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Abstract. Let A be a unital separable simple C*-algebra. Let GL(M (A ⊗K )) be the group of
invertible elements of the multiplier algebra of the stabilization of A , and let N ⊆ GL(M (A ⊗
K )) be any (algebraic) normal subgroup that properly contains the scalar invertibles.

Then
N

strict = M (A ⊗K ),

where N
strict is the closure of N in the strict topology.

1. Introduction

Let C be a unital C*-algebra and let L ⊆ C be a (not necessarily closed) linear
subspace. Recall that L is a Lie ideal of C if [L ,C ] ⊆ L .1

There is an extensive literature studying the Lie ideals of operator algebras, and
this has had many consequences for operator theory and operator algebras. (See, for
example, [7], [13], [28], [29], [30], [31], and the references therein.) Among other
things, if H is a separable Hilbert space and B(H ) is the algebra of bounded linear
operators on H , then a linear subspace L ⊆ B(H ) is a Lie ideal if and only if L is
invariant under conjugation by unitaries if and only if L is invariant under conjugation
by invertibles. (See [7, Theorem 1]; see also [12], [13], [14], [15], [29], [30], [31],
[38].)

A basic question in the subject is to ask under what conditions is a Lie ideal “large”
(e.g., contains all additive commutators or even the whole algebra). From fundamental
results of the theory, one gets the following immediate consequence: If H is a sepa-
rable Hilbert space and L ⊆ B(H ) is a Lie ideal which properly contains the scalars,
then L

strong
= B(H ) , where L

strong
is the closure of L in the strong operator topol-

ogy. (See, for example, [7]; see also [12], [28], [29], [30].)
In this paper, we study a nonlinear, multiplicative version of the above result,

where we also replace B(H ) with more general multiplier algebras (and replace the
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strong operator topology with the strict topology). Our focus will be on properly infinite
multiplier algebras.

In the multiplicative analogue, linear subspaces will be replaced with subgroups
of the invertible group (or general linear group) of a unital C*-algebra. Lie ideals will
be replaced with normal subgroups.

The phenomenon that we are interested in has, to a certain extent, been studied
in the form of topological groups associated with operator algebras. (We will not ex-
tensively discuss topological groups, though we may mention them.) We are mainly
interested in the general linear group (or group of invertibles) of a unital C*-algebra.
The most basic example of this is the full matrix algebra Mn(C) . In this case, the pro-
jective general linear group GL(Mn(C))/(C−{0}) is an algebraically simple group.
Moreover, since GL(Mn) is norm-dense in Mn , we immediately have the required mul-
tiplicative analogue: If N ⊆ GL(Mn) is an algebraic normal subgroup which properly

contains the scalar invertibles then N = GL(Mn) and hence N
‖.‖ = Mn , where N

‖.‖ is
the closure of N in the (operator) norm topology.

The first infinite dimensional generalizations were due to Kadison who studied the
case of von Neumann factors ([18], [19], [20]), and these results have been extended to
simple C*-algebras with implications to the study of automorphism groups and other
areas (e.g., see [6], [33], [34], [35]). In the case of present interest for us, Kadison’s
result, stated in our language, implies the following: Let M be a properly infinite
von Neumann factor2, and let N ⊆ GL(M ) be a (algebraic) normal subgroup which
properly contains the scalar invertibles, then N

strong = M . (We note that Kadison was
interested in the structure of the topological group GL(M ) with the norm topology.)

In this paper, we will focus on the case of properly infinite multiplier algebras.
The multiplier algebra M (B) of a C*-algebra B is the largest unital C*-algebra
containing B as an essential ideal. The structure of various subgroups of GL(M (B))
have had important implications for extension theory and K-theory, and they are in
themselves quite interesting (e.g., [17], [24], [25], [32], [36], [37], [41]).

In this paper, we prove the natural analogue of the above density results, when
the relevant unital C*-algebra is the multiplier algebra of A ⊗K , where A is unital
separable and simple, and where the relevant topology is the strict topology.

The proof techniques involve a combination of methods from algebra and operator
theory, as well as the theory of absorbing extensions.

2. Preliminaries

In this section, we provide some preliminaries and notations, including some def-
initions and basic results about purely large extensions.

Recall that for a C*-algebra B , the multiplier algebra M (B) , of B , is the largest
unital C*-algebra containing B as an essential ideal. This is an object which encodes
the extension theory of B . The quotient M (B)/B is called the corona algebra of
B . E.g., if K is the algebra of compact operators on a separable infinite dimensional

2In this paper, we assume that all our simple C*-algebras are separable and all our von Neumann algebras
have separable preduals.
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Hilbert space H , then M (K ) = B(H ) and M (K )/K is the Calkin algebra. Ba-
sic information about multiplier algebras, corona algebras, and their relationship with
extension theory can be found in [2], [40] and the references therein.

For a C*-algebra B , the strict topology on M (B) is the topology on M (B) that
is generated by the family of seminorms {‖.‖b}b∈B , where for all T ∈ M (B) , for all
b ∈ B , ‖T‖b := ‖Tb‖+ ‖bT‖ . The strict topology on M (B) roughly plays a role
analogous to the strong* topology on a von Neumann algebra. (See [2], [40].) We note
that M (K ) , with the strict topology, is not a topological algebra, since multiplication
is not strictly continuous.

For a C*-algebra C and for S ⊆ C , we let S
‖.‖

denote the closure of S in the

(C*-) norm topology on C . Often, for simplicity, we write S in place of S
‖.‖

.

Let B be a C*-algebra and let R ⊆ M (B) . We let R
strict

denote the closure of R
in the strict topology on M (B) .

For a C*-algebra C and an element x ∈ C , σ(x) denotes the spectrum of x .
For a subset S ⊆ C , Ideal(S) denotes the C*-ideal of C generated by S ; in particular,
Ideal(x) denotes the C*-ideal of C generated by the element x . If a∈C+ , then Her(a)
denotes the the hereditary C*-subalgebra of C which is generated by a , i.e., Her(a) :=
aC a .

In the context of multiplier algebras, there will be special notation for certain
hereditaryC*-subalgebras. Let B be a nonunital C*-algebra and A∈M (B)+ . Her(A) ,
as before, denotes the hereditary C*-subalgebra of M (B) generated by A , i.e., Her(A)
:= AM (B)A . On the other hand, her(A) denotes the hereditary C*-subalgebra of B
generated by A , i.e., her(A) := ABA .

Finally, let A ,C be C*-algebras with C unital. Let φ ,ψ : A → C be *-homo-
morphisms. Recall that φ and ψ are said to be approximately unitarily equivalent if
there exists a sequence {un}∞

n=1 of unitaries in C such that for all a∈A , unφ(a)u∗n →
ψ(a) in the norm topology.

We will also need some techniques from extension theory, especially the theory of
absorbing extensions which is a theory with connections to operator theory, extension
theory, KK theory, the Elliott classification program and other subjects. We gave some
thought on the best exposition of these results, given that the foundational proofs from
the literature are phrased in the language of extension theory, but we nonetheless wish
to give a short presentation which can be followed quickly by a nonexpert. We decided
that to keep the exposition efficient, we will phrase all the relevant results in this paper
in terms of *-homomorphisms into a multiplier algebra (so, in principle, the reader need
not know extension theory). However, we will also make comments and give references
connecting these concepts to extension theory and we will use the term “extension” and
other terms without definition in these comments – we will single out almost all of these
comments by placing them into statements labelled with “Remark”. Good references
for basic extension theory are [2], [16], [26] and [40]. (See also [3], [4] and [11].) In
fact, a fast summary for the relevant basic extension theory can be found on page 386
of [5]. (A good starting point may be for a nonexpert to read this page while consulting
the references cited above.) Good references for the theory of absorbing extensions are
[5] and [27]. Section 15.12 of [2] gives a fast two page introduction. (See also [1], [2],
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[4], and [26].)

DEFINITION 2.1. Let A and B be separable C*-algebras with A unital and B
stable.

1. A unital injective *-homomorphism φ : A → M (B) is absorbing if for every
unital *-homomorphism ψ : A → M (B) , for every ε > 0, for all isometries
S1,S2 ∈ M (B) with S1S∗1 +S2S∗2 = 1 and for every finite subset F ⊆ A , there
exists a unitary U ∈ M (B) such that

φ(a)−U(S1φ(a)S∗1 +S2ψ(a)S∗2)U
∗ ∈ B

for all a ∈ A , and

‖φ(a′)−U(S1φ(a′)S∗1 +S2ψ(a′)S∗2)U
∗‖ < ε

for all a′ ∈ F .

2. A positive invertible element a∈M (B) is absorbing if the inclusion map C∗(a)
↪→ M (B) is absorbing.

REMARK 2.1. In the terminology of extension theory, in Definition 2.1, we are
workingwith the Busby invariants of trivial extensions, and the sum S1φ(.)S∗1 +S2ψ(.)S∗2
is a realization of the Brown–Douglas–Fillmore sum of the extensions φ and ψ . Also,
φ is a unital absorbing extension. See, for example, [2], [5], [16], [26], [40].

The following useful approximate uniqueness result follows immediately from the
definition of absorbing *-homomorphism (i.e., Definition 2.1).

LEMMA 2.2. Let A and B be separable C*-algebras with A unital and B
stable. Suppose that φ ,ψ : A → M (B) are two unital injective absorbing *-homo-
morphisms.

Then for every ε > 0 , for every finite subset F ⊆ A , there exists a unitary U ∈
M (B) such that

φ(a)−Uψ(a)U∗ ∈ B

for all a ∈ A , and
‖φ(a′)−Uψ(a′)U∗‖ < ε

for all a′ ∈ F .

Proof. Suppose that A ,B,φ ,ψ satisfy the hypotheses.
Let ε > 0 and a finite subset F ⊂A be given. Let S1,S2 ∈M (B) be isometries

with
S1S

∗
1 +S2S

∗
2 = 1.

Since φ is an absorbing homomorphism, let U ∈ M (B) be a unitary such that

φ(a)−U(S1φ(a)S∗1 +S2ψ(a)S∗2)U
∗ ∈ B
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for all a ∈ A , and

‖φ(c)−U(S1φ(c)S∗1 +S2ψ(c)S∗2)U
∗‖ < ε/2

for all c ∈ F .
Since ψ is an absorbing homomorphism, let V ∈ M (B) be a unitary such that

Vψ(a)V ∗ − (S1φ(a)S∗1 +S2ψ(a)S∗2) ∈ B

for all a ∈ A , and

‖Vψ(c)V ∗ − (S1φ(c)S∗1 +S2ψ(c)S∗2)‖ < ε/2

for all c ∈ F .
Then

φ(a)−UVψ(a)V ∗U∗ ∈ B

for all a ∈ A , and
‖φ(c)−UVψ(c)V ∗U∗‖ < ε

for all c ∈ F . �

REMARK 2.3. There is an elegant and insightful short proof of Lemma 2.2 which
is phrased in the language of extension theory (see, for example, [4, Corollary II.5.6]).

For the convenience of the reader, we presented this proof without mentioning
extensions, and in a way which is slightly less short.

We will need two specific absorbing *-homomorphisms that were constructed by
Lin and Kasparov. These examples actually fall under the Elliott–Kucerovsky result
stated in Theorem 2.9 below (though Lin’s and Kasparov’s works came first). However,
for the convenience of the reader, we state the results of Lin and Kasparov.

THEOREM 2.4. Let A ,C be unital separable C*-algebras such that C is simple
and A is a nuclear unital C*-subalgebra of C .

Let d : A →M (C ⊗K ) be defined by d(a) := a⊗1B(H ) = diag(a,a,a,a, . . . . . .) .
Then d is absorbing.

Proof. This follows from [27, Theorem 1.12]. �

REMARK 2.5. Lin introduced the above absorbing extensions result Theorem 2.4
(which we stated as a result about *-homomorphisms) in the course of proving an im-
portant stable uniqueness theorem, which is a foundational tool in the Elliott Program.

We also note that the statement and proof of [27, Theorem 1.12] is phrased in the
language of extension theory.

Next, we have the following special case of the absorbing *-homomorphism due
to Kasparov.
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THEOREM 2.6. Let A and C be separable C*-algebras with A unital and nu-
clear. Let H be a separable Hilbert space.

Let φ : A → B(H ) be a unital *-homomorphism which is full (i.e., for all a ∈
A −{0} , φ(a)/K 
= 0 ).

Let φ̃ : A → M (C ⊗K ) be given by φ̃(a) := 1C ⊗ φ(a) ∈ 1C ⊗ B(H ) ⊆
M (C ⊗K ) , for all a ∈ A .

Then φ̃ is absorbing.

Proof. See [21, Theorem 6] and [22, 1.16]. See also [2, Theorem 15.12.3]. �

REMARK 2.7. The above is a special case of Kasparov’s absorbing extension,
which generalizes Voiculescu’s absorbing extension. In both cases, the existence of
these absorbing extensions gave a clean characterization of the relevant extension group
(see, for example, [2, Theorem 15.12.2]). Voiculescu’s absorbing extension is also the
basis of his famous noncommutative Weyl–von Neumann theorem, with many applica-
tions and generalizations (see, for example, [1], [4], [5], [11], [26] and the references
therein).

We note that the proofs referred to in the proof of Theorem 2.6 are phrased in the
language of extension theory.

The notion of “pure largeness” is due to Elliott and Kucerovsky ([5]).

DEFINITION 2.2. Let A and B be separable C*-algebras with B stable.

1. An injective *-homomorphism φ : A → M (B) is purely large if for all c ∈
(φ(A)+B)+ −B , her(c) := cBc contains a stable C*-subalgebra which is full
in B .

2. Let a ∈ M (B)+ . Then a is purely large if the inclusion map C∗(a) ↪→ M (B)
is purely large.

REMARK 2.8. Elliott and Kucerovsky introduced the notion of a purely large ex-
tension in order to give a simple algebraic characterization of when an extension is
absorbing. (See [5]; see also Theorem 2.9 below.)

This algebraic characterization answered a longstanding question (see, for exam-
ple, [2, page 134, first line]), captures Kasparov’s and Lin’s extensions, and has many
other applications.

We note that the proof referred to, in the proof of Theorem 2.9 below, is also
phrased in the language of extension theory.

Elliott and Kucerovsky discovered a relationship between pure largeness and ab-
sorption. Here is a special case of their result, stated in terms of *-homomorphisms:

THEOREM 2.9. Let A and B be separable C*-algebras with A unital and nu-
clear, and with B stable. Let φ : A → M (B) be a unital injective *-homomorphism.

Then φ is purely large if and only if φ is absorbing.
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Proof. This is [5, Theorem 6]. �

We will also need the following characterization of pure largeness.

LEMMA 2.10. Let A and B be separable C∗ -algebras with A unital and nu-
clear, and with B stable. Let φ : A → M (B) be a unital injective *-homomorphism.

Then the following statements are equivalent:

1. φ is purely large.

2. For any ε > 0, for all c ∈ (φ(A ) +B)+ −B , and for all b ∈ B+ such that
‖c/B‖= ‖b‖= 1 , there exists an r ∈B with ‖r‖� 1 such that ‖rcr∗−b‖< ε .

Proof. See [23, Theorem 3.1]. �

LEMMA 2.11. Let B be a separable stable C*-algebra, let {an}∞
n=1 be a se-

quence of positive purely large invertible elements in M (B) , and let a ∈ M (B)+ be
an invertible element such that an → a in norm.

Then a is also purely large.

Proof. We use the previous lemma. Let c∈ (C∗(a)+B)+−B such that ‖c/B‖=
1. We can write c as c = ( f (a)+k)∗( f (a)+k) for some f ∈C(σ(a)) and k∈B . Then
( f (an)+k)∗( f (an)+k)→ c in norm. Let cn = ( f (an)+k)∗( f (an)+k) for all n . Since
c /∈ B,cn /∈ B for sufficiently large n . Since ‖c/B‖ = 1,‖cn/B‖ → 1. We can find
{αn}∞

n=1 in [1/2,3/2] such that αn → 1 and αncn → c in norm and ‖αncn/B‖ = 1
for all sufficiently large n . Throwing away finitely many terms if necessary, we may
assume that ‖αncn/B‖ = 1 for all n .

Let ε > 0, let b ∈ B+ such that ‖b‖ = 1. Choose N � 1 such that αNcN ≈ε/2 c
and αNcN /∈ B . So, αNcN ∈ (C∗(aN) +B)+ −B and since aN is purely large, we
can find r ∈ B with ‖r‖ � 1 such that r(αNcN)r∗ ≈ε/2 b . Also, r(αNcN)r∗ ≈ε/2 rcr∗.
Hence, rcr∗ ≈ε b . Since c , ε , b were arbitrary, by Lemma 2.10, a is purely large. �

LEMMA 2.12. Let B be a separable stable C*-algebra. Suppose that a∈M (B)
is a purely large, positive, invertible element.

Let S1,S2 ∈ M (B) be isometries such that S1S∗1 +S2S∗2 = 1 .
Then a′ := S1aS∗1 +S2S∗2 ∈ M (B) is a purely large, positive, invertible element.

Proof. It is clear that a′ is positive and invertible.
Let c∈ (C∗(a′)+B)+−B with ‖c/B‖= 1. Let ε > 0 and b∈B+ with ‖b‖= 1

be arbitrary.
Hence, let f ∈C(σ(a′)) =C(σ(a)∪{1}) and k ∈B be such that c = f (a′)+k =

( f (S1aS∗1)+ f (S2S∗2)) + k . Hence, either ‖ f (S1aS∗1)/B‖ = 1 or ‖ f (S2S∗2)/B‖ = 1.
Let us assume that ‖ f (S1aS∗1)/B‖ = 1 (the proof for the other case is easier; note that
S2S∗2 ∼ 1).
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Note that since a′ is invertible, 0 /∈ σ(a′) and f can be uniformly approximated
over σ(a′) arbitrarily close by polynomials with no constant term.

Hence, since S∗1S1 = 1, f (S1aS∗1) = S1 f (a)S∗1 . Similarly, f (S2S∗2) = S2 f (1)S∗2 .
Hence, S∗1cS1 = f (a)+S∗1kS1 is a positive element.

Also, ‖ f (a)/B‖= ‖S1 f (a)S∗1/B‖= ‖ f (S1aS∗1)/B‖= 1. Since a is purely large,
by Lemma 2.10, let r ∈ B with ‖r‖ � 1 be such that r( f (a)+S∗1kS1)r∗ ≈ε b .

Now let s ∈ B be given by s := rS∗1 . Then ‖s‖ � ‖r‖ � 1. Also, scs∗ =
rS∗1(S1 f (a)S∗1 +S2 f (1)S∗2 + k)S1r∗ = r( f (a)+S∗1kS1)r∗ ≈ε b .

Since c , ε , b were arbitrary, by Lemma 2.10, a′ is purely large. �

3. Existence of a nonscalar positive invertible from GL(C1+A ⊗K )

The first lemma is a result due to Kadison. We use this to attain nonnormal ele-
ments in a normal subgroup of the general linear group of a C*-algebra.

LEMMA 3.1. If A is a unital C*-algebra and a ∈ A , then a is in the center of
A if and only if for all x ∈ GL(A ) , x−1ax is a normal operator.

Proof. See [20, Lemma 1]. �
For the next lemma we recall the definition of a prime and semi-prime C*-algebra.

If A is a C*-algebra we say that a (C*-)ideal P of A is a prime ideal if P 
= A and
IJ ⊆ P implies I ⊆ P or J ⊆ P for all (C*-)ideals I and J in A . We say
that A is a prime C*-algebra if the zero ideal is a prime ideal of A . Recall that every
C*-algebra A is semi-prime, i. e., the intersection of all prime ideals of A is {0} .

LEMMA 3.2. Let A be a unital C*-algebra and let g be an invertible element of
A . If (g∗,g) := (g∗)−1g−1g∗g is in the center of A then g is normal.

Proof. Assume first that A is a prime C*-algebra. Then the center of A is C1A .
Hence, (g∗,g) = α1A for some α ∈ C . Hence, g∗g = αgg∗ . Taking norms on each
side we get that |α| = 1. Since g∗g is positive, we have that α = 1. Hence, g is
normal. Now assume that A is a general C*- algebra. If J is a prime ideal of A
then A /J is a prime C*-algebra. Let π be the quotient map. Then (π(g)∗,π(g)) is
in the center of A /J and hence (π(g)∗,π(g)) = 1A /J . Hence, (g∗,g)−1A ∈ J .
Since J was an arbitrary prime ideal, (g∗,g)− 1A ∈ J for any prime ideal J .
Since C*-algebras are semi-prime, the zero ideal is the intersection of prime ideals, so
(g∗,g)−1A = 0. This implies g∗g = gg∗ . Hence, g is normal. �

LEMMA 3.3. Let A be a unital C*-algebra and let g be an invertible element of
A . If x := |g|(gg∗)−1|g| is in the center of A then g is normal.

Proof. Since x is in the center of A , x is in the center of GL(A ) and since the
center of GL(A ) is a normal subgroup of GL(A ) we have that |g|−1x|g|= (gg∗)−1(g∗g)
= (g∗,g) is in the center of GL(A ) . Therefore, (g∗,g) is in the center of A . By
Lemma 3.2, g is normal. �
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LEMMA 3.4. Let A be a unital C*-algebra. If a normal subgroup of GL(A ) is
not contained in the center of A then it contains noncentral positive elements.

Proof. Let G be a noncentral normal subgroup of GL(A ) . Let f be a noncentral
element of G . Then by Lemma 3.1, there exists x ∈ GL(A ) such that g = x−1 f x is
not normal and in G . Now a = (g∗g)1/2((g∗)−1g−1g∗g)(g∗g)−1/2 = |g|(gg∗)−1|g| is
positive and in G , and by Lemma 3.3, a is noncentral. �

LEMMA 3.5. Let B be a nonunital C*-algebra and let G be a noncentral normal
subgroup of GL(M (B)) . Then G contains a nonscalar element of GL(B +C1) .

Proof. By Lemma 3.4, let x ∈ G be a positive noncentral and hence nonscalar
element. Then for all y ∈ GL(B + C1) , yxy−1x−1 ∈ G∩GL(B + C1). Suppose to
the contrary that for all y ∈ GL(B + C1),yxy−1x−1 ∈ (C−{0})1. Hence, for all y ∈
GL(B + C1) , there exists αy ∈ C such that yxy−1x−1 = αy ⇔ yxy−1 = αyx . If y is
unitary then taking norms on each side we get that |αy| = 1 and since x � 0,αy = 1.
Hence, for all u∈U(B+C1),ux = xu . Hence, by the Russo-Dye theorem, zx = xz for
all z ∈ B + C1. Let T ∈ M (B) and let {zn} be a sequence in B such that zn → T
strictly. Then since znx = xzn for all n , we have that Tx = xT . Hence, since T was
arbitrary, x is central. This is a contradiction. Hence, there is a y ∈ GL(B +C1) such
that yxy−1x−1 is a nonscalar element of G∩GL(B +C1) . �

LEMMA 3.6. Let B be a nonunital simple C*-algebra. Let G be a nonscalar
normal subgroup of GL(M (B)) . Then G contains a nonscalar positive element of
GL(B +C1) .

Proof. By Lemma 3.5, let g ∈ G∩GL(B + C1) be a nonscalar element. So, g
is a noncentral element of B + C1. By Lemma 3.1, there is c ∈ GL(B + C1) such
that c−1gc is not normal. Let x = c−1gc , then x ∈ G∩GL(B + C1) . Note that G∩
GL(B+C1) is a normal subgroup of GL(B+C1) . Since x is not normal, by Lemma
3.4, G∩GL(B +C1) contains a nonscalar positive element. �

4. Constructing a nonscalar purely large positive element

Throughout this section, A is a unital separable simple C*-algebra and G is a
(algebraic) normal subgroup of GL(M (A ⊗K )) such that G properly contains the
scalar invertibles. (So G itself is nonscalar.) Let {e j,k}1� j,k<∞ be a system of matrix
units for K . For all n � 1, let en := ∑n

j=1 1A ⊗ e j, j . Then {en}∞
n=1 is an approximate

unit for A ⊗K consisting of an increasing sequence of projections.
The goal of this section is to construct a nonscalar purely large positive element in

the strict topology closure G
strict

. We firstly provide an inductive construction which
will be referred to throughout this section.

By Lemma 3.6, G contains a nonscalar positive element x ∈ C1+A ⊗K . Since
G properly contains the scalar invertibles, we may assume that x ∈ 1+A ⊗K .
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By the continuous functional calculus, x2 is also nonscalar.
Since x2 = x∗x is nonscalar, choose an integer n1 � 1 and an ε > 0 so that for

every a∈ (A ⊗K )+ and for all n � n1 , if enx∗xen ≈ε enaen then enaen is not a scalar
multiple of en . Let {ε j}∞

j=1 be a strictly decreasing sequence in (0,1) such that

∞

∑
j=1

ε j < ε. (4.1)

We now construct a sequence {xk}∞
k=1 in G∩(1+A ⊗K ) , a subsequence {Nk}∞

k=1
of the positive integers, a sequence { fk}∞

k=1 of projections in A ⊗K , and a sequence
{Uk}∞

k=1 of unitaries in C1+A ⊗K . The construction is by induction on k .
Basic step k = 1 : Since x ∈ 1 + A ⊗K , we can find N1 � n1 , a projection

f1 ∈ 1A ⊗K , and a unitary U1 ∈ C1+ A ⊗K such that the following statements
hold:

1. f1 ⊥ eN1 , f1 ∼ eN1 and f1 � en for some n .

2. U1eN1 = f1U1 , eN1U1 = U1 f1 and U1(1− eN1 − f1) = (1− eN1 − f1)U1 = 1−
eN1 − f1 .

Hence, a matrix representation for U1 is

U1 =

⎡
⎣0 1 0

1 0 0
0 0 1

⎤
⎦

where the unit of the (1,1) position is eN1 , the (2,2) position is f1 , and the (3,3)
position is 1−eN1 − f1 which is Murray–vonNeumann equivalent to 1M (A ⊗K ) .

3. xs ≈ε1 eN1x
seN1 +(1− eN1) and ‖xseN1‖ ≈ε1 ‖xs‖ ≈ε1 ‖eN1x

s‖ for s = ±1.

4. For s = ±1,

xsU1x
sU∗

1 ≈ε1 eN1x
seN1 +U1eN1x

seN1U
∗
1 +(1− eN1 − f1)

≈ε1 U1x
sU∗

1 xs

≈ε1 xsU1x
sU∗

1 .

Note that a matrix representation for eN1x
seN1 +U1eN1x

seN1U
∗
1 +(1− eN1 − f1)

is ⎡
⎣ eN1x

seN1 0 0
0 eN1x

seN1 0
0 0 1

⎤
⎦

where the unit of the (1,1) position is eN1 , the (2,2) position is f1 , and the (3,3)
position is 1−eN1 − f1 which is Murray–vonNeumann equivalent to 1M (A ⊗K ) .
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5. Let x1 := xU1xU∗
1 . Then x1 ∈ G∩ (1+A ⊗K ) ,

xs
1 ≈ε1 eN1x

seN1 +U1eN1x
seN1U

∗
1 +(1− eN1 − f1)

for s = ±1, and

x∗1x1 ≈ε1 eN1x
2eN1 +U1eN1x

2eN1U
∗
1 +(1− eN1 − f1)

=

⎡
⎣ eN1x

2eN1 0 0
0 eN1x

2eN1 0
0 0 1

⎤
⎦ .

Note also that since x is positive, x∗1 ∈ G .

6. ‖(x∗1x1)−1‖ < ‖x−2‖+ ε1 .

7. eN1x
2eN1 is invertible in eN1(A ⊗K )eN1 and ‖(eN1x

2eN1)
−1‖ < ‖x−2‖+ ε1 .

We collectively denote the above statements by “(∗)”.
Induction step: Suppose that {xl}k

l=1 , {Nl}k
l=1 , { fl}k

l=1 , and {Ul}k
l=1 have been

constructed. We now construct xk+1 , Nk+1 , fk+1 , and Uk+1 .
By the previous steps of the construction, we have the following statements:
For all 1 � l � k , eNl ⊥ fl , eNl−1 + fl−1 � eNl (define e0 =d f f0 =d f 0), fk � ek′

for some k′ , eNl ∼ fl , UleNl = flUl , eNlUl =Ul fl , Ul(1−eNl − fl) = (1−eNl − fl)Ul =
1− eNl − fl , and a matrix representation for Ul is

Ul =

⎡
⎣0 1 0

1 0 0
0 0 1

⎤
⎦

where the unit of the (1,1) position is eNl , the (2,2) position is fl , and the (3,3)
position is 1− eNl − fl which is Murray–von Neumann equivalent to 1M (A ⊗K ) .

For s = ±1,

xs
k ≈εk eNkx

s
k−1eNk +UkeNkx

s
k−1eNkU

∗
k +(1− eNk − fk) (4.2)

=

⎡
⎣ eNkx

s
k−1eNk 0 0
0 eNkx

s
k−1eNk 0

0 0 1

⎤
⎦

where, in the matrix representation, the unit of the (1,1) position is eNk , the (2,2)
position is fk , and the (3,3) position is 1− eNk − fk . (Here and in the rest of the
section, we define x0 := x .)

For all 0 � l � k−1 and for s = ±1, define

xl,k,s := eNl+1x
s
l eNl+1

+∑{Ukm · · ·Uk1(eNl+1x
s
l eNl+1)U

∗
k1
· · ·U∗

km
: l +1 � k1 < k2 < · · · < km � k}

+(1− eNl+1 −∑{Ukm · · ·Uk1eNl+1U
∗
k1
· · ·U∗

km
: l +1 � k1 < k2 < · · · < km � k})

= eNl+1x
s
l eNl+1 ⊕ eNl+1x

s
l eNl+1 ⊕ . . .⊕ eNl+1x

s
l eNl+1 ⊕1.
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(Note that the terms in the first sum are pairwise orthogonal, and so xl,k,s is a direct sum
of finitely many pairwise orthogonal copies of eNl+1x

s
l eNl+1 together with a projection

which is Murray-von Neumann equivalent to 1M (A ⊗K ) .)
Then

xs
k ≈∑k

j=l+1 ε j
xl,k,s (4.3)

for s = ±1.
For all l � k−1, define

al,k := eNl+1x
∗
l xleNl+1

+∑{Ukm . . .Uk1(eNl+1x
∗
l xleNl+1)U

∗
k1

. . .U∗
km

: l +1 � k1 < k2 < .. . < km � k}
+(1− eNl+1 −∑{Ukm . . .Uk1eNl+1U

∗
k1

. . .U∗
km

: l +1 � k1 < k2 < .. . < km � k})
= eNl+1x

∗
l xleNl+1 ⊕ eNl+1x

∗
l xleNl+1 ⊕ . . .⊕ eNl+1x

∗
l xleNl+1 ⊕1.

(So al,k is the same as xl,k except every occurrence of xl is replaced with x∗l xl . In other
words, al,k is a direct sum of finitely many pairwise orthogonal copies of eNl+1x

∗
l xleNl+1

together with a projection which is Murray-von Neumann equivalent to 1M (A⊗K ) .)
Then

x∗kxk ≈∑k
j=l+1 ε j

al,k. (4.4)

Now, by the previous steps in the construction, xk,x∗k ∈G∩(1+A ⊗K ) . Hence,
we can choose Nk+1 � Nk + 1, a projection fk+1 ∈ 1A ⊗K , and a unitary Uk+1 ∈
C1+A ⊗K such that the following statements are true:

1. fk � eNk+1 , fk+1 ⊥ eNk+1 , fk+1 ∼ eNk+1 , fk+1 � en for some n , and e1 � eNk+1 −
eNk − fk .

2. Uk+1eNk+1 = fk+1Uk+1 and eNk+1Uk+1 =Uk+1 fk+1 and Uk+1(1−eNk+1 − fk+1) =
(1− eNk+1 − fk+1)Uk+1 = 1− eNk+1 − fk+1 .

Hence, a matrix representation for Uk+1 is

Uk+1 =

⎡
⎣ 0 1 0

1 0 0
0 0 1

⎤
⎦

where the unit of the (1,1) position is eNk+1 , the (2,2) position is fk+1 , and the
(3,3) position is 1− eNk+1 − fk+1 which is Murray–von Neumann equivalent to
1M (A ⊗K ) .

3. xs
k ≈εk+1 eNk+1x

s
keNk+1 +(1− eNk+1) , and ‖eNk+1x

s
k‖ ≈εk+1 ‖xs

k‖ ≈εk+1 ‖xs
keNk+1‖ ,

for s = ±1.

4. For s = ±1,

xs
kUk+1x

s
kU

∗
k+1 ≈εk+1 eNk+1x

s
keNk+1 +Uk+1eNk+1x

s
keNk+1U

∗
k+1 +(1− eNk+1 − fk+1)

≈εk+1 Uk+1x
s
kU

∗
k+1x

s
k

≈εk+1 xs
kUk+1x

s
kU

∗
k+1.
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Note that a matrix representation for eNk+1x
s
keNk+1 +Uk+1eNk+1x

s
keNk+1U

∗
k+1+(1−

eNk+1 − fk+1) is ⎡
⎣ eNk+1x

s
keNk+1 0 0
0 eNk+1x

s
keNk+1 0

0 0 1

⎤
⎦

where the unit of the (1,1) position is eNk+1 , the (2,2) position is fk+1 , and the
(3,3) position is 1− eNk+1 − fk+1 which is Murray–von Neumann equivalent to
1M (A ⊗K ) .

5. Let xk+1 := xkUk+1xkU∗
k+1 ∈ G∩ (1+A ⊗K ) .

For all 0 � l � k and for s = ±1, let

xl,k+1,s := eNl+1x
s
l eNl+1

+∑{Ukm . . .Uk1eNl+1x
s
l eNl+1U

∗
k1

. . .U∗
km

: l+1�k1<k2<.. .<km�k+1}
+(1−eN1+1−∑{Ukm . . .Uk1eNl+1U

∗
k1

. . .U∗
km

: l+1�k1<k2<.. .<km�k+1})
= eNl+1x

s
l eNl+1 ⊕ eNl+1x

s
l eNl+1 ⊕ . . .⊕ eNl+1x

s
l eNl+1 ⊕1.

(Hence, xl,k+1,s is a direct sum of finitely many pairwise orthogonal copies of
eNl+1x

s
l eNl+1 with a projection which is Murray–von Neumann equivalent to

1M (A ⊗K ) .)

Then for s = ±1, xs
k+1 ≈∑k+1

j=l+1 ε j
xl,k+1,s .

Note also that since x∗k ∈ G , x∗k+1 ∈ G .

