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ANALYSIS ON THE TIME–VARYING GAP OF

DISCRETE TIME–VARYING LINEAR SYSTEMS

LIU LIU AND YUFENG LU

(Communicated by D. R. Larson)

Abstract. This paper is devoted to give some analysis on the time-varying (TV) gap of discrete
time-varying linear systems in the frame work of nest algebra. It is shown that the TV gap has
no advantage over gap metric in stability and robustness analysis on the single-sided discrete
time-axis N , while it stands out on the whole time-axis Z .

1. Introduction

Gap metric comes from the concept of angles between closed manifolds of Hilbert
space. Its origin is in functional analysis, where it was used in perturbation theory
of linear operators. In 1980s, Zames and El-Sakkary defined gap metric on possibly
unstable but stabilizable systems based on the graphs of the systems in [1]. The gap
metric has been established as sensible and useful measure of distance between linear
systems from a geometric perspective, it induces the weakest topology in which closed-
loop stability (relative to continuity of closed-loop operators) is a robust property (see
[2, 3, 4, 5]). Now, the gap metric and its variants have been powerful tools in solving
the feedback stability and robust control problems ([6, 7]).

As the development of H∞ control theory, a lot of insight has been obtained by
considering its time-varying analogue, the nest algebra of causal stable operators on
an appropriate complex Hilbert space of input-output signals. The control theory for
infinite-dimensional time-varying linear systems (i.e., systems with an infinite number
states) was sparked and developed based on the nest algebra approach in 1980s. Since
then, there has been significant interest in this issue which generated numerous papers
(see [8-12]). The stability theory for time-varying linear systems over singly infinite
time-axis N has been well established from the input-output point of view. In such set-
ting the gap metric also plays an important role in closed-loop stability analysis ([13]).
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It is shown that the closed-loop stability is equivalent to the gap metric related to the
plant and the controller less than 1. The time-varying gap was introduced as an exten-
sion of the gap metric to study stability robustness of time-varying systems in [14], it
is characterized in terms of every instant of time. For a class of time-varying linear
systems, the TV gap metric also induces a correct topology in dealing with the closed
stability and robust stability. Feintuch presented that the computation of the TV gap
between two plants can be reduced to a two-block optimization problem, and the opti-
mum is shown be equal to the norm of a time-varying Hankel operator defined on the
space of causal Hilbert-Schmidt operators in [15]. The authors gave a characterization
of TV gap between the plant and controller based on the commutant lifting theorem of
nest algebra in [16].

Much of modern control focuses on the use of double-sided signals, such as com-
munication systems and feedback systems in signal processing. However, the intro-
duction of double-sided signals has been coupled with the inconsistencies in the corre-
sponding mathematical formulism. It is well known that the closedness of the plant is a
necessary condition for it being stabilizable. Unfortunately, the graph of a causal linear
system on time-axis Z may possibly not be closed, this is a potential pitfalls of study
with the double-infinite time-axis [17, 18]. While the setting in this paper depends on
the resolution topology as in [13], it differs significantly from [17, 18]. Specifically, ev-
ery causal time-varying linear system over the whole time-axis considered subsequently
is a closed operator. In the framework of nest algebra, there have been numerous at-
tempts in the literature to generalize results about linear systems on single sided signal
space to double case [19, 20, 21]. It turns out that some results about stabilization of
time-varying systems on N have nice generalization to those on Z , such as the strong
representation approach and Youla parametrization. However, some results on single-
sided signal space can not be extended to the double-sided case. The gap metric is one
of these situations. More precisely, the gap metric can not be used to judge the stability
of closed-loop system on the double-sided signal space as it plays on the single-sided
case, while the TV gap can handle this.

In this paper, we are interested in the analysis of TV gap of discrete time-varying
linear systems defined on the singly and doubly infinite time-axis, respectively. First,
we will show that the TV gap and gap are equivalent in study of stability and stability
robustness over singly infinite time-axis N . Moreover, the concepts of gap and TV
gap are extended to the time-varying linear systems on doubly infinite time-axis Z ,
and some analysis on TV gap is shown. At last, we derive that gap and TV-gap are
still equivalent in measuring the distance between two linear plants on time-axis Z .
While, the TV gap and gap related to the plant and controller have distinct difference
on double-sided signal space.

This paper is organized as follows. In Section 2, we introduce the notations, to-
gether with some definitions and preliminary results. The TV gap between plants de-
fined on the whole time axis is considered in Section 3. The relationships between the
gap and TV gap concerned with the plant and controller are carried out in Section 4.
The paper ends with a conclusion.



TIME-VARYING GAP OF DISCRETE TIME-VARYING LINEAR SYSTEMS 535

2. Preliminaries

The symbols Z and N denote respectively the integer and natural numbers. Let
H and K be two separable Hilbert spaces. The direct sum of H and K is defined
by

H ⊕K =
{[

h
k

]
: h ∈ H ,k ∈ K

}
.

H ⊕K is also a Hilbert space with the inner product:〈[
h1

k1

]
,

[
h2

k2

]〉
= 〈h1,h2〉H + 〈k1,k2〉K .

B(H ,K ) denotes the Banach space of bounded linear operators from H to K with
the usual operator norm

||T || = sup
x∈H ,||x||H �1

||Tx||K .

The image and kernel of T ∈ B(H ,K ) are denoted, respectively, ImT = {y ∈ K :
y = Tx, x ∈ H } and KerT = {x ∈ H : Tx = 0} . The restriction of T to the closed
subspace V ⊆ H is denoted by T |V . Let PV denote the orthogonal projection with
image V . T ∗ stands for the adjoint of the operator T . Denote B(H ) := B(H ,H ) .

If M1 and M2 are two closed linear subspaces of H , the orthogonal difference
of M1 and M2 is denoted by

M1�M2 = M1∩M⊥
2 = {h ∈ M1 : 〈h,k〉H = 0,∀k ∈ M2} .

The directed gap from M1 to M2 is given by �δ (M1,M2) = ‖PM⊥
2

PM1‖ . The

gap between M1 and M2 is

δ (M1,M2) = max{�δ (M1,M2),�δ (M2,M1)}.

LEMMA 2.1. [13] Let M1,M2 be the closed subspaces of Hilbert space H .
Then the following statements hold:

1. δ (M1,M2) = ‖PM1 −PM2‖ .
2. 0 � δ (M1,M2) � 1 .
3. If δ (M1,M2) < 1 , then �δ (M1,M2) =�δ (M2,M1) .
4. δ (M1,M2) < 1 if and only if M1 +M⊥

2 = H and M1∩M⊥
2 = {0}.

