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ISOMETRIC COMPOSITION OPERATORS ON THE FOCK–SPACES
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(Communicated by R. Curto)

Abstract. In this paper a necessary and sufficient condition for a holomorphic self map φ on
CN to induce an isometric composition operator on the Fock space has been obtained. Some
necessary and sufficient conditions for a composition operator Cφ to be a quasi-isometric and
m -isometric have also been explored.

1. Introduction

Let z = (z1,z2, . . . ,zN) and w= (w1,w2, . . . ,wN) be points in C
N , 〈z,w〉=

N
∑

k=1
zkwk

and |z| =
√〈z,z〉 . Let B denote the open unit ball {z : |z| < 1} , S = ∂B the bound-

ary of the unit ball B , dm(z) = rdrdθ the Lebesgue area measure on C , dV (z) the
Lebesgue volume measure on CN , VN =V (B) , dσ(z) the normalized surface measure
on S and H(CN) the space of all holomorphic functions on CN (entire functions). For
p,α ∈ (0,∞) , the Bergman-Fock space[22] F p

α = F p
α (CN) is the space of all entire

functions f for which

‖ f‖p
F p

α
=

( pα
2π

)N ∫
CN

| f (z)|pe− pα
2 |z|2dV (z) < ∞

Note that, by using polar coordinates

‖I‖p
F

p
α

=
( pα

2π

)N
VN

∫ ∞

0

∫
S

ρ2N−1e−
α p
2 ρ2

dσ(ξ )dρ

=
(pα)N ∫ ∞

0 tN−1e−
α p
2 t dt

2N(N−1)!
= 1.

When 1 � p < ∞ , the space F p
α (CN) is a Banach space with the norm ‖ f‖F

p
α
,

while for p ∈ (0,1) , it is an F -space with the translation-invariant metric dF p
α
( f ,g) =

‖ f −g‖p
F

p
α
.

For p = 2 the space is reduced to the Fock space, which is a functional Hilbert
space with the inner product

〈 f ,g〉 =
(α

π

)N ∫
CN

f (z)g(z)e−α |z|2dV (z) .
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Let en(z) =
√

1
n! z

n for a positive integer n . The sequence {en}n∈N forms an orthonor-

mal basis for F 2
N . Since each point evaluation is a bounded linear functional on F 2

N ,
for each w ∈ CN there exists a unique function kw ∈ F 2

N such that 〈 f ,kw〉 = f (w) for
all f ∈ F 2

N . The reproducing kernel functions for the Fock-space F 2
N are given by

kw(z) = e〈z,w〉/2.

Carswell et al. [5], Ichiro [21], Grudsky et al. [7], Stroethoff [19], Janson et al. [9]
have studied various concrete operators on Fock-spaces, one of them is a composition
operators which is defined as follows:

For a given holomorphic mapping φ : CN → CN , the composition operator Cφ :
F 2

N → F 2
N is given by Cφ ( f ) = f ◦ φ f ∈ F 2

N . The multiplication operator Mu in-
duced by an entire function u on CN is defined as Mu f (z) = u(z) f (z) for an entire
function f .

Let X be a normed linear space. An operator T on X is isometric if ‖T f‖X =
‖ f‖X for f ∈ X , quasi-isometric if T ∗2T 2 = T ∗T [18] and m-isometric if

m

∑
p=0

(−1)p mCpT
∗m−pTm−p = 0,

where mCp ’s are binomial coefficients [1]. Allen et al. [2–4]; Colonna [6]; Kolaski
[10–11], Laitila [12]; Li et al. [13]; Martin et al. [14–16]; Novinger et al. [17]; Zor-
boska [23] have studied isometric composition operators on various analytic function
spaces. Motivated by these we have studied isometric composition operators on the
Fock space.

2. Main results

In this section we obtain necessary and sufficient conditions for a composition
operator to be an isometry on the Fock space F 2

N . We also find the necessary and
sufficient condition for Cφ to be a quasi-isometry and m-isometry.

Carswell et al. [5] have proved that if φ : CN → CN is a holomorphic mapping,
then Cφ is bounded on F 2

N if and only if φ(z) = Az+B , where A is an n×n matrix
with ‖A‖� 1 and B is an n×1 vector satisfying the condition that 〈Aξ ,B〉= 0 when-
ever |Aξ |= |ξ | for some ξ in CN . Also, Carswell et al. [5] have proved the following
theorem which is instrumental in obtaining the necessary and sufficient condition for
Cφ to be an isometry.

THEOREM 2.1. ([5, Theorem 4]) Suppose φ(z) = Az+B, where either ‖A‖ < 1
and B is arbitrary, or ‖A‖ = 1 and 〈Aξ ,B〉 = 0 whenever |Aξ | = |ξ | . Then on F 2

N
we have

‖Cφ‖ = exp

(
1
4
(|w0|2−|Aw0|2 + |B|2)

)

where w0 is any solution to (I−A∗A)w0 = A∗B.
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THEOREM 2.2. Let Cφ be a composition operator on F 2
N , where φ satisfies the

condition of Theorem 2.1. If Cφ is an isometry, then B = 0 .

Before we give the proof of this theorem, we need several preliminary results that
will be instrumental in proving Theorem 2.2. First we recall the notion of the singular
value decomposition of an n×n matrix.

THEOREM 2.3. ([8]) If A is an n×n matrix of rank k , then A can be written as
A = VΣW , where V,W are n× n unitary matrices, and Σ is a diagonal matrix (σi j)
with σ11 � σ22 � · · · � σkk > σk+1,k+1 = · · · = σnn = 0 . The σii are the non-negative
square roots of the eigenvalues of AA∗ , where A∗ is the adjoint of A; if we require that
they can be listed in decreasing order, then Σ is uniquely determined from A.

For convenience we shall write σi for σii , the i th diagonal entry of Σ . Note that
if ‖A‖ � 1, then σi � 1 for all i and σi = 1 for some i if ‖A‖ = 1.

Set j = max{r : σr = 1} and k = max{r : σr > 0} so that k = rankA . The singular
value decomposition will allow us to perform a normalization.

If φ(z) = Az+B and ψ(z) = Σz+B′ , where the singular value decomposition of
A is VΣW and B′ =V ∗B same as given in Theorem 2.3, then we call ψ a normalization
of φ .

LEMMA 2.4. ([5, Lemma 1]) Suppose that φ(z) = Az + B with ‖A‖ � 1 and
〈Aξ ,B〉 = 0 whenever |Aξ | = |ξ | and suppose ψ(z) = Σz + B′ is a normalization of
φ . Then the first j coordinates of B′ are 0 .

COROLLARY 2.5. ([5, Corollary 1]) The operator Cφ is bounded on F 2
N if and

only if Cψ is bounded on F 2
N . Moreover, the norm of Cφ is equal to the norm of Cψ .

Now we shall prove Theorem 2.2.

Proof. By Theorem 2.1

‖Cφ‖F 2
N

= exp

(
1
4
(|w0|2 −|Aw0|2 + |B|2)

)

where w0 is any solution to (I−A∗A)w0 = A∗B .
Since Cφ is an isometry, we have ‖Cφ‖F 2

N
= 1 which implies that

exp

(
1
4
(|w0|2 −|Aw0|2 + |B|2)

)
= 1.

Thus, |w0|2 − |Aw0|2 + |B|2 = 0. Let ψ(z) = Σz+B′ be a normalization of φ , where
Σ and B′ are as given in Lemma 2.4. Then Σ = diag{σi} with σ1 = · · · = σ j = 1 and
σ j+1, · · · ,σn < 1 and B′ = (0, . . . ,0,b′j+1,b

′
j+2, . . . ,b

′
n)

t . As proved in [5, Theorem 4]

|w|2 −|Σw|2 + |B|2 =
n

∑
m= j+1

|b′m|2
1−σ2

m
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where w is any solution to (I−Σ∗Σ)w = Σ∗B .
By Corollary 2.5, ‖Cφ‖ = ‖Cψ‖ , and so

0 = |w0|2 −|Aw0|2 + |B|2 =
n

∑
m= j+1

|b′m|2
1−σ2

m
.

Since σm < 1, therefore, |b′m|= 0 for all m = j+1, . . . ,n . Therefore, from Lemma 2.4
it follows that

B′ = (0,0, . . . ,0,b′j+1, . . . ,b
′
n)

t = (0, . . . ,0)tn×n.

Thus, V ∗B = 0, where V is an n×n unitary matrix. Hence, B = 0. �
The following lemma due to Carswell et al. [5] gives the representation of the

adjoint of a composition operator in terms of a multiplication operator.