6. For 0 � l � k , let

al,k+1 := eNl+1x
∗
l xleNl+1

+∑{Ukm . . .Uk1eNl+1x
∗
l xleNl+1U

∗
k1

. . .U∗
km

: l+1�k1<k2<.. .<km�k+1}
+(1−eNl+1−∑{Ukm . . .Uk1eNl+1U

∗
k1

. . .U∗
km

: l+1�k1<k2<.. .<km�k+1})
= eNl+1x

∗
l xleNl+1 ⊕ eNl+1x

∗
l xleNl+1 ⊕ . . .⊕ eNl+1x

∗
l xleNl+1 ⊕1.

(Hence, al,k+1 is a direct sum of finitely many pairwise orthogonal copies of
eNl+1x

∗
l xleNl+1 with a projection which is Murray–von Neumann equivalent to

1M (A ⊗K ) .)

Then x∗k+1xk+1 ≈∑k+1
j=l+1 ε j

al,k+1 .

7. For 0 � l � k,‖(x∗l xl)−1‖ < ‖x−2‖+ ∑l+1
j=1 ε j .

8. For 0 � l � k , eNl+1x
∗
l xleNl+1 is invertible in eNl+1(A ⊗K )eNl+1 and

‖(eNl+1x
∗
l xleNl+1)

−1‖ < ‖x−2‖+ ∑l+1
j=1 ε j .

We denote the above statements by “(+)”.
This completes the inductive construction.
In the rest of this section, we will repeatedly refer to the above construction.
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LEMMA 4.1. {xk}∞
k=1 and {x−1

k }∞
k=1 are both (norm) bounded sequences.

Proof. By (+) statement (5), we have that for all k

‖xk+1‖ � ‖x‖+
k+1

∑
j=1

ε j < ‖x‖+
∞

∑
j=1

ε j < ∞.

(Recall that, by our convention, x0 := x .) Hence, {xk}∞
k=1 is bounded. By a similar

argument, {x−1
k }∞

k=1 is bounded. �

LEMMA 4.2. {xk} and {x−1
k } both converge strictly in M (A ⊗K ) .

Proof. Let n � 1 be given. Choose K0 so that NK0 � n . By (+) statements (3) and
(5), we have that for all k � K0 ,

xk+1en ≈2εk+1 xken.

So for all k > l � K0 ,
xk+1en ≈∑k+1

j=l+1 2ε j
xlen.

Since ∑∞
j=1 ε j < ∞ , {xken}∞

k=1 is a Cauchy sequence in A ⊗K . By a similar argu-
ment, {enxk}∞

k=1 is a Cauchy sequence in A ⊗K . Since n was arbitrary and since, by
Lemma 4.1, {xk} is bounded, we have that {xk} converges strictly in M (A ⊗K ) .

By a similar argument, {x−1
k } converges strictly in M (A ⊗K ) . �

By Lemma 4.2, let y,y1 ∈M (A ⊗K ) be the strict limits of {xk} , {x−1
k } respec-

tively. It follows that yy1 = y1y = 1. Hence, y is invertible with inverse y1 .

LEMMA 4.3. xk → y strictly, x−1
k → y1 strictly, limsup‖xk‖ � ‖y‖ , and

limsup‖x−1
k ‖ � ‖y1‖ .

Proof. We already have that xk → y and x−1
k → y1 strictly.

Let l � 1 be arbitrary. By (+) statements (3) and (5), we have that for all k � l ,

xk+1eNl+1 ≈εl+1+∑k+1
j=l+1 ε j

xleNl+1 .

But by (+) statement (3),
‖xl‖ ≈εl+1 ‖xleNl+1‖.

Hence, for all k � l ,
‖xk+1eNl+1‖ ≈2εl+1+∑k+1

j=l+1 ε j
‖xl‖.

Therefore, since xk+1 → y in the strict topology,

‖xl‖ � ‖yeNl+1‖+2εl+1 +
∞

∑
j=l+1

ε j � ‖y‖+2εl+1 +
∞

∑
j=l+1

ε j.
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Since liml→∞

(
2εl+1 + ∑∞

j=l+1 ε j

)
= 0,

limsup
l→∞

‖xl‖ � ‖y‖.

By a similar argument,

limsup
l→∞

‖x−1
l ‖ � ‖y1‖. �

LEMMA 4.4. For all z ∈ {y,y1,y∗,y∗1,y
∗y,(y∗y)−1 = y1y∗1} , z is the strict limit of

elements of G with norm at most ‖z‖ .
In particular, there exists a sequence {zk} in G such that zk → y∗y strictly, z−1

k →
(y∗y)−1 strictly, limsup‖zk‖ � ‖y∗y‖ and limsup‖z−1

k ‖ � ‖(y∗y)−1‖ .

Proof. By Lemma 4.3, y and y−1 = y1 are the strict limits of elements of G with
norm at most ‖y‖ and ‖y−1‖ = ‖y1‖ respectively.

Note that by (∗) item (5) and (+) item (5), x∗k ∈ G for all k . Hence, since the
*-operation is continuous with respect to the strict topology, it follows from Lemma
4.3 that y∗,(y∗)−1 = y∗1 are strict limits of elements of G with norm at most ‖y∗‖ and
‖(y∗)−1‖ = ‖y∗1‖ respectively.

Finally, since the strict topology on bounded subsets respects multiplication, x∗kxk →
y∗y strictly and x−1

k (x∗k)
−1 → y−1(y∗)−1 = (y∗y)−1 . Note also that by Lemma 4.3,

limsup‖x∗kxk‖ = limsup‖xk‖2 � ‖y‖2 = ‖y∗y‖ . Similarly, limsup‖x−1
k (x∗k)

−1‖ �
‖y−1(y∗)−1‖ . Take zk := x∗kxk for all k . �

LEMMA 4.5. y∗y is nonscalar, i.e., y∗y /∈ C1 .

Proof. From (+) statement (6), we have that for all k ,

eN1x
∗
k+1xk+1eN1 ≈∑k+1

j=1 ε j
eN1x

2eN1 .

(Recall that x0 := x .)
Hence, since xk+1 → y strictly,

eN1y
∗yeN1 ≈∑∞

j=1 ε j eN1x
2eN1 .

By our choice of {ε j} (and ε ), it follows that eN1y
∗yeN1 is not a scalar multiple

of eN1 . Hence, y∗y is nonscalar. �
To continue, we fix some notation. For l +1 � k1 < k2 < .. . < km , let

bl,k1,k2,...,km := Ukm . . .Uk1eNl+1x
∗
l xleNl+1U

∗
k1

. . .U∗
km

∈ (A ⊗K )+

and let
el,k1,k2,...,km := Ukm . . .Uk1eNl+1U

∗
k1

. . .U∗
km

∈ Pro j(A ⊗K ).

Note that, by the definitions of Uj and eNj for all j , we have that for l +1 � k1 <
.. . < km and l +1 � l1 < .. . < lr , if (k1,k2, . . . ,km) 
= (l1, l2, . . . , lr) , then bl,k1,...,km ⊥
bl,l1,...,lr and el,k1,...,km ⊥ el,l1,...,lr .
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LEMMA 4.6. For all l , {al,k+1}∞
k=1 converges strictly to al , where

al := eNl+1x
∗
l xleNl+1

+∑{bl,k1,...,km : l +1 � k1 < k2 < .. . < km}
+(1−∑{el,k1,...,km : l +1 � k1 < k2 < .. . < km})

(and where the sums, in the definition of al , converge strictly).

Sketch of proof. By the definitions of Uj and eNj for all j , for all l + 1 � k1 <
k2 < .. . < km , for all n � Nkm−1 , enbl,k1,...,km = bl,k1,...,kmen = 0.

Hence, for all n2 , the set {en2bl,l1,...,lr : l +1 � l1 < l2 < .. . < lr}∪{bl,l1,...,lr en2 :
l +1 � l1 < l2 < .. . < lr} is a finite set (most expressions will be zero).

A similar argument can be made for sets of the form {en2el,l1,...,lr : l + 1 � l1 <
l2 < .. . < lr}∪{el,l1,...,lr en2 : l +1 � l1 < l2 < .. . < lr} . �

REMARK 4.7. Note that in Lemma 4.6, al is an infinite repeat of eNl+1x
∗
l xleNl+1

direct summed with a projectionwhich is Murray–vonNeumann equivalent to 1M (A ⊗K ) .
I.e., al has the form

al = 1⊕ eNl+1x
∗
l xleNl+1 ⊕ eNl+1x

∗
l xleNl+1 ⊕ eNl+1x

∗
l xleNl+1 ⊕ . . .

where 1 (in the first position) is Murray–von Neumann equivalent to 1M (A ⊗K ) and
where there are infinitely many copies of eNl+1x

∗
l xleNl+1 . Also, the above infinite sum

converges strictly.

LEMMA 4.8. For all l , al is a purely large positive invertible.

Proof. Clearly, al � 0 for all l .
By (+) item (1), e1 � eNk+1 − eNk − fk for all k . Hence, for all l ,

1M (B) ∼ (1M (B)−∑{el,k1,...,km:l+1�k1<k2<...<km}).
Hence, for all l , by the definition of al , by Theorem 2.4, and by Lemma 2.12, we

have that al is purely large. �

LEMMA 4.9. {al} converges in norm to y∗y.

Proof. Let δ > 0 be given.
Choose L � 1 such that for all l � L , ∑∞

j=l+1 ε j < δ .
Let n � 1 be given. Choose K � L such that for all l � L , for all k � max{l,K} ,

alen = al,k+1en and enal = enal,k+1 .
Hence, by (+) statement (6) and our choice of L , for all l � L , for all k �

max{l,K} , alen = al,k+1en ≈δ x∗k+1xk+1en .
Hence, since x∗k+1xk+1 → y∗y strictly as k → ∞ , for all l � L , alen ≈2δ y∗yen . By

the same argument, for all l � L , enal ≈2δ eny∗y .
Since n was arbitrary, for all l � L , al ≈2δ y∗y .
Since δ was arbitrary, al → y∗y in norm as l → ∞ . �
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LEMMA 4.10. Let A be a unital separable simple C*-algebra and G ⊆
GL(M (A ⊗K )) a (algebraic) normal subgroup which properly contains the scalar
invertibles.

Then G
strict

contains a nonscalar purely large positive invertible element a.
Moreover, we can require that for every ε > 0 , we can find a sequence {zk} in

G such that zk → a strictly, z−1
k → a−1 strictly, ‖zk‖ � ‖a‖ for all k and ‖z−1

k ‖ �
‖a−1‖+ ε for all k .

Proof. This follows immediately from Lemma 4.4, Lemma 4.9, Lemma 2.11, and
Lemma 4.8. �

5. Main Theorem

LEMMA 5.1. Let H be a separable infinite dimensional Hilbert space.
Suppose that G ⊆ GL(B(H )) is a norm closed normal subgroup which properly

contains the scalar invertibles such that G contains a normal operator in GL(B(H ))−
GL(C1+K ) .

Then G = GL(B(H )) .

Proof. This follows from [19, Lemma 6]. �

THEOREM 5.2. Let A be a unital, separable, simple C*-algebra. Let G ⊆
GL(M (A ⊗K )) be a (algebraic) normal subgroup. Suppose that G properly con-
tains the scalar invertibles.

Then GL(M (A ⊗K )) ⊆ G
strict

.

Proof. Note that since G is a normal subgroup of GL(M (A ⊗K )) , G
strict

is in-

variant under conjugation by an invertible, i.e., for all x∈GL(M (A ⊗K )) , xG
strict

x−1

⊆ G
strict

.
Also note that G

strict
is closed under products. (Say that x,y ∈ G

strict
. Let {xλ}

and {yμ} be nets in G such that xλ → x strictly and yλ → y strictly. Hence, for all

λ , xλ yμ → xλ y strictly. Hence, for all λ , xλ y ∈ G
strict

. But since xλ y → xy strictly,

xy ∈ G
strict

.)
Let {ei, j}1�i, j<∞ be a system of matrix units for K . For each k � 1 let ek =

∑k
i=1(1A ⊗ ei,i) . Then {ek}∞

k=1 is an approximate unit for A ⊗K consisting of a

properly increasing sequence of projections. By Lemma 4.10, let a∈G
strict

be a purely
large nonscalar positive invertible such that for every δ > 0, there exists a net {xλ} in G
such that xλ → a strictly, x−1

λ → a−1 strictly, and ‖xλ‖� ‖a‖ and ‖x−1
λ ‖ � ‖a−1‖+δ

for all λ . In particular, a−1 ∈ G
strict

.
Let X = σ(a) . Since a is nonscalar and invertible, X contains at least two distinct

points and 0 /∈ X .
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Let {tn}∞
n=1 be a dense sequence in X such that each term repeats infinitely

many times. Let φ : C (X) → 1A ⊗B(H ) ⊆ M (A ⊗K ) be the unital injective *-
homomorphism given by φ( f ) = f (t1)e1 + ∑∞

i=1 f (ti+1)(ei+1 − ei) .
Since each term in the sequence {tn}∞

n=1 repeats infinitely many times, φ is a
full *-homomorphism. So, by Theorem 2.6, φ is absorbing. Let i : C(X) ∼= C∗(a) →
M (A ⊗K ) be the natural inclusion map. Since a is purely large, i is purely large.
Hence, by Theorem 2.9, i is absorbing. Hence, by Lemma 2.2, i and φ are approxi-
mately unitarily equivalent. Let {wn}∞

n=1 be a sequence of unitaries that witnesses this,
i.e., wn f (a)w∗

n = wni( f )w∗
n → φ( f ) in norm for all f ∈C(X) .

The function g(s) = s in C(X) corresponds to the positive element a ∈C∗(a) ∼=
C(X) . Hence,

wnaw∗
n = wni(g)w∗

n → φ(g)

in norm, and also,
wna

−1w∗
n = wni(g)−1w∗

n → φ(g)−1.