As it is well known ([13], Chapter 5) the physical notion of causality for linear
systems is formulated for linear transformations in terms of leaving invariant a totally
ordered set of closed subspaces of H . In this paper, we will deal with two situations
in terms of the chains of orthogonal projections associated with these subspaces:

(1) Singly infinite chains: PI = {0 = P0 < P1 < · · · < Pn < Pn+1 < · · · ; I} .
(2) Doubly infinite chains: PII = {0; · · ·< P−m < P−m+1 < · · · < P0 < P1 < · · · <

Pn < Pn+1 < · · · ; I} .
Assume that lim

n→∞
Pn = I in the strong operator topology and in case (2) lim

n→−∞
Pn =

0 in the strong operator topology. Note that in both two cases the corresponding nest of
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subspaces is complete (see the general definition in [13], p. 47). Let P denote either
PI or PII . Having fixed the complete nest P , for each Pi(Pi �= I) , the seminorm on
H is defined by

‖x‖i = ‖Pix‖, x ∈ H .

It is clear that
⋂

Pi∈P,Pi �=I
{x ∈ H : ‖x‖i = 0} = {0}, H is a locally convex topology

space whose topology is defined by {‖ ·‖i : Pi ∈P,Pi �= I} , called the resolution topol-
ogy. H is metrizable (see [22], p. 105). Let He denote the completion of the metric
space H with respect to the resolution topology.

A linear transformation T on He is causal if PiTPi = PiT for all Pi ∈ P . A
(time-varying) linear system on He is a causal linear transformation on He , which is
continuous with respect to the resolution topology. If the linear transformations S,T on
He are causal and continuous under the resolution topology, so are ST and αS+ βT ,
α,β ∈C , it follows that the set of (time-varying) linear systems on He is an algebra. A
time-varying linear system is stable if its restriction to H is a bounded linear operator.
The set of stable time-varying linear systems on He , denoted by S , is a weakly closed
algebra containing the identity, referred to in the operator theory literature as a nest
algebra ([23]), i.e.,

S = {T ∈ B(H ) : T (I−Pi)H ⊆ (I−Pi)H ,∀Pi ∈ P}
= {T ∈ B(H ) : PiTPi = PiT,∀Pi ∈ P}.

In terms of the coordinate spaces determined by P , the stable operator is the
bounded operator whose matrix representations is lower triangular.

In this paper, we will consider two types of signal spaces: the double-sided signal
space �2(Z) and single-sided signal space �2(N) .

The double-sided signal space �2(Z) is the space of double-sided complex square
summable sequences

�2(Z) :=

{
x = (· · · ,x−1,x0,x1, · · ·) : xi ∈ C,

+∞

∑
i=−∞

|xi|2 < ∞

}
.

The doubly infinite chains of �2(Z) is PII = {Pn : n ∈ Z∪{±∞}} , where P−∞ =
0, P+∞ = I and

Pn(· · · ,x−1,x0, · · · ,xn−1,xn, · · ·) = (· · · ,x−1,x0, · · · ,xn−1,0, · · ·), n ∈ Z.

The extended space of �2(Z) is �2
e(Z) :=

{
x = (· · · ,x−1,x0,x1, · · ·) : Pnx ∈ �2(Z),n ∈ Z

}
,

and the algebra of time-varying linear systems on �2
e(Z) is denoted by L (Z) , and

S (Z) stands for the set of stable ones.
The single-sided signal space �2(N) is the space of signals on single-sided time

axis N ,

�2(N) =

{
(x0,x1, · · ·) : xn ∈ C,

+∞

∑
n=0

|xn|2 < ∞

}
.
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In this case, the orthogonal projection Pn in the singly infinite chains PI is

Pn(x0, · · · ,xn−1,xn, · · ·) = (x0, · · · ,xn−1,0, · · ·), n � 1,

and P0 = 0.
Let �2

e(N) , L (N) and S (N) be the corresponding definitions when choosing the
signal space as �2(N) . In fact, �2(N) can be seen as a subspace of �2(Z) by extending
x ∈ �2(N) to �2(Z) , in which the sequence is defined to be zero outside N .

An important subalgebra of S (Z) is the algebra consisting of stable time-invariant
systems on �2(Z) . This algebra consists of the doubly infinite lower-triangular Laurant
matrices, the stable one is H∞ .

For the consistency, by L we mean L (Z) or L (N) , likewise, S stands for
either S (Z) or S (N) , �2 stands for either �2(Z) or �2(N) , and P stands for PII or
PI .

Consider the standard feedback configuration contributed by the plant L ∈ L and
the controller C ∈ L , and the closed-loop equation is

[
e1

e2

]
=
[

I C
L I

][
u1

u2

]
.

The closed-loop system {L,C} is stable if each entry of the operator matrix from

external input e =
[

e1

e2

]
to internal input u =

[
u1

u2

]
belongs to S , equivalently,[

I C
L I

]
: D(L)⊕D(C) → �2 ⊕ �2 has a bounded causal inverse defined on �2 ⊕ �2 .

This inverse is given by the transfer matrix

H(L,C) =
[

(I−CL)−1 −C(I−LC)−1

−L(I−CL)−1 (I−LC)−1

]
. (2.1)

L is stabilizable if there exists a C ∈ L such that {L,C} is stable.

REMARK 2.1. It is known that the causal discrete linear system on semi-infinite
axis defined by the resolution topology is closed. In the context of this paper, every
linear system L is a causal linear transformation from �2

e(Z) to �2
e(Z) , which implies

that D(PnL) = �2(Z) . Moreover, it can be easily checked that any linear system L ∈
L (Z) is a closed linear operator (see the proof of Theorem 5.3.4 in [13], p. 83).

DEFINITION 2.1. Let L ∈ L , M , N , M̂ , N̂ ∈ S , and G (L) denotes the graph
of L .

1.
[−N̂ M̂

]
is a strong left representation of L if G (L) = Ker

[−N̂ M̂
]

and there

exist X̂ ,Ŷ ∈S such that
[−N̂ M̂

][ X̂
Ŷ

]
= I. It is normalized if it is a co-isometry, i.e.,

M̂M̂∗ + N̂N̂∗ = I .
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2.

[
M
N

]
is a strong right representation of L if G (L) = Im

[
M
N

]
and there exist

X ,Y ∈S such that
[
Y X
][M

N

]
= I. It is is normalized if it is an isometry, i.e., M∗M+

N∗N = I .

In fact, the strong representation is an alternative, but equivalent, approach to the

coprime factorization of linear systems. More precisely,

[
M
N

]
is a strong right rep-

resentation of L ∈ L if and only if L = NM−1 with M−1 ∈ L and M,N are right
coprime in S . Similarly,

[−N̂ M̂
]

is a strong left representation of L ∈ L if and
only if L = M̂−1N̂ with M̂−1 ∈ L and M̂ , N̂ are left coprime in S .

The stabilizability of linear systems is closely related to the existence of strong
right and strong left representations. It is pointed out by Dale and Smith that a time-
varying linear system is stabilizable if and only if it has strong left and strong right
representations in [24]. The equivalence between the existences of a strong left or right
representation is derived by the complete finiteness of the nest algebra in [11].

THEOREM 2.1. [11] Let L ∈ L . Then the following statements are equivalent:
1. L is stabilizable.

2. L has a (normalized) strong right representation

[
M
N

]
.

3. L has a (normalized) strong left representation
[−N̂ M̂

]
.

If this is the case the representations can be chosen such that the double Bezout
identity [

Y X
−N̂ M̂

][
M −X̂
N Ŷ

]
=
[

M −X̂
N Ŷ

][
Y X
−N̂ M̂

]
=
[

I 0
0 I

]
(2.2)

hold for some X , Y , X̂ , Ŷ ∈ S .

LEMMA 2.2. [13] Let

[
M
N

]
be a strong right representation of L ∈ L ,

[
V
U

]
and
[−Û V̂

]
be strong right and left representations of C ∈L , respectively. Then the

following statements are equivalent:
1. {L,C} is stable

2.

[
M U
N V

]
is invertible in S .

3. V̂M−ÛN is invertible in S .

The strong representation serves as a tool for the stability analysis of time-varying
linear systems. Another basic tool is gap metric. The gap metric between two plans in
L is defined as the gap metric between the associated graphs of those.

For the systems defined on fixed singly infinite discrete time support, the inverse
of a causal linear systems is causal whenever it exists. Moreover, the stability of the
closed-loop system is equivalent to requiring that �2(N)⊕�2(N) can be decomposed as
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the algebraic direct sum of G (L) and G −1(C) . This gives a stability criteria character-
ized in terms of gap metric.

LEMMA 2.3. L,C ∈ L (N) , then

�δ
(
G (L),G −1(C)⊥

)
��δ
(
G −1(C)⊥,G (L)

)
= δ
(
G −1(C)⊥,G (L)

)
.

Moreover, {L,C} is stable if and only if

�δ
(
G −1(C)⊥,G (L)

)
=
∥∥∥PG (L)⊥PG−1(C)⊥

∥∥∥< 1.

3. TV gap and gap between plants over N and Z

The use of gap metric for formulating and studying stabilization was begun in the
work by El-Sakkary. The TV gap was introduced by Feintuch to generalize the use of
gap metric to time-varying linear systems. In this section, we will extend and formulate
the TV gap to the double-sided signal space �2(Z) . The key result in this section is that
the gap and TV gap are equivalent in measuring the distance between two stabilizable
plants over �2(Z) .

Let Gi :=
[

Mi

Ni

]
, Ĝi :=

[−N̂i M̂i
]

be the normalized strong right and left repre-

sentations of Li ∈ L , respectively, i = 1,2. It is easily checked that

�δ (L1,L2) = ‖− N̂2M1 + M̂2N1‖.
For each Pn ∈ P , the restriction of the causal operator M ∈ S to the invariant

space h2
n := (I−Pn)�2 , denoted by M(n) , is

M|h2
n = (I−Pn)M(I−Pn)|h2

n.

Since

[
Mi

Ni

]
is an isometry, by the causality,

[
Mi

Ni

]
(I −Pn) is an isometry acting on

h2
n . Then the orthogonal projection onto its image in h2

n⊕h2
n is given by

Πin =
([

Mi

Ni

]
(I−Pn)

[
M∗

i N∗
i

]) |h2
n.

DEFINITION 3.1. The directed TV gap from L1 to L2 is defined by

�α (L1,L2) = sup
Pn∈P

�δn (L1,L2) ,

where �δn (L1,L2) =
∥∥∥∥
([

I(n) 0
0 I(n)

]
−Π1n

)
Π2n

∥∥∥∥ . The TV gap between L1 and L2 is

α (L1,L2) = max{�α (L1,L2) ,�α (L2,L1)} .
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It is noted that α(·, ·) defines a metric on the stabilizable systems in L .
The following result generalizes the single-sided system counterpart proposed by

Feintuch in [14]. The proof is similar to that of Proposition 6.1 in [14], here it is omitted.

LEMMA 3.1. �α (L1,L2) = inf
R∈S

∥∥∥∥
[

M1

N1

]
−
[

M2

N2

]
R

∥∥∥∥ .
LEMMA 3.2. [25] Assume that A,B ∈ S . If AB is invertible in S , then A and

B are both invertible in S .

A very important result about TV gap defined on the whole time axis Z is pre-
sented in the following. This result means that TV gap defined a “correct” topology for
the robustness of closed-loop stability over double-sided signal space.

THEOREM 3.1. Let L, C , Ln ∈ L (Z) , n � 1 . Assume that {L,C} and {Ln,C}
are stable for all n � 1 . Then the following statements are equivalent:

1. �α (L,Ln) → 0 as n → +∞ .
2. ‖H(Ln,C)−H(L,C)‖→ 0 as n → +∞ .

Proof. Assume that

[
M
N

]
and

[
Mn

Nn

]
are normalized strong right representations

of L and Ln , respectively. Choose a strong left representation
[−Û V̂

]
of C with

V̂M−ÛN = I . It follows from Lemma 2.2 that (V̂Mn −ÛNn)−1 ∈ S . Note that

H(L,C) =
[

M(V̂M−ÛN)−1V̂ −M(V̂M−ÛN)−1Û
−N(V̂M−ÛN)−1V̂ I +N(V̂M−ÛN)−1Û

]

=
[

I 0
0 −I

][
M
N

]
(V̂M−ÛN)−1 [ V̂ −Û

]
+
[

0 0
0 I

]
.

Thus

‖H(Ln,C)−H(L,C)‖

=
∥∥∥∥
[

Mn

Nn

]
(V̂Mn−ÛNn)−1 [ V̂ −Û

]−[M
N

]
(V̂M−ÛN)−1 [ V̂ −Û

]∥∥∥∥
=
∥∥∥∥
([

Mn

Nn

]
(V̂Mn−ÛNn)−1−

[
M
N

])[
V̂ −Û

]∥∥∥∥ . (3.1)

It follows from Lemma 3.1 that

�α (L,Ln) �
∥∥∥∥
[

Mn

Nn

]
(V̂Mn−ÛNn)−1−

[
M
N

]∥∥∥∥
�
∥∥∥∥
([

Mn

Nn

]
(V̂Mn−ÛNn)−1 −

[
M
N

])[
V̂ −Û

]∥∥∥∥ ·
∥∥∥∥
[

M
N

]∥∥∥∥
= ‖H(Ln,C)−H(L,C)‖ .
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Therefore ‖H(Ln,C)−H(L,C)‖→ 0 implies that �α (Ln,L) → 0.
Conversely, �α (Ln,L) → 0 implies that∥∥∥∥

[
M
N

]
−
[

Mn

Nn

]
Rn

∥∥∥∥→ 0 (3.2)

holds for some Rn ∈ S (Z) as, n → 0. Then there exists α > 0 such that

sup
n�1

∥∥∥∥
[

Mn

Nn

]
Rn

∥∥∥∥� α. (3.3)

Note (3.2),

∥∥I− (V̂Mn−ÛNn)Rn
∥∥=
∥∥∥∥[ V̂ −Û

]([M
N

]
−
[

Mn

Nn

]
Rn

)∥∥∥∥→ 0, n → +∞.

This implies that (V̂Mn−ÛNn)Rn is invertible in S (Z) for n large enough, by Lemma
3.2, ((V̂Mn−ÛNn)Rn)−1 = R−1

n (V̂Mn−ÛNn)−1 for n large enough, and∥∥I−R−1
n (V̂Mn −ÛNn)−1

∥∥→ 0, n → +∞. (3.4)

Let k :=
∥∥[ V̂ −Û

]∥∥ . For n large enough, it follows from (3.1) and (3.3) that

‖H(Ln,C)−H(L,C)‖

� k

∥∥∥∥
[

Mn

Nn

]
(V̂Mn−ÛNn)−1−

[
M
N

]∥∥∥∥
� k

∥∥∥∥
[

Mn

Nn

]
RnR

−1
n (V̂Mn −ÛNn)−1−

[
Mn

Nn

]
Rn

∥∥∥∥+ k

∥∥∥∥
[

Mn

Nn

]
Rn−

[
M
N

]∥∥∥∥
� k ·α ∥∥I−R−1

n (V̂Mn −ÛNn)−1
∥∥+ k

∥∥∥∥
[

Mn

Nn

]
Rn−

[
M
N

]∥∥∥∥ .
Combining the facts (3.2) and (3.4), ones can get that ‖H(Ln,C)−H(L,C)‖ → 0 as
n → +∞ . �

One purpose of this section is showing that the TV gap between two stabilizable
plants in L is equal to the gap metric between them. This means that the TV gap metric
is the same as the gap metric in measuring the distance between stabilizable systems.
Before demonstrating this result, we have to look at some notations and lemmas.

Let C2 be the Hilbert space of Hilbert-Schmidt operators on �2 with the inner
product,

〈 f ,g〉 = tr(g∗ f ),

where tr(·) denotes the trace of its argument. A2 denotes the space of causal Hilbert-
Schmidt operators on �2 , that is, A2 = S ∩C2 . A2 can be viewed as the time-varying
counterpart of the standard Hardy space H2 in H∞ theory. Define the orthogonal pro-
jection PA2 of C2 onto A2 , which is analogous to the standard positive Riesz projection
for the time-invariant case.
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In [15] and [10], the optimum of the special time-varying two-block problem is
shown to be equal to the norm of a time-varying Hankel operator defined on the space
of causal, Hilbert-Schmidt operators, and the existence of an optimal solution is ob-
tained by applying the nest algebra’s commutant lifting theorem. These results can be
summarized as the following lemma.

LEMMA 3.3. There exists at least one operator R0 ∈ S such that

inf
R∈S

‖G1−G2R‖ = ‖ΠLG1‖,

where the operator LG1 : A2 → (A2 ⊕A2) is the left multiplication with symbol G1 ,
that is,

LG1 f = G1 f , f ∈ A2,

and Π is the orthogonal projection on (A2⊕A2) with the image (A2⊕A2)�G2A2 .

By “LG ”, we shall always mean the left multiplication with the symbol G defined
on specific space.

LEMMA 3.4. �δ (L1,L2) = inf
R∈B(�2)

‖G1−G2R‖ .

Proof. Since G2 , Ĝ∗
2 are isometric and ImG2 = KerĜ2 ,

[
G2 Ĝ∗

2

]
is an isometry.

In addition,

Ker

[
G∗

2
Ĝ2

]
= KerĜ2∩KerG∗

2 = {0},

this is because (KerG∗
2)

⊥ = ImG2 = KerĜ2 . Thus,
[
G2 Ĝ∗

2

]
is surjective and iso-

metric, and then
[
G2 Ĝ∗

2

]
is a unitary operator on �2 ⊕ �2 . It follows from the fact

Ĝ2G2 = 0 that

inf
R∈B(�2)

‖G1−G2R‖ = inf
R∈B(�2)

∥∥∥∥
[

G∗
2

Ĝ2

]
(G1 −G2R)

∥∥∥∥
= inf

R∈B(�2)

∥∥∥∥
[

G∗
2G1−R
Ĝ2G1

]∥∥∥∥
= ‖Ĝ2G1‖. �

LEMMA 3.5. KerLĜ2
∩ (A2⊕A2) = G2A2,

Proof. It sufficient to prove the case of �2 = �2(Z) , the single-sided case is similar.

For any

[
f
g

]
∈ KerLĜ2

∩ (A2 ⊕A2) , and n ∈ Z , let

[
fn
gn

]
denotes the n− th column

of

[
f
g

]
. Then the following three facts can be immediately obtained,



TIME-VARYING GAP OF DISCRETE TIME-VARYING LINEAR SYSTEMS 543

1. fn , gn ∈ �2(Z) ,
2. Pn fn = 0, Pngn = 0,

3. Ĝ2

[
fn
gn

]
= 0.

Since KerĜ2 = ImG2 = G (L2) , thus there exists a vector hn ∈ �2(Z) such that[
fn
gn

]
= G2hn.

It follows that
0 = Pn fn = Pn

([
I 0
]
G2
)
Pnhn.

By the fact that an operator T ∈ S (Z) is invertible in L (Z) if and only if PnTPn

is invertible on Pn�
2(Z) for all n ∈ Z , Pn

([
I 0
]
G2
)
Pn is invertible on Pn�

2(Z) , so
Pnhn = 0. Define the linear transformation h as

h = [· · · ,h−1,h0, h1 · · ·].
From the discussion above, ones can conclude that

1.

[
f
g

]
= G2h,

2. h ∈ L (Z) .

Since G2 is an isometry, ‖h‖C2 = ‖G∗
2G2h‖C2

=
∥∥∥∥G∗

2

[
f
g

]∥∥∥∥
C2

�
∥∥∥∥
[

f
g

]∥∥∥∥
C2⊕C2

.

Hence h ∈ A2 . This in turn implies that

[
f
g

]
∈ G2A2. Therefore

KerLĜ2
∩ (A2⊕A2) ⊆ G2A2.

The opposite inclusion is obvious, valid for Ĝ2G2 = 0. The proof is completed. �

LEMMA 3.6. (A2 ⊕A2)�G2A2 =
[

PA2 0
0 PA2

]
Ĝ∗

2A2.

Proof. For any f ,g ∈ A2 , we have〈[
PA2 0
0 PA2

]
Ĝ∗

2 f ,G2g

〉
C2⊕C2

= 〈PA2

[
I 0
]
Ĝ∗

2 f ,
[
I 0
]
G2g,〉C2 + 〈PA2

[
0 I
]
Ĝ∗

2 f ,
[
0 I
]
G2g,〉C2

= 〈 f ,Ĝ2

[
I 0
0 0

]
G2g,〉C2 + 〈 f ,Ĝ2

[
0 0
0 I

]
G2g,〉C2

= 〈 f ,Ĝ2G2g〉C2 = 0.

Hence

[
PA2 0
0 PA2

]
Ĝ∗

2A2 ⊆ (A2⊕A2)�G2A2 . The proof of the opposite inclusion can

be reduced to that of the following inclusion relationship

(A2⊕A2)�
[

PA2 0
0 PA2

]
Ĝ∗

2A2 ⊆ G2A2. (3.5)
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To this aim, take any k belonging to the left set of the preceding equation (3.5) and
h ∈ A2 , we have

0 =
〈

k,

[
PA2 0
0 PA2

]
Ĝ∗

2h

〉
C2⊕C2

=
〈
Ĝ2k,h

〉
C2

.

This implies that Ĝ2k ∈ C2 �A2. Combining the fact Ĝ2k ∈ A2 , ones can deduce that

k ∈ KerLĜ2
∩ (A2⊕A2).

Thus

(A2⊕A2)�
[

PA2 0
0 PA2

]
Ĝ∗

2A2 ⊆ KerLĜ2
∩ (A2⊕A2).

By Lemma 3.5, (3.5) can be obtained. �

With the preceding preparations, we present one of our main results in the follow-
ing.

THEOREM 3.2. Assume that L1,L2 ∈ L are stabilizable. Then

�α(L1,L2) = �δ (L1,L2).

Proof. According to Lemma 3.1 and Lemma 3.4, it is obvious that �α(L1,L2) �
�δ (L1,L2). For the other direction, it follows from Lemma 3.1 and Lemma 3.3 that
�α(L1,L2) = ‖ΠLG1‖. By Lemma 3.6,

ImΠ =
[

PA2 0
0 PA2

]
Ĝ∗

2A2 ⊆ Ĝ∗
2C2.

It follows that

�α(L1,L2) �
∥∥∥PĜ∗

2C2
LG1

∥∥∥=
∥∥∥LĜ∗

2Ĝ2
LG1

∥∥∥�
∥∥∥LĜ∗

2Ĝ2G1
|C2

∥∥∥ .
The basic property of the left multiplication on C2 is that its norm is equal to the norm
of its symbol. Therefore

�α(L1,L2) � ‖Ĝ∗
2Ĝ2G1‖ = ‖Ĝ2G1‖ =�δ (L1,L2). �

Theorem 3.2 implies that all the results about gap metric concerned to plants go
through unchanged for the TV gap concerned the class of plants which admit the nor-
malized strong representation over double-sided signal space. In other words, the TV
gap and gap between two stabilizable plants coincide on the whole time-axis Z . In next
section, we will point out the difference between the gap and TV gap in dealing with
closed stability of linear systems on the whole time-axis Z .
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4. TV gap and gap between plant and controller over N and Z

The key result of this section concerns the difference between the TV gap and gap
in terms of closed-loop stability criteria for linear systems on the whole time-axis Z .

Let

[
V
U

]
and
[−Û V̂

]
be normalized strong right and left representations of

C ∈ L , and

[
M
N

]
,
[−N̂ M̂

]
be the same for the plant L ∈ L , respectively. Denote

�α
(
G −1(C)⊥,G (L)

)
= sup

Pn∈P

∥∥∥∥
([

I(n) 0
0 I(n)

]
−ΠCn

)([
I(n) 0
0 I(n)

]
−ΠLn

)∥∥∥∥
and

�α
(
G (L),G −1(C)⊥

)
= sup

Pn∈P
‖ΠCnΠLn‖ ,

where ΠCn =
[
U
V

]
(I−Pn)

[
U∗ V ∗ ] and ΠLn =

[
M
N

]
(I−Pn)

[
M∗ N∗ ] are the orthog-

onal projections on h2
n⊕h2

n having the images

[
U
V

]
h2

n and

[
M
N

]
h2

n , respectively. The

TV gap between the plant L and the controller C is defined by

α
(
G −1(C)⊥,G (L)

)
= max

{
�α
(
G −1(C)⊥,G (L)

)
,�α
(
G −1(C)⊥,G (L)

)}
.

REMARK 4.1. It is clear that

�α
(
G −1(C)⊥,G (L)

)
�
∥∥∥∥
([

I 0
0 I

]
−
[
U
V

][
U∗ V ∗ ])([ I 0

0 I

]
−
[

M
N

][
M∗ N∗ ])∥∥∥∥

=
∥∥∥PG (L)⊥PG−1(C)⊥

∥∥∥
= �δ
(
G −1(C)⊥,G (L)

)
.

Note that

�α
(
G (L),G −1(C)⊥

)
= sup

Pn∈P

∥∥∥∥
[
U
V

]
(I−Pn)

[
U∗ V ∗ ][M

N

]
(I−Pn)

[
M∗ N∗ ]∥∥∥∥

= ‖U∗M +V ∗N‖
= �δ
(
G (L),G −1(C)⊥

)
It is concluded that

α
(
G −1(C)⊥,G (L)

)
� δ
(
G−1(C)⊥,G (L)

)
. (4.1)

As mentioned above, �α(L1,L2) and �δ (L1,L2) has close connection with the two-
block problem. We now consider the relationships among �δ

(
G−1(C)⊥,G (L)

)
,

�α
(
G −1(C)⊥,G (L)

)
and two-block problem. Some lemmas are
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LEMMA 4.1. [13] Let A,B,C and D ∈ B(�2) . Then

inf
Q∈S

∥∥∥∥
[

A−Q B
C D

]∥∥∥∥= sup
Pn∈P

∥∥∥∥
[

Pn 0
0 I

][
A B
C D

][
I−Pn 0

0 I

]∥∥∥∥

LEMMA 4.2. inf
R∈S

∥∥∥∥
[−N̂∗

M̂∗

]
−
[
U
V

]
R

∥∥∥∥= sup
Pn∈P

∥∥∥∥
([

I 0
0 I

]
−ΠCn

)[−N̂∗
M̂∗

]
(I−Pn)

∥∥∥∥ .

