A NOTE ON OPERATOR TUPLES WHICH ARE (m, p)-ISOMETRIC AS WELL AS (μ, ∞)-ISOMETRIC

Philipp H. W. Hoffmann

(Communicated by L. Molnár)

Abstract. We show that if a tuple of commuting, bounded linear operators $\left(T_{1}, \ldots, T_{d}\right) \in B(X)^{d}$ is both an (m, p)-isometry and a (μ, ∞)-isometry, then the tuple $\left(T_{1}^{m}, \ldots, T_{d}^{m}\right)$ is a $(1, p)$ isometry. We further prove some additional properties of the operators T_{1}, \ldots, T_{d} and show a stronger result in the case of a commuting pair $\left(T_{1}, T_{2}\right)$.

1. Introduction

Let in the following X be a normed vector space over $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$ and let the symbol \mathbb{N} denote the natural numbers including 0 .

A tuple of commuting linear operators $T:=\left(T_{1}, \ldots, T_{d}\right)$ with $T_{j}: X \rightarrow X$ is called an (m, p)-isometry (or an (m, p)-isometric tuple) if, and only if, for given $m \in \mathbb{N}$ and $p \in(0, \infty)$,

$$
\begin{equation*}
\sum_{k=0}^{m}(-1)^{m-k}\binom{m}{k} \sum_{|\alpha|=k} \frac{k!}{\alpha!}\left\|T^{\alpha} x\right\|^{p}=0, \quad \forall x \in X \tag{1.1}
\end{equation*}
$$

Here, $\alpha:=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{N}^{d}$ is a multi-index, $|\alpha|:=\alpha_{1}+\cdots+\alpha_{d}$ the sum of its entries, $\frac{k!}{\alpha!}:=\frac{k!}{\alpha_{1}!\cdots \alpha_{d}!}$ a multinomial coefficient and $T^{\alpha}:=T_{1}^{\alpha_{1}} \cdots T_{d}^{\alpha_{d}}$, where $T_{j}^{0}:=I$ is the identity operator.

Tuples of this kind have been introduced by Gleason and Richter [9] on Hilbert spaces (for $p=2$) and have been further studied on general normed spaces in [7]. The tuple case generalises the single operator case, originating in the works of Richter [10] and Agler [1] in the 1980s and being comprehensively studied in the Hilbert space case by Agler and Stankus [2]; the single operator case on Banach spaces has been introduced in the case $p=2$ in [6] and [11] and in its general form by Bayart in [3]. We remark that boundedness, although usually assumed, is not essential for the definition of (m, p)-isometries, as shown by Bermúdez, Martinón and Müller in [4]. Boundedness does, however, play an important role in the theory of objects of the following kind:

Let $B(X)$ denote the algebra of bounded (i.e. continuous) linear operators on X. Equating sums over even and odd k and then considering $p \rightarrow \infty$ in (1.1), leads to

[^0]the definition of (m, ∞)-isometries (or (m, ∞)-isometric tuples). That is, a tuple of commuting, bounded linear operators $T \in B(X)^{d}$ is referred to as an (m, ∞)-isometry if, and only if, for given $m \in \mathbb{N}$ with $m \geqslant 1$,
\[

$$
\begin{equation*}
\max _{\substack{|\alpha|=0, \ldots, m \\|\alpha| \text { even }}}\left\|T^{\alpha} x\right\|=\max _{\substack{|\alpha|=0, \ldots, m \\|\alpha| \text { odd }}}\left\|T^{\alpha} x\right\|, \quad \forall x \in X \tag{1.2}
\end{equation*}
$$

\]

These tupes have been introduced in [7], with the definition of the single operator case appearing in [8]. Although, tuples containing unbounded operators satisfying (1.2) exist, several important statements on (m, ∞)-isometries require boundedness. Therefore, from now on, we will always assume the operators T_{1}, \ldots, T_{d} to be bounded.

In [7], the question is asked what necessary properties a commuting tuple $T \in$ $B(X)^{d}$ has to satisfy if it is both an (m, p)-isometry and a (μ, