REMARKS ON "WEAK LIMITS OF ALMOST INVARIANT PROJECTIONS" BY FOIAS, PASNICU AND VOICULESCU

March T. Boedihardjo

(Communicated by H. Bercovici)

Abstract

Ultraproducts of operators are used to give simpler proofs of certain results in the paper "Weak limits of almost invariant projections" by Foias, Pasnicu and Voiculescu.

1. Introduction

Let \mathscr{H} be a separable, infinite dimensional, complex Hilbert space. The algebra of bounded linear operators on \mathscr{H} is denoted by $\mathscr{B}(\mathscr{H})$, and the ideal of compact operators in $\mathscr{B}(\mathscr{H})$ is denoted by $\mathscr{K}(\mathscr{H})$. Let p be the quotient map from $\mathscr{B}(\mathscr{H})$ onto $\mathscr{B}(\mathscr{H}) / \mathscr{K}(\mathscr{H})$.

In [3], Foias, Pasnicu and Voiculescu established the following characterizations of an operator Q being the weak limit of projections that are almost invariant under an algebra $\mathscr{A} \subset \mathscr{B}(\mathscr{H})$.

THEOREM 1.1. Let $\mathscr{A} \subset \mathscr{B}(\mathscr{H})$ be a norm-separable norm closed algebra containing I, and $Q \in \mathscr{B}(\mathscr{H}), 0 \leqslant Q \leqslant I$. Then the following statements are equivalent.
(i) There exists a sequence $\left(P_{n}\right)_{n=1}^{\infty}$ of projections in $\mathscr{B}(\mathscr{H})$ such that $\lim _{n \rightarrow \infty}\left\|\left(I-P_{n}\right) T P_{n}\right\|=0$ for all $T \in \mathscr{A}$ and $w \lim _{n \rightarrow \infty} P_{n}=Q$.
(ii) There exists a sequence $\left(R_{n}\right)_{n=1}^{\infty}$ of projections in $\mathscr{B}(\mathscr{H})$ such that $w \lim _{n \rightarrow \infty}\left(I-R_{n}\right) T R_{n}=0$ for all $T \in \mathscr{A}$ and $w \lim _{n \rightarrow \infty} R_{n}=Q$.
(iii) There exists a representation ρ of $p\left(C^{*}(\mathscr{A})\right)$ on some separable Hilbert space \mathscr{H}^{\prime} and a subspace $L \subset \mathscr{H} \oplus \mathscr{H}^{\prime}$ invariant under $(\mathrm{id} \oplus(\rho \circ p))(\mathscr{A})$ such that

$$
\left.P_{\mathscr{H} \oplus 0} P_{L}\right|_{\mathscr{H} \oplus 0}=Q .
$$

Mathematics subject classification (2010): 47A15, 47A58.
Keywords and phrases: Strong reductivity, ultraproducts of operators, Calkin representation, noncommutative Weyl-von Neumann Theorem, almost invariant projections.

Supported in part by NSF DMS-1301604. This is paper is part of the author's thesis under the supervision of William B. Johnson.

Note that in both (i) and (ii), the projections P_{n} and R_{n} are almost invariant under the algbera \mathscr{A}, whereas in (iii), L is an (exactly) invariant under the algebra (id $\oplus(\rho \circ$ p) $)(\mathscr{A})$ instead.

In the same paper, they obtain as a consequence the following characterization of strong reductivity.

THEOREM 1.2. Let $\mathscr{A} \subset \mathscr{B}(\mathscr{H})$ be a norm-separable commutative algebra containing I. The following properties are equivalent:
(i) \mathscr{A} is strongly reductive,
(ii) the norm-closure of \mathscr{A} is a C^{*}-algebra,
(iii) for every representation ρ of \mathscr{A} in the norm-closed unitary orbit of the identity representation of \mathscr{A} on \mathscr{H}, the algebra $\rho(\mathscr{A})$ is reductive.
Note that in Theorem $1.2,($ ii $) \Rightarrow$ (i) is obvious, and (i) \Rightarrow (iii) is simple and elementary but slightly technical (see [3, page 92]). The main part of Theorem 1.2 is (iii) \Rightarrow (ii). They ask whether there is a simple, direct proof of (iii) \Rightarrow (i). The purpose of this paper is to provide such a proof as well as an alternative proof of the nontrivial implication (ii) \Rightarrow (iii) in Theorem 1.1.

In Section 2, we recall some definitions, a construction of Calkin and Voiculescu's noncommutative Weyl-von Neumann Theorem which are needed in the rest of this paper. In Section 3, we give a direct proof of (iii) \Rightarrow (i) in Theorem 1.2. In Section 4, we give an alternative proof of (ii) \Rightarrow (iii) in Theorem 1.1.

2. Prelimiaries

An algebra $\mathscr{A} \subset \mathscr{B}(\mathscr{H})$ is reductive if every subspace of \mathscr{H} invariant under \mathscr{A} reduces $\mathscr{A} ; \mathscr{A}$ is strongly reductive (see [4] and [1]) if for every sequence $\left(P_{n}\right)_{n=1}^{\infty}$ of projections in $\mathscr{B}(\mathscr{H})$ satisfying

$$
\lim _{n \rightarrow \infty}\left\|\left(I-P_{n}\right) T P_{n}\right\|=0, \quad T \in \mathscr{A}
$$

we have

$$
\lim _{n \rightarrow \infty}\left\|T P_{n}-P_{n} T\right\|=0, \quad T \in \mathscr{A}
$$

Let $\psi_{1}, \psi_{2}: \mathscr{A} \rightarrow \mathscr{B}(\mathscr{H})$ be two representations of an algebra $\mathscr{A} \subset \mathscr{B}(\mathscr{H})$. We say that ψ_{2} is in the norm-closed unitary orbit of ψ_{1}, if there exists a sequence $\left(U_{n}\right)_{n=1}^{\infty}$ of unitary operators such that:

$$
\lim _{n \rightarrow \infty}\left\|\psi_{2}(T)-U_{n} \psi_{1}(T) U_{n}^{-1}\right\|=0
$$

for all $T \in \mathscr{A}$.
Let \mathscr{U} be a free ultrafilter on \mathbb{N}. If $\left(a_{n}\right)_{n \geqslant 1}$ is a bounded sequence in \mathbb{C}, then its ultralimit through \mathscr{U} is denoted by $\lim _{n, \mathscr{U}} a_{n}$. Consider the Banach space

$$
\mathscr{H}^{\mathscr{U}}:=\ell^{\infty}(\mathscr{H}) /\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{\infty}(\mathscr{H}): \lim _{n, \mathscr{U}}\left\|x_{n}\right\|=0\right\}
$$

If $\left(x_{n}\right)_{n \mathbb{N}} \in \ell^{\infty}(\mathscr{H})$ then its image in $\mathscr{H}^{\mathscr{U}}$ is denoted by $\left(x_{n}\right)_{\mathscr{U}}$, and it can be easily checked that

$$
\left\|\left(x_{n}\right)_{\mathscr{U}}\right\|=\lim _{n, \mathscr{U}}\left\|x_{n}\right\| .
$$

Moreover, $\mathscr{H}^{\mathscr{U}}$ is, in fact, a Hilbert space with inner product

$$
\left\langle\left(x_{n}\right)_{\mathscr{U}},\left(y_{n}\right)_{\mathscr{U}}\right\rangle=\lim _{n, \mathscr{U}}\left\langle x_{n}, y_{n}\right\rangle .
$$

But $\mathscr{H}^{\mathscr{U}}$ is nonseparable.
If $\left(T_{n}\right)_{n \in \mathbb{N}}$ is a bounded sequence in $\mathscr{B}(\mathscr{H})$, then its ultraproduct $\left(T_{1}, T_{2}, \ldots\right)_{\mathscr{U}} \in$ $\mathscr{B}\left(\mathscr{H}^{\mathscr{U}}\right)$ is defined by $\left(x_{n}\right)_{\mathscr{U}} \mapsto\left(T_{n} x_{n}\right)_{\mathscr{U}}$. If $T \in \mathscr{B}(\mathscr{H})$ then its ultrapower $T^{\mathscr{U}} \in$ $\mathscr{B}\left(\mathscr{H}^{\mathscr{U}}\right)$ is defined by $\left(x_{n}\right) \mathscr{U} \mapsto\left(T x_{n}\right) \mathscr{U}$. It is easy to see that

$$
\begin{gathered}
\left\|\left(T_{1}, T_{2}, \ldots\right) \mathscr{U}\right\|=\lim _{n, \mathscr{U}}\left\|T_{n}\right\| \\
\left(T_{1}, T_{2}, \ldots\right)_{\mathscr{U}}^{*}=\left(T_{1}^{*}, T_{2}^{*}, \ldots\right) \mathscr{U}
\end{gathered}
$$

and in particular, $\left(T^{\mathscr{U}}\right)^{*}=\left(T^{*}\right)^{\mathscr{U}}$.
Consider the subspace

$$
\widehat{\mathscr{H}}:=\left\{\left(x_{n}\right)_{\mathscr{U}} \in \mathscr{H}^{\mathscr{U}}: w \lim _{n, \mathscr{U}} x_{n}=0\right\} .
$$

Here $w \lim _{n, \mathscr{U}} x_{n}$ is the weak limit of $\left(x_{n}\right)_{n \in \mathbb{N}}$ through \mathscr{U}, i.e., the unique element $x \in \mathscr{H}$ such that

$$
\begin{equation*}
\langle x, y\rangle=\lim _{n, \mathscr{U}}\left\langle x_{n}, y\right\rangle, \quad y \in \mathscr{H} \tag{2.1}
\end{equation*}
$$

Consider also the (closed) subspace $\left\{(x)_{\mathscr{U}}=(x, x, \ldots)_{\mathscr{U}}: x \in \mathscr{H}\right\}$ of $\mathscr{H}^{\mathscr{U}}$. The projection from $\mathscr{H}^{\mathscr{U}}$ onto this subspace is given by $\left(x_{n}\right)_{\mathscr{U}} \mapsto\left(w \lim _{k, \mathscr{U}} x_{k}\right)_{\mathscr{U}}$, and so $\left\{(x)_{\mathscr{U}}: x \in \mathscr{H}\right\}^{\perp}=\widehat{\mathscr{H}}$. We shall identify $\left\{(x)_{\mathscr{U}}: x \in \mathscr{H}\right\}$ with \mathscr{H}. So we have $\mathscr{H}^{\mathscr{U}}=\mathscr{H} \oplus \widehat{\mathscr{H}}$.

For $T \in \mathscr{B}(\mathscr{H}), \widehat{\mathscr{H}}$ is a reducing subspace for $T^{\mathscr{U}}$ and thus we can define $\widehat{T} \in \mathscr{B}(\widehat{\mathscr{H}})$ by

$$
\widehat{T}:=\left.T^{\mathscr{U}}\right|_{\widehat{\mathscr{H}}} .
$$

Hence we have

$$
\begin{equation*}
T^{\mathscr{U}}=T \oplus \widehat{T} \tag{2.2}
\end{equation*}
$$

with respect to the decomposition $\mathscr{H}^{\mathscr{U}}=\mathscr{H} \oplus \widehat{\mathscr{H}}$.
Note that $\widehat{K}=0$ for $K \in \mathscr{K}(\mathscr{H})$. (The proof of this uses the topological definition of weak ultralimit rather than (2.1) above and uses also the fact that every sequence in a compact Hausdorff space converges to an element through \mathscr{U}.) Throughout this paper, the map $f: \mathscr{B}(\mathscr{H}) / \mathscr{K}(\mathscr{H}) \rightarrow \mathscr{B}(\widehat{\mathscr{H})}$ is defined by $f(p(T))=\widehat{T}$.

THEOREM 2.1. ([2], Theorem 5.5) The map f is an isometric $*$-isomorphism into $\mathscr{B}(\widehat{\mathscr{H}})$.

Let us recall the definition of approximate unitary equivalence of representations and a result of Voiculescu.

Let $\psi_{1}, \psi_{2}: \mathscr{A} \rightarrow \mathscr{B}(\mathscr{H})$ be two representations of an algebra $\mathscr{A} \subset \mathscr{B}(\mathscr{H})$. Then ψ_{1} and ψ_{2} are approximately unitarily equivalent [6], denoted by $\psi_{1} \sim_{a} \psi_{2}$, if there is a sequence $\left(U_{n}\right)_{n=1}^{\infty}$ of unitary operators such that

$$
\psi_{2}(T)-U_{n} \psi_{1}(T) U_{n}^{-1} \in \mathscr{K}(\mathscr{H}), \quad n \geqslant 1,
$$

and

$$
\lim _{n \rightarrow \infty}\left\|\psi_{2}(T)-U_{n} \psi_{1}(T) U_{n}^{-1}\right\|=0
$$

for all $T \in \mathscr{A}$. Note that if $\psi_{1} \sim_{a} \psi_{2}$ then ψ_{2} is in the norm-closed unitary orbit of ψ_{1}.

THEOREM 2.2. ([6], Theorem 1.3) Let \mathscr{A} be a separable C^{*}-algebra with unit and ρ a representation of \mathscr{A} on \mathscr{H}. Let π be a representation of $p(\rho(\mathscr{A}))$ on a separable Hilbert space \mathscr{H}_{π}. Then $\rho \sim_{a} \rho \oplus \pi \circ p \circ \rho$.

Suppose now that $\mathscr{A} \subset \mathscr{B}(\mathscr{H})$. Take ρ to be the identity representation id of \mathscr{A} on \mathscr{H}. If \mathscr{M} is a separable subspace of $\widehat{\mathscr{H}}$ that reduces $(f \circ p)(\mathscr{A})$, then we define a representation $f_{\mathscr{M}}$ of $p(\mathscr{A})$ on \mathscr{M} by $f_{\mathscr{M}}(p(S))=\left.\widehat{S}\right|_{\mathscr{M}}$. Taking π to be this representation in Theorem 2.2 with $\mathscr{H}_{\pi}=\mathscr{M}$, we obtain

Corollary 2.3. Let \mathscr{A} be a separable C^{*}-subalgebra of $\mathscr{B}(\mathscr{H})$ containing I. Let \mathscr{M} be a separable subspace of $\widehat{\mathscr{H}}$ that reduces $(f \circ p)(\mathscr{A})$. Then id \sim_{a} $\mathrm{id} \oplus\left(f_{\mathscr{M}} \circ p \circ \mathrm{id}\right)$.

3. Proof of (iii) \Rightarrow (i) in Theorem 1.2

Proposition 3.1. If (iii) in Theorem 1.2 holds then the algebra $\left\{T^{\mathscr{U}}: T \in \mathscr{A}\right\}$ in $\mathscr{B}\left(\mathscr{H}^{\mathscr{U}}\right)$ is reductive.

Proof. By Corollary 2.3, for every separable reducing subspace \mathscr{M} of \widehat{H} that reduces $(f \circ p)(\mathscr{A})$, we have $\mathrm{id} \sim_{a} \mathrm{id} \oplus\left(f_{\mathscr{M}} \circ p \circ \mathrm{id}\right)$, and so by assumption,

$$
\left(\mathrm{id} \oplus\left(f_{\mathscr{M}} \circ p \circ \mathrm{id}\right)\right)(\mathscr{A})=\left\{T \oplus\left[\left.f(p(T))\right|_{\mathscr{M}}\right]: T \in \mathscr{A}\right\}
$$

is reductive. But $\left.T^{\mathscr{U}}\right|_{\mathscr{H} \oplus \mathscr{M}}=T \oplus\left(\left.\widehat{T}\right|_{\mathscr{M}}\right)=T \oplus\left[\left.f(p(T))\right|_{\mathscr{M}}\right]$. Therefore, $\left\{\left.T^{\mathscr{U}}\right|_{\mathscr{H} \oplus \mathscr{M}}\right.$: $T \in \mathscr{A}\}$ is reductive.

For every separable subspace \mathscr{N} of $\mathscr{H}^{\mathscr{U}}$, there is a separable reducing subspace \mathscr{M} for $(f \circ p)(\mathscr{A})$ such that $\mathscr{N} \subset \mathscr{H} \oplus \mathscr{M}$. (Take, for example, \mathscr{M} to be the smallest subspace of $\widehat{\mathscr{H}}$ that contains $P_{\widehat{H}} \mathscr{N}$ and reduces $(f \circ p)(\mathscr{A})$.) Thus, if \mathscr{N} is invariant under $\left\{T^{\mathscr{U}}: T \in \mathscr{A}\right\}$, then \mathscr{N} is invariant under $\left\{\left.T^{\mathscr{U}}\right|_{\mathscr{H} \oplus \mathscr{M}}: T \in \mathscr{A}\right\}$. Since $\left\{\left.T^{\mathscr{U}}\right|_{\mathscr{H} \oplus \mathscr{M}}: T \in \mathscr{A}\right\}$ is reductive, this implies that \mathscr{N} reduces $\left\{\left.T^{\mathscr{U}}\right|_{\mathscr{H} \oplus \mathscr{M}}: T \in \mathscr{A}\right\}$ and thus reduces $\left\{T^{\mathscr{U}}: T \in \mathscr{A}\right\}$. Therefore, every separable subspace of $\mathscr{H}^{\mathscr{U}}$ that is invariant under $\left\{T^{\mathscr{U}}: T \in \mathscr{A}\right\}$ reduces $\left\{T^{\mathscr{U}}: T \in \mathscr{A}\right\}$.

Suppose now that \mathscr{N} is a subspace of $\mathscr{H}^{\mathscr{U}}$ invariant under $\left\{T^{\mathscr{U}}: T \in \mathscr{A}\right\}$ but \mathscr{N} is not necessarily separable. Let $z \in \mathscr{N}$. Then $\vee\left\{T^{\mathscr{U}} z: T \in \mathscr{A}\right\}$ is a separable subspace of $\mathscr{H}^{\mathscr{U}}$ that is invariant under $\left\{T^{\mathscr{U}}: T \in \mathscr{A}\right\}$. So by the conclusion of the previous paragraph, $\vee\left\{T^{\mathscr{U}} z: T \in \mathscr{A}\right\}$ reduces $\left\{T^{\mathscr{U}}: T \in \mathscr{A}\right\}$. Thus, $\left(T^{\mathscr{U}}\right)^{*} z \in$ $\vee\left\{T^{\mathscr{U}} z: T \in \mathscr{A}\right\}$ for all $T \in \mathscr{A}$. Since \mathscr{N} is invariant under $\left\{T^{\mathscr{U}}: T \in \mathscr{A}\right\}$, this implies that $\left(T^{\mathscr{U}}\right)^{*} z \in \mathscr{N}$ for all $T \in \mathscr{A}$ and $z \in \mathscr{N}$. Therefore, \mathscr{N} reduces $\left\{T^{\mathscr{U}}\right.$: $T \in \mathscr{A}\}$. It follows that $\left\{T^{\mathscr{U}}: T \in \mathscr{A}\right\}$ is reductive.

We are now ready to complete the proof of (iii) \Rightarrow (i) in Theorem 1.2. Suppose that (iii) is true and (i) is not true. Then there exist $\varepsilon>0, T_{0} \in \mathscr{A}$ and a sequence $\left(P_{n}\right)_{n \geqslant}$ of projections in $\mathscr{B}(\mathscr{H})$ such that $\lim _{n \rightarrow \infty}\left\|\left(I-P_{n}\right) T P_{n}\right\|=0$ for all $T \in \mathscr{A}$ but $\left\|T_{0} P_{n}-P_{n} T_{0}\right\| \geqslant \varepsilon$ for all $n \in \mathbb{N}$.