Proof. Since

[
U∗ V ∗
−V̂ Û

]
is a unitary operator on �2⊕ �2 , applying Arveson’s dis-

tance formula in Lemma 4.1,

inf
R∈S

∥∥∥∥
[−N̂∗

M̂∗

]
−
[
U
V

]
R

∥∥∥∥
= inf

R∈S

∥∥∥∥
[

U∗ V ∗
−V̂ Û

]([−N̂∗
M̂∗

]
−
[
U
V

]
R

)∥∥∥∥
= inf

R∈S

∥∥∥∥
[
V ∗M̂∗ −U∗N̂∗ −R

V̂ N̂∗ +ÛM̂∗

]∥∥∥∥
= sup

Pn∈P

∥∥∥∥
[

Pn(V ∗M̂∗ −U∗N̂∗)(I−Pn)
(V̂ N̂∗ +ÛM̂∗)(I−Pn)

]∥∥∥∥ . (4.2)

For any x ∈ �2 , ones can compute that

∥∥∥∥
[

Pn(V ∗M̂∗ −U∗N̂∗)(I−Pn)
(V̂ N̂∗ +ÛM̂∗)(I−Pn)

]
x

∥∥∥∥
2

=
∥∥Pn(V ∗M̂∗ −U∗N̂∗)(I−Pn)x

∥∥2 +
∥∥(V̂ N̂∗ +ÛM̂∗)(I−Pn)x

∥∥2

=
〈[−N̂∗

M̂∗

]
(I−Pn)x,

[
U
V

]
Pn
[
U∗ V ∗ ][−N̂∗

M̂∗

]
(I−Pn)x

〉

+
〈[−N̂∗

M̂∗

]
(I−Pn)x,

[−V̂ ∗
Û∗

][−V̂ Û
][−N̂∗

M̂∗

]
(I−Pn)x

〉
.

Using

[−V̂ ∗
Û∗

][−V̂ Û
]
=
[

I 0
0 I

]
−
[
U
V

][
U∗ V ∗ ] , it follows that

∥∥∥∥
[

Pn(V ∗M̂∗ −U∗N̂∗)(I−Pn)
(V̂ N̂∗ +ÛM̂∗)(I−Pn)

]
x

∥∥∥∥
2

=
〈[−N̂∗

M̂∗

]
(I−Pn)x,

([
I 0
0 I

]
−ΠCn

)[−N̂∗
M̂∗

]
(I−Pn)x

〉

=
∥∥∥∥
([

I 0
0 I

]
−ΠCn

)[−N̂∗
M̂∗

]
(I−Pn)x

∥∥∥∥
2

, x ∈ �2,
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which implies that∥∥∥∥
[

Pn(V ∗M̂∗ −U∗N̂∗)(I−Pn)
(V̂ N̂∗ +ÛM̂∗)(I−Pn)

]∥∥∥∥=
∥∥∥∥
([

I 0
0 I

]
−ΠCn

)[−N̂∗
M̂∗

]
(I−Pn)

∥∥∥∥ . (4.3)

Combining (4.2) and (4.3), the desired result is obtained. �

COROLLARY 4.1. �α
(
G −1(C)⊥,G (L)

)
� inf

R∈S

∥∥∥∥
[−N̂∗

M̂∗

]
−
[
U
V

]
R

∥∥∥∥ .

Proof. It is easily checked that

[−N̂∗
M̂∗

]
(I −Pn)

[−N̂ M̂
]

is the orthogonal pro-

jection on �2⊕ �2 having the image

[−N̂∗
M̂∗

]
h2

n . If it were known that

(
h2

n⊕h2
n

)�[M
N

]
h2

n = (I−Pn)
[−N̂∗

M̂∗

]
�2, (4.4)

combining the fact (I−Pn)
[−N̂∗

M̂∗

]
�2 = (I−Pn)

([−N̂∗
M̂∗

]
h2

n

)
⊆
[−N̂∗

M̂∗

]
h2

n , it would

be

�α
(
G −1(C)⊥,G (L)

)
� sup

Pn∈P

∥∥∥∥
([

I 0
0 I

]
−ΠCn

)[−N̂∗
M̂∗

]
(I−Pn)

[−N̂ M̂
]∥∥∥∥

2

= sup
Pn∈P

∥∥∥∥
([

I 0
0 I

]
−ΠCn

)[−N̂∗
M̂∗

]
(I−Pn)

∥∥∥∥
2

.

Then, the desired result is obtained by Lemma 4.2. The rest of the proof is to demon-

strate (4.4). For any f ∈ (h2
n⊕h2

n

)� (I−Pn)
[−N̂∗

M̂∗

]
�2 and g ∈ �2 , we have

0 =
〈

f ,(I −Pn)
[−N̂∗

M̂∗

]
g

〉
= 〈[−N̂ M̂

]
f ,g〉,

this implies
[−N̂ M̂

]
f = 0. According to Theorem 2.1, there exist X ,Y, X̂ ,Ŷ ∈ S

such that [
Y X
−N̂ M̂

][
M −X̂
N Ŷ

]
=
[

M −X̂
N Ŷ

][
Y X
−N̂ M̂

]
=
[

I 0
0 I

]
.

Note that

f =
[

M
N

][
Y X
]

f +
[−X̂

Ŷ

][−N̂ M̂
]

f

=
[

M
N

]
((I−Pn)

[
Y X
]

f ) ∈
[

M
N

]
h2

n.
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Then (
h2

n⊕h2
n

)� (I−Pn)
[−N̂∗

M̂∗

]
�2 ⊆

[
M
N

]
h2

n,

which is equivalent to

(
h2

n⊕h2
n

)�[M
N

]
h2

n ⊆ (I−Pn)
[−N̂∗

M̂∗

]
�2.

Consider the other inclusion relationship. For any x,y ∈ h2
n . It follows from the fact[−N̂ M̂

][M
N

]
= 0 and the causality that

〈
(I−Pn)

[−N̂∗
M̂∗

]
x,

[
M
N

]
y

〉
=
〈

x,
[−N̂ M̂

]
(I−Pn)

[
M
N

]
y

〉

=
〈

x,
[−N̂ M̂

][M
N

]
(I−Pn)y

〉
= 0.

Therefore, (I−Pn)
[−N̂∗

M̂∗

]
�2 ⊆ (h2

n⊕h2
n

)�[M
N

]
h2

n. The proof is completed. �

Recently, the authors use the commutant lifting theorem of nest algebra to derive
the minimum of the four-block problem of time-varying system in [16]. Applying
Theorem 4.1 in [16], we can give an abstract characterization for the optimum of the
two-block problem in terms of the norm of a time-varying Hankel operator analogous
to the Hankel operator that is well known in the optimal standard H∞ problem.

PROPOSITION 4.1. inf
R∈S

∥∥∥∥
[−N̂∗

M̂∗

]
−
[
U
V

]
R

∥∥∥∥=
∥∥Π̃LH

∥∥ ,
where LH is the left multiplication from A2 to C2⊕C2 with the symbol H :=

[−N̂∗
M̂∗

]
,

and Π̃ is the orthogonal projection from C2 ⊕C2 to (C2⊕C2)�
[
U
V

]
A2 .

The following result provides a characterization of gap between the plant L and
controller C in terms of every instant of time.