Since wnaw∗
n,wna−1w∗

n ∈ G
strict ⊆ GL(M (A ⊗K )) , we must have that φ(g) ,

φ(g)−1 ∈ G
strict

.
Let H ⊆ GL(M (A ⊗K )) be the (algebraic) normal subgroup generated by G

and φ(g) . Since G
strict

is closed under products and conjugation by invertibles and

since φ(g),φ(g)−1 ∈ G
strict

, H ⊆ G
strict

. Hence, the norm-closure H
‖.‖ ⊆ G

strict
.

H
‖.‖ ∩ GL(M (A ⊗ K )) is a (relative) norm-closed normal subgroup of

GL(M (A ⊗K )) , and hence, H
‖.‖∩GL(1A ⊗B(H )) is a (relative) norm-closed nor-

mal subgroup of GL(1A ⊗B(H )) . But H
‖.‖ ∩GL(1A ⊗B(H )) contains all scalar

invertibles and φ(g) ∈ H
‖.‖ ∩GL(1A ⊗B(H )) is a positive invertible which is not

contained in GL(C1+ 1A ⊗K ) . Hence, by Lemma 5.1, H
‖.‖ ∩GL(1A ⊗B(H )) =

GL(1A ⊗B(H )) . So GL(1A ⊗B(H )) ⊆ H
‖.‖ ⊆ G

strict
.

Let N be the group of unitaries in H
‖.‖ . Hence, N

strict is a strictly closed normal
subgroup of U(M (A ⊗K )) which properly contains the scalar unitaries. By [37],

the unitary group U(M (A ⊗K )) = N
strict ⊆ G

strict
.

Since G
strict

is closed under multiplication, by the Polar Decomposition Theo-
rem, to complete the proof, it suffices to prove that every positive invertible element is

contained in G
strict

.
Let c ∈ GL(M (A ⊗K )) be an arbitrary nonscalar positive element. We want to

show that c is in G
strict

. Since G
strict

is closed under products and contains all scalar

invertibles, we may assume that ‖c‖ � 1. Since G
strict

is strictly closed, it suffices to
prove the following:

Let ε > 0 be given. Let b1,b2, . . . ,bm be a finite set of elements in A ⊗K . Then

there exists x ∈ G
strict

such that
‖x− c‖bi < ε

for 1 � i � m . We denote the above statement by (∗) .
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Contracting ε if necessary, we may assume that bi � 0 and ‖bi‖� 1 for 1� i �m .
Choose a positive integer N � 1 such that for 1 � i � m , eNbi , bieN , eNbieN , and bi

are all norm within ε/100 of each other. Since A ⊗K is stable, let S,T be isometries
in M (A ⊗K ) such that the following hold:

(a) 1M (A ⊗K ) = SS∗+TT ∗
(b) eN � SS∗
(c) SeN = eNS = eN

(d) ‖SceN − ceN‖ < ε/100
(e) ‖eNcS∗ − eNc‖ < ε/100.
Let Y = σ(c) . Since c is a nonscalar, Y contains at least two distinct points. Let

{sl}∞
l=1 be a dense sequence in Y such that each term repeats infinitely many times.

Let ψ : C (Y ) → 1A ⊗B(H ) ⊆ M (A ⊗K ) be the unital injective *-homomorphism
given by ψ( f ) = f (s1)e1 + ∑∞

i=1 f (si+1)(ei+1 − ei) for all f ∈ C (Y ) . Since each term
in the sequence {sl}∞

l=1 repeats infinitely many times, by Theorem 2.6, ψ is absorbing.
Let i′ : C(Y ) ∼= C∗(c) → M (A ⊗K ) be the natural inclusion map. Let ψ ′ :

C(Y ) ∼= C∗(c) → M (A ⊗K ) be the *-homomorphism that is given by ψ ′( f ) :=
Si′( f )S∗ +Tψ( f )T ∗ . Since ψ is absorbing, ψ ′ is also absorbing. Hence, by Lemma
2.2, ψ and ψ ′ are approximately unitarily equivalent. Let {un}∞

n=1 be a sequence of
unitaries in M (A ⊗K ) that witnesses this; in particular, unψ( f )u∗n → ψ ′( f ) for all
f ∈C(Y ) . The function h(s) = s in C(Y ) corresponds to the element c∈C∗(c) . Hence,

unψ(h)(un)∗ → ψ ′(c) = Si′(c)S∗ +Tψ(h)T ∗ = ScS∗+Tψ(h)T ∗

in the norm topology as n → ∞ . So choose M � 1 such that for all n � M ,

‖unψ(h)(un)∗ − (ScS∗+Tψ(h)T ∗)‖ < ε/100.

Hence, since ‖bi‖ � 1 for 1 � i � m , we have that for n � M , for 1 � i � m ,

‖(unψ(h)(un)∗ − (ScS∗+Tψ(h)T ∗))bi‖ < ε/100

‖bi(unψ(h)(un)∗ − (ScS∗+Tψ(h)T ∗))‖ < ε/100.

Note also that from our choices of ψ and h ,

‖ψ(h)‖ = ‖c‖ � 1.

Now by our choice of N , we have that for 1 � i � m ,

‖biScS∗+biTψ(h)T ∗ −bic‖
� ‖(bi−bieN)ScS∗‖+‖bieNScS∗−bic‖+‖(bi−bieN)Tψ(h)T ∗‖+‖bieNTψ(h)T ∗‖
� ε/100+‖bieNScS∗−bic‖+ ε/100+0

� ε/50+‖bi(eNcS∗− eNc)‖+‖(bieN −bi)c‖
< ε/50+ ε/100+ ε/100

= ε/25.
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From this we have that for 1 � i � m ,

‖bi(uMψ(h)(uM)∗ − c)‖
� ‖bi(uMψ(h)(uM)∗ − (ScS∗+Tψ(h)T ∗))‖+‖bi((ScS∗+Tψ(h)T ∗)− c)‖
< ε/100+ ε/25

= 5ε/100.

By similar arguments, we have that for 1 � i � m ,

‖(uMψ(h)(uM)∗ − c)bi‖ < 5ε/100.

Hence, for 1 � i � m,

‖(uMψ(h)(uM)∗ − c)‖bi < 10ε/100 = ε/10.

Now since GL(1A ⊗B(H )) ⊆ G
strict

and since G
strict

is closed under conjugating by

invertibles from M (A ⊗K ) , we have uMGL(1A ⊗B(H ))(uM)∗ ⊆ G
strict

. Hence,

since ψ(h) ∈ GL(1A ⊗B(H )),uMψ(h)(uM)∗ ∈ G
strict

. Since ε was arbitrary, this
proves statement (∗) . �

THEOREM 5.3. Let A be a unital separable simple C*-algebra and let G ⊆
GL(M (A ⊗K )) be a (algebraic) normal subgroup which properly contains the scalar
invertibles.

Then G
strict = M (A ⊗K ) .

Proof. By Theorem5.2, GL(M (A ⊗K ))⊆G
strict

. Hence, GL(C1+A ⊗K )⊆
G

strict
. Since A ⊗K is stable, A ⊗K ⊆ GL(C1+A ⊗K )

‖.‖
. Hence, A ⊗K ⊆

G
strict

. Since A ⊗K is strictly dense in M (A ⊗K ) , G
strict = M (A ⊗K ) as

required. �
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