LEMMA 2.6. ([5, Lemma 2]) If φ(z) = Az+B, where A is an n×n matrix with
‖A‖ � 1 and B is an n× 1 vector. If 〈Aξ ,B〉 = 0 whenever |Aξ | = |ξ | , then C∗

φ =
MkBCτ , where τ(z) = A∗z and MkB is the multiplication operator with symbol kB .

Lemma 2.6 is instrumental with all the hypothesis in all the following results.

THEOREM 2.7. Let Cφ be a composition operator on F 2
N . Then Cφ is an isom-

etry if and only if MkBCφ◦τ = I .

Proof. Cφ is an isometry on F 2
N if and only if ‖Cφ f‖F 2

N
= ‖ f‖F 2

N
for all f ∈F 2

N

which is equivalent to C∗
φCφ = I. By Lemma 2.6, we have (MBCτ)Cφ = I . Hence,

MkBCφ◦τ = I . �
We now provide an alternative proof of Theorem 2.2 using the multiplication op-

erator.

Proof. If Cφ is an isometry, then by Theorem 2.7 we have MkBCφ◦τ = I or
(MkBCφ◦τ) f = f for all f ∈ F 2

N . Thus, for all f ∈ F 2
N and for all z ∈ CN , we

have MkB(z) f (φ(τ(z))) = f (z) which implies that

kB(z) f (AA∗z+B) = f (z),

since kw(z) = e〈z,w〉/2 , we have

e〈z,B〉/2 f (AA∗z+B) = f (z). (1)

Let f = k0 be the point evaluation at 0 on F 2
N . Then

f (z) = k0(z) = e〈z,0〉 = 1 for all z ∈ C
N .

From (1), we have

e〈z,B〉/2 f (AA∗z+B) = f (z) for all f ∈ F 2
N and for all z ∈ C

N .

In particular, taking f = k0 , we get for all z ∈ CN , e〈z,B〉/2 = 1, and hence, 〈z,B〉 = 0.
Therefore, B = 0. �
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COROLLARY 2.8. If a composition operator Cφ is an isometry on F 2
N , then

φ(z) = Az such that AA∗ = I .

Proof. Since Cφ is an isometry we have that MkBCφ◦τ = I and B = 0. Now
Cφ◦τ = I implies that f (φ ◦ τ) = f for all f ∈ F 2

N or f (φ(τ(z)) = f (z) for all f ∈
F 2

N and z ∈ CN . Since τ(z) = A∗z and φ(z) = Az + B with B = 0, it follows that
f (AA∗(z)) = f (z) for all f ∈ F 2

N and z ∈ CN or AA∗z = z for all z ∈ CN . Hence
AA∗ = I . �

The following results give necessary and sufficient conditions for a composition
operator to be a quasi-isometry and m-isometry.

THEOREM 2.9. A composition operator Cφ on Fock-space F 2
N is quasi-isometry

if and only if MkB◦τCφ2◦τ2 = Cφ◦τ .

Proof. A composition operator Cφ is a quasi-isometry on F 2
N if and only if

C∗2
φ C2

φ = C∗
φCφ which can be re-written as C∗

φ (C∗
φCφ )Cφ = C∗

φCφ .
By Lemma 2.6, we obtain

C∗
φ [(MkBCτ )Cφ ]Cφ = (MkBCτ)Cφ .

Since Cτ ◦Cφ = Cφ◦τ , we have

C∗
φ (MkBCφ◦τ)Cφ = MkBCφ◦τ

which is equivalent to C∗
φ (MkBCφ2◦τ) = MkBCφ◦τ . Again by using Lemma 2.6, we have

(MkBCτ)(MkBCφ2◦τ) = MkBCφ◦τ .

Hence,
MkB(CτMkB)Cφ2◦τ = MkBCφ◦τ .

Since CτMkB = MkB◦τCτ , therefore,

MkBMkB◦τCτCφ2◦τ = MkBCφ◦τ or MkBMkB◦τCφ2◦τ2 = MkBCφ◦τ .

Hence, MkB◦τCφ2◦τ2 = Cφ◦τ . �
The following theorem can be obtained on the similar lines of the proof of Theo-

rem 2.9.

THEOREM 2.10. A composition operator on Fock space F 2
N is an m-isometry if

and only if

m

∑
p=0

(−1)p mCp(MkBMkB◦τ · · ·MkB◦τm−p−1Cφm−pτm−p) = 0,

where mCp ’s are binomial coefficients.

Acknowledgement. The authors would like to thank the referees for their valuable
suggestions and comments which helped in improving exposition.



592 A. GUPTA AND P. SHARMA

RE F ER EN C ES

[1] J. AGLER AND M. STANKUS, m-Isometric transformations of Hilbert space, I, Integral Equations
Operator Theory, 21, (1995), 383–429.

[2] R. F. ALLEN AND F. COLONNA, Isometries and spectra of multiplication operators on the Bloch
space, Bull. Aust. Math. Soc., 79, (2009), 147–160.

[3] R. F. ALLEN AND F. COLONNA, On isometric composition operators on the Bloch space in CN , J.
Math. Anal. Appl., 355, (2009), 675–688.

[4] R. F. ALLEN, K. C. HELLER AND M. A. PONS, Isometric composition operators on the analytic
Besov spaces, J. Math. Anal. Appl., 414, no. 1 (2014), 414–423.

[5] B. J. CARSWELL, B. D. MACCLUER AND A. SCHUSTER, Composition operator on the Fock space,
Acta Sci. Math. (Szeged), 69, (2003), 871–887.

[6] F. COLONNA, Characterization of the isometric composition operators on the Bloch space, Bull Aust.
Math. Soc., 72, (2005), 283–290.

[7] S. M. GRUDSKY AND N. L. VASILEVSKI, Toeplitz operators on the Fock space: Radial component
effects, Integral Equations Opertors Theory, 44, (2002), 10–37.

[8] R. HORN AND C. JOHNSON, Matrix Anslysis, Cambridge University Press, Cambridge, 1990.
[9] S. JANSON, J. PECTRE AND R. ROCHBERG, Hankel forms and the Fock space, Rev. Math. Iberoamer-

icane, 3, (1987), 61–129.
[10] C. J. KOLASKI, Isometries of weighted Bergman spaces, Can. J. Math., 34, (1982), 910–915.
[11] C. J. KOLASKI, Surjective isometries of weighted Bergman spaces, Proc. Amer. Math. Soc., 105,

(1989), 652–657.
[12] J. LAITILA, Isometric composition operators on BMOA, Math. Nachr., 283, (2010), 1646–1653.
[13] G. L. LI AND Z. H. ZHOU, Isometries on product of composition and integral operator on Bloch type

spaces, J. Inequal. Appl., 8, (2010).
[14] M. J. MARTIN AND D. VUKOTIC, Isometries of some classical function spaces among the composi-

tion operators, Contem. Math., 393, (2006), 133–138.
[15] M. J. MARTIN AND D. VUKOTIC, Isometries of the Dirichlet space among the composition operators,

Proc. Amer. Math. Soc., 134, no. 6 (2006), 1701–1705.
[16] M. J. MARTIN AND D. VUKOTIC, Isometries of the Bloch space among the composition operators,

Bull. Lond. Math. Soc., 39, (2007), 151–155.
[17] W. NOVINGER AND D. OBERLIN, Linear isometries of some normed spaces of analytic functions,

Can. J. Math., 37, (1985), 62–76.
[18] S. M. PATEL, A note on quasi-isometries, Glasnik Mathematicki, 35 (55), no. 2 (2000), 307–312.
[19] K. STROETHOFF, Hankel and Toeplitz opertors on the Fock spaces, Michigan Math. J., 39, (1992),

3–16.
[20] R. WALLSTEN, The Sp -criterion for Hankel forms on the Fock spaces 0 < p < 1 , Math. Scan., 64,

(1989), 123–132.
[21] SEI-ICHIRO UEKI, Hilbert-Schmidt weighted composition operator on the Fock space, Int. Journal of

Math. Anal., 1, no. 16 (2007), 796–774.
[22] K. ZHU, Analysis on Fock spaces, Graduate Texts in Mathematics 263 (Springer, New York, 2012).
[23] N. ZORBOSKA, Isometric composition operators on the Bloch-type spaces, C. R. Math. Acad. Sci.

Soc. R. Can., 29, no. 3 (2007), 91–96.

(Received November 28, 2015) Anuradha Gupta
Delhi College of Arts and Commerce

University of Delhi
Netaji Nagar, New Delhi 110023, India

e-mail: dishna2@yahoo.in

Pooja Sharma
Department of Mathematics

University of Delhi
Delhi 110007, India

e-mail: pooja.20.sh@gmail.com

Operators and Matrices
www.ele-math.com
oam@ele-math.com