THEOREM 4.1. Let L,C ∈ L (N) . If
[−N̂ M̂

]
is a normalized strong left repre-

sentation of L, then

δ
(
G −1(C)⊥,G (L)

)
= sup

Pk∈PI

∥∥∥∥
([

I 0
0 I

]
−ΠCk

)[−N̂∗
M̂∗

]
(I−Pk)

∥∥∥∥ .

Proof. First, consider the case of {L,C} being stable. By Lemma 2.3,

�δ
(
G (L),G −1(C)⊥

)
= δ
(
G −1(C)⊥,G (L)

)
< 1. (4.5)
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For each x ∈ �2(N) , note that∥∥∥∥
([

I 0
0 I

]
−ΠCk

)[−N̂∗
M̂∗

]
(I−Pk)x

∥∥∥∥
2

=
∥∥∥∥
[−N̂∗

M̂∗

]
(I−Pk)x

∥∥∥∥
2

−
∥∥∥∥
[
U
V

]
(I−Pk)

[
U∗ V ∗ ][−N̂∗

M̂∗

]
(I−Pk)x

∥∥∥∥
2

= ‖(I−Pk)x‖2 −
∥∥∥∥(I−Pk)

[
U∗ V ∗ ][−N̂∗

M̂∗

]
(I−Pk)x

∥∥∥∥
2

.

Hence we get that∥∥∥∥
([

I 0
0 I

]
−ΠCk

)[−N̂∗
M̂∗

]
(I−Pk)

∥∥∥∥
2

= sup
‖(I−Pk)x‖=1

(
‖(I−Pk)x‖2−

∥∥∥∥(I−Pk)
[
U∗ V ∗ ][−N̂∗

M̂∗

]
(I−Pk)x

∥∥∥∥
2
)

= 1− inf
‖(I−Pk)x‖=1

∥∥(I−Pk)(−U∗N̂∗ +V ∗M̂∗)x
∥∥2

= 1− inf
‖(I−Pk)x‖=1

∥∥(−N̂U + M̂V )(I−Pk)x
∥∥2

� 1− inf
‖x‖=1

∥∥(−N̂U + M̂V )x
∥∥2

. (4.6)

The third equation holds because (−N̂U + M̂V )(I − Pk) is an invertible operator re-

stricting on (I−Pk)�2(N) . Since

[−N̂ M̂
M∗ N∗

]
is unitary,

[−N̂U + M̂V
M∗U +N∗V

]
is an isometry,

so

‖x‖2 =
∥∥∥∥
[−N̂U + M̂V

M∗U +N∗V

]
x

∥∥∥∥
2

= ‖(−N̂U + M̂V )x‖2 +‖(M∗U +N∗V )x‖2.

It follows that

1− inf
‖x‖=1

∥∥(−N̂U + M̂V )x
∥∥2 = ‖M∗U +N∗V‖2 = �δ

(
G (L),G −1(C)⊥

)2
. (4.7)

Combining (4.5), (4.6) and (4.7), we deduce that

sup
Pk∈PI

∥∥∥∥
([

I 0
0 I

]
−ΠCk

)[−N̂∗
M̂∗

]
(I−Pk)

∥∥∥∥� δ
(
G (L),G −1(C)⊥

)
. (4.8)

Now consider the other case, suppose that {L,C} is not stable. Again applying Lemma
2.3, δ

(
G −1(C)⊥,G (L)

)
= 1. Then

sup
Pk∈PI

∥∥∥∥
([

I 0
0 I

]
−ΠCk

)[−N̂∗
M̂∗

]
(I−Pk)

∥∥∥∥� sup
Pk∈PI

∥∥∥∥
[

I 0
0 I

]
−ΠCk

∥∥∥∥ ·
∥∥∥∥
[−N̂∗

M̂∗

]∥∥∥∥
� 1 = δ

(
G (L),G −1(C)⊥

)
. �
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As a consequence of Lemma 4.2, Corollary 4.1 and Theorem 4.1, we can obtain
the following result.

COROLLARY 4.2. Let L,C ∈ L (N) . Then

δ
(
G −1(C)⊥,G (L)

)
= α
(
G −1(C)⊥,G (L)

)
= inf

R∈S (N)

∥∥∥∥
[−N̂∗

M̂∗

]
−
[
U
V

]
R

∥∥∥∥
All these discussions show that TV gap offers no advantage over gap metric on

the analysis of stability and robustness on single-sided signal space. We now turn to
the question of finding the connection between TV gap and closed-loop stability on the
whole time-axis Z . We will show that the standard gap defined on the case of �2(Z) can
not directly apply to judge the stability of closed-loop system as it plays over the single
sided signal space. This is an instinct difference between singly and doubly infinite
time-axis. We construct the following example to illustrate this fact.

EXAMPLE 4.1. Consider the time-invariant plant L = I−S and controller C = I
on �2(Z) , where S is the bilateral shift opertor defined on �2(Z) .

It is easily checked that

[
I√
2

I√
2

]
and
[
− I√

2
I√
2

]
are the normalized strong right

and left representations of C , respectively. L has a normalized strong left representation[−A(I−S) A
]

and a normalized strong right representation

[
A

(I−S)A

]
, where A =√

2
3−√

5

(
I− 3−√

5
2 S
)−1

=
√

3−√
5

2 · +∞
∑

n=0

(
3−√

5
2 S
)n

.

We compute that∥∥∥PG (L)⊥PG−1(C)⊥
∥∥∥=
∥∥M̂Û∗ − N̂V̂ ∗∥∥

=
∥∥∥∥A · I√

2
−A(I−S) · I√

2

∥∥∥∥
=
∥∥∥∥√2A− 1√

2
AS

∥∥∥∥
=

3
√

10
10

and ∥∥∥PG (L)PG−1(C)

∥∥∥= ‖M∗U −N∗V‖

=
∥∥∥∥A∗ · I√

2
− (I−S∗)A∗ · I√

2

∥∥∥∥
=

3
√

10
10

.
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Therefore

δ
(
G −1(C)⊥,G (L)

)
= max

{∥∥∥PG (L)⊥PG−1(C)⊥
∥∥∥ ,∥∥∥PG (L)PG−1(C)

∥∥∥}=
3
√

10
10

.

It is clear that {I−S, I} is not stable because

[
I I

I−S I

]−1

=
[

S−1 −S−1

I−S−1 S−1

]
=
[

S∗ −S∗
I−S∗ S∗

]

is not causal.

From the preceding example, the gap metric can not facilitate the study of closed-
loop stability over doubly infinite time axis, even when C and L are both time-invariant
linear systems. Fortunately, we find out that the TV gap is a suitable tool for the purpose
of determining closed-loop stability of linear systems on Z . To demonstrate the main
result, we first show some useful lemmas.

LEMMA 4.3. If

[
M
N

]
is a normalized strong right representation of L ∈L , then[

M(n)
N(n)

]
is a normalized strong right representation of L(n) := L|h2

n,e for all Pn ∈ P .

Proof. Suppose that YM +XN = I holds for some X ,Y ∈ S . Since M is invert-
ible in L , it follows from the causality that

M(n)−1 = ((I−Pn)M−1(I−Pn))|h2
n,e,

and then L(n) = N(n)M(n)−1 . Thus, we deduce that Im

[
M(n)
N(n)

]
⊆ G (L(n)) . For any

x ∈ D(L(I−Pn))∩h2
n , we have[

M
N

]
((I−Pn)M−1(I−Pn)x) =

[
I
L

]
(I−Pn)x =

[
(I−Pn)

(I−Pn)L(I−Pn)

]
x ∈ h2

n⊕h2
n.

This implies that (I −Pn)M−1(I −Pn)x =
[
Y X
][ (I−Pn)

(I−Pn)L(I−Pn)

]
x ∈ h2

n . Hence,

G (L(n)) ⊆ Im

[
M(n)
N(n)

]
. It concludes that

[
M(n)
N(n)

]
is a strong right representation of

L(n) . Since

[
M
N

]
is a normalized representation,

[
M(n)∗ N(n)∗

][M(n)
N(n)

]
=
(
(I−Pn)

[
M∗ N∗ ])([M

N

]
(I−Pn)

)
|h2

n = I(n).

Then,

[
M(n)
N(n)

]
is a normalized strong right representation of L(n) . �
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REMARK 4.2. By the preceding result, we give a geometrical interpretation for
the TV gap between two linear plants on Z :

�α (L1,L2) = sup
−∞�n�+∞

�δ (L1(n),L2(n)) , (4.9)

and the TV gap between the plant and controller:

�α
(
G −1(C)⊥,G (L)

)
= sup

−∞�n�+∞
�δ
(
G −1(C(n))⊥,G (L(n))

)
, (4.10)

PROPOSITION 4.2. If
[−N̂ M̂

]
is a strong left representation of L ∈ L , then[−N̂(n) M̂(n)

]
is a strong left representation of L(n) for all Pn ∈ P .

Proof. By Theorem 2.1, there exists a strong right representation

[
M
N

]
of L such

that [
Y X
−N̂ M̂

][
M −X̂
N Ŷ

]
=
[

M −X̂
N Ŷ

][
Y X
−N̂ M̂

]
=
[

I 0
0 I

]
(4.11)

hold for some X ,Y, X̂ ,Ŷ ∈ S . By the causality, we have[
M(n) −X̂(n)
N(n) Ŷ (n)

][
Y (n) X(n)
−N̂(n) M̂(n)

]
=
[

I(n) 0
0 I(n)

]
. (4.12)

For any x ∈ h2
n , we have

[−N̂(n) M̂(n)
][M(n)

N(n)

]
x =
[−N̂ M̂

][M
N

]
(I−Pn)x = 0,

thus, Ker
[−N̂(n) M̂(n)

]⊆ Im

[
M(n)
N(n)

]
. Conversely, for any

[
x
y

]
∈Ker

[−N̂(n) M̂(n)
]
,

we have [
x
y

]
=
[

M(n) −X̂(n)
N(n) Ŷ (n)

][
Y (n) X(n)
−N̂(n) M̂(n)

][
x
y

]

=
[

M(n)
N(n)

][
Y (n) X(n)

][ x
y

]
+
[−X̂(n)

Ŷ (n)

][−N̂(n) M̂(n)
][ x

y

]

=
[

M(n)
N(n)

][
Y (n) X(n)

][ x
y

]
∈ Im

[
M(n)
N(n)

]
.

According to Lemma 4.3, Ker
[−N̂(n) M̂(n)

]
= Im

[
M(n)
N(n)

]
= G (L(n)) . The proof is

completed. �
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THEOREM 4.2. Suppose L ∈ L (Z) and C ∈ L (Z) are both stabilizable. If

α
(
G −1(C)⊥,G (L)

)
< 1,

then {L,C} is stable.

Proof. Suppose that

[
M
N

]
and

[
V
U

]
are the normalized strong right representa-

tions of L and C , respectively. According to Lemma 4.3,

[
M(n)
N(n)

]
is a normalized

strong right representation of L(n) and

[
V (n)
U(n)

]
is a normalized strong right represen-

tation of C(n) for all n ∈ Z . By Remark 4.2, we have �δ
(
G −1(C(n))⊥,G (L(n))

)
< 1.

It follows from Lemma 2.3 that {L(n),C(n)} is stable, and then for each n ∈ Z , there
exist bounded causal linear operators Xn,Yn,Zn,Wn on (I−Pn)�2(Z) such that

[
M(n) U(n)
N(n) V (n)

][
Yn Xn

Zn Wn

]
=
[

Yn Xn

Zn Wn

][
M(n) U(n)
N(n) V (n)

]

=
[

I(n) 0
0 I(n)

]
. (4.13)

Since α
(
G−1(C)⊥,G (L)

)
< 1, by Remark 4.1, we have �δ

(
G −1(C)⊥,G (L)

)
< 1. It

follows from Lemma 2.1 that G −1(C)+G (L) = �2(Z)⊕ �2(Z) and G −1(C)∩G (L) =

{0} . Then it can be easily checked that

[
M U
N V

]
is bijective in B(�2(Z)⊕ �2(Z)) , thus

there exist X ,Y,Z,W ∈ B(�2(Z)) such that

[
M U
N V

][
Y X
Z W

]
=
[
Y X
Z W

][
M U
N V

]
=
[

I 0
0 I

]
. (4.14)

It follows from the casuality that

[
Y (I−Pn) X(I−Pn)
Z(I−Pn) W (I−Pn)

]
=
[
Y X
Z W

]([
M(n) U(n)
N(n) V (n)

][
Yn Xn

Zn Wn

])

=
([

Y X
Z W

][
M U
N V

])[
Yn Xn

Zn Wn

]

=
[

Yn Xn

Zn Wn

]
,

which implies that (I −Pn)X(I −Pn) = X(I −Pn) holds for all Pn ∈ P . Hence X ,∈
S (Z) , and so are Y,Z,W ∈ S (Z) . It follows from Lemma 2.2 that {L,C} is sta-
ble. �
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5. Conclusion

In this paper, we have analyzed the TV gap defined on the single and double-sided
signal space, respectively. The TV-gap and gap has distinct difference in studying the
stability and robustness of closed-loop linear systems on the whole time axis Z . This
result does not coincide with that on single-infinite time axis N .

We have worked only with discrete-time time-varying linear systems on �2(Z) , but
it is not clear how to extend these results to continuous nest and continuous-time time-
varying systems over L2(−∞,+∞) . In our opinion, the goal of rigorously establishing
stabilization theory for the continuous-time time-varying system on full time axis is a
challenging problem for future research.
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