Note that $\left(P_{1}, P_{2}, \ldots\right)_{\mathscr{U}}$ is a projection in $\mathscr{B}\left(\mathscr{H}^{\mathscr{U}}\right)$ and

$$
\left(I-\left(P_{1}, P_{2}, \ldots\right)_{\mathscr{U}}\right) T^{\mathscr{U}}\left(P_{1}, P_{2}, \ldots\right)_{\mathscr{U}}=\left(\left(I-P_{1}\right) T P_{1},\left(I-P_{2}\right) T P_{2}, \ldots\right)_{\mathscr{U}}=0
$$

for all $T \in \mathscr{A}$. So by Proposition 3.1, $T^{\mathscr{U}}\left(P_{1}, P_{2}, \ldots\right)_{\mathscr{U}}=\left(P_{1}, P_{2}, \ldots\right) \mathscr{U} T^{\mathscr{U}}$ for all $T \in \mathscr{A}$. This means that

$$
\lim _{n, \mathscr{U}}\left\|T P_{n}-P_{n} T\right\|=0, \quad T \in \mathscr{A} .
$$

But $\left\|T_{0} P_{n}-P_{n} T_{0}\right\| \geqslant \varepsilon$ for all $n \geqslant 1$ which is a contradiction. Therefore, (iii) $\Rightarrow(\mathrm{i})$.

4. Proof of (ii) \Rightarrow (iii) in Theorem 1.1

Proposition 4.1. Let \mathscr{A} be a norm-separable algebra containing I and let $Q \in \mathscr{B}(\mathscr{H})$. If there exists a bounded sequence $\left(R_{n}\right)_{n=1}^{\infty}$ in $\mathscr{B}(\mathscr{H})$ such that $w \lim _{n \rightarrow \infty}\left(I-R_{n}^{*}\right) T R_{n}=0$ for all $T \in \mathscr{A}$ and $w \lim _{n \rightarrow \infty} R_{n}=Q$, then there is a separable subspace L of $\mathscr{H}^{\mathscr{U}}$ invariant under $\left\{T^{\mathscr{U}}: T \in \mathscr{A}\right\}$ such that

$$
\left.P_{\mathscr{H} \oplus 0} P_{L}\right|_{\mathscr{H} \oplus 0}=Q .
$$

Proof. Take

$$
L=\vee\left\{\left(T R_{n} y\right) \mathscr{U}: T \in \mathscr{A}, y \in \mathscr{H}\right\} .
$$

Then L is a separable subspace of $\mathscr{H}^{\mathscr{U}}$ that is invariant under $T^{\mathscr{U}}$ for every $T \in \mathscr{A}$. It remains to show that

$$
\left.P_{\mathscr{H} \oplus 0} P_{L}\right|_{\mathscr{H} \oplus 0}=Q .
$$

For every $x, y \in \mathscr{H}$,

$$
\begin{aligned}
\left\langle(x)_{\mathscr{U}}-\left(R_{n} x\right)_{\mathscr{U}},\left(T R_{n} y\right)_{\mathscr{U}}\right\rangle & =\left\langle\left(\left(I-R_{n}\right) x\right)_{\mathscr{U}},\left(T R_{n} y\right)_{\mathscr{U}}\right\rangle \\
& =\lim _{n, \mathscr{U}}\left\langle\left(I-R_{n}\right) x, T R_{n} y\right\rangle \\
& =\lim _{n, \mathscr{U}}\left\langle x,\left(I-R_{n}^{*}\right) T R_{n} y\right\rangle \\
& =0 \quad \text { by assumption. }
\end{aligned}
$$

Thus, $\left((x)_{\mathscr{U}}-\left(R_{n} x\right)_{\mathscr{U}}\right) \perp L$ for every $x \in \mathscr{H}$. But $\left(R_{n} x\right)_{\mathscr{U}} \in L$. Therefore, by the definition of orthogonal projection onto L,

$$
P_{L}(x)_{\mathscr{U}}=\left(R_{n} x\right)_{\mathscr{U}}
$$

Taking $P_{\mathscr{H} \oplus 0}$ on both sides, we obtain

$$
P_{\mathscr{H} \oplus 0} P_{L}(x)_{\mathscr{U}}=P_{\mathscr{H} \oplus 0}\left(R_{n} x\right)_{\mathscr{U}}=w \lim _{n, \mathscr{U}} R_{n} x=Q x .
$$

We are now ready to complete the proof of $(\mathrm{ii}) \Rightarrow$ (iii) in Theorem 1.1.
Assume (ii). Applying Proposition 4.1, we obtain a separable subspace L of $\mathscr{H}^{\mathscr{U}}$ invariant under $\left\{T^{\mathscr{U}}: T \in \mathscr{A}\right\}$ such that

$$
\left.P_{\mathscr{H} \oplus 0} P_{L}\right|_{\mathscr{H} \oplus 0}=Q .
$$

By (2.2),

$$
T^{\mathscr{U}}=T \oplus \widehat{T}=T \oplus f(p(T))=(\mathrm{id} \oplus(f \circ p))(T)
$$

Take \mathscr{H}^{\prime} to be the smallest subspace of $\widehat{\mathscr{H}}$ that contains $P_{\widehat{\mathscr{H}}} L$ and reduces $(f \circ$ $p)\left(C^{*}(\mathscr{A})\right)$. Note that \mathscr{H}^{\prime} is separable. Take ρ to be $\left.S \mapsto f(S)\right|_{\mathscr{H}}$, for $S \in p\left(C^{*}(\mathscr{A})\right)$. We obtain (iii).

REMARK. Since the assumption of Proposition 4.1 is slightly weaker than (ii) in Theorem 1.1, we have the following slight improvement of Theorem 1.1.

THEOREM 4.2. Let \mathscr{A} be a norm-separable norm closed algebra containing I, and $Q \in \mathscr{B}(\mathscr{H}), 0 \leqslant Q \leqslant I$. Then the following statements are equivalent.
(i) There exists a sequence $\left(P_{n}\right)_{n=1}^{\infty}$ of projections in $\mathscr{B}(\mathscr{H})$ such that $\lim _{n \rightarrow \infty}\left\|\left(I-P_{n}\right) T P_{n}\right\|=0$ for all $T \in \mathscr{A}$ and $w \lim _{n \rightarrow \infty} P_{n}=Q$.
(ii) There exists a bounded sequence $\left(R_{n}\right)_{n=1}^{\infty}$ in $\mathscr{B}(\mathscr{H})$ such that $w \lim _{n \rightarrow \infty}\left(I-R_{n}^{*}\right) T R_{n}=0$ for all $T \in \mathscr{A}$ and $w \lim _{n \rightarrow \infty} R_{n}=Q$.
(iii) There exists a representation ρ of $p\left(C^{*}(\mathscr{A})\right)$ on some separable Hilbert space \mathscr{H}^{\prime} and a subspace $L \subset \mathscr{H} \oplus \mathscr{H}^{\prime}$ invariant under $(\operatorname{id} \oplus(\rho \circ p))(\mathscr{A})$ such that

$$
\left.P_{\mathscr{H} \oplus 0} P_{L}\right|_{\mathscr{H} \oplus 0}=Q
$$

Acknowledgements. I thank C. Foiaş for helpful discussions and C. Pearcy for proofreading.

REFERENCES

[1] C. Apostol, C. Foiaş and D. Voiculescu, On strongly reductive algebras, Rev. Roumaine Math. Pures Appl. 21 (1976), no. 6, 663-641.
[2] J. W. Calkin, Two-sided ideals and congruences in the ring of bounded operators in Hilbert space, Ann. of Math. 42 (1941), 839-873.
[3] C. Foiaş, C. Pasnicu and D. Voiculescu, Weak limits of almost invariant projections, J. Operator Theory 2 (1979) 79-93.
[4] K. J. Harrison, Strongly reductive operators, Acta Sci. Math. 27 (1975), no. 3-4, 205-212.
[5] B. Prunaru, Strongly reductive algebras are self-adjoint, J. Operator Theory 48 (2002) 615-619.
[6] D. Voiculescu, A non-commutative Weyl-von Neumann theorem, Rev. Roumaine Math. Pures Appl. 21 (1976), no. 1, 97-113.
(Received December 1, 2015)

March T. Boedihardjo
Department of Mathematics
Texas A\&M University
College Station, Texas 77843
e-mail: march@math.tamu. edu

