(r,θ ) ; 0<v′(r,θ ) is equivalent to r|p|
(
θ cos(|p|θ )−(logr)sin(|p|θ )

)
< θ .

When r = 1, the inequality holds clearly.
When r �= 1,

r|p|
(
θ cos(|p|θ )− (logr)sin(|p|θ )

)
� r|p|

(
sin(|p|θ )

|p| − (logr)sin(|p|θ )
)

= r|p|(1− logr|p|)
(

sin(|p|θ )
|p|

)

<
sin(|p|θ )

|p| < θ . �

REMARK 3. DLp(x) doesn’t satisfy the condition of Theorem 2 if 5
4 < |p| . If

p = 2, for example, then

DL2(x) =
1
2
× 2x

x+1
× x logx

x−1
.

From the inequality (�) in Section 1, we have

2x
x+1

× x logx
x−1

� x
1
2 × x

1
2 = x.

Since a positive operator monotone function on (0,∞) with f (1) = 1 must satisfy
x < f (x) if 0 < x < 1,

2x
x+1

× x logx
x−1

is not an operator monotone function. And hence, DL2(x) is not operator monotone.
Next we will see more general case 5

4 < |p| . From a proof of Theorem 3, we have

v(r,θ ) := Im DLp(z) =
rp

r2p +1−2rpcos(pθ )
{

θ (rp− cos(pθ ))− (logr)sin(pθ )
}
.
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By simple computation,

v(r,θ ) < θ ⇐⇒ (
l(p,r,θ ) =

)
rp cos(pθ )− (rp logr)

sin(pθ )
θ

< 1.

If θ = 5π
4p and r = e

5π
2p (= e2θ ) , then

l(p,r,θ ) =
1√
2

(
−e2pθ +

1
θ
× e2pθ × loge2θ

)

=
1√
2

(
−e2pθ +2e2pθ

)

=
1√
2

exp

{
5π
2

}
> 1.

Therefore DLp(x) is not operator monotone if 5
4 < p from Theorem 2. We can also

show the case p < − 5
4 similarly.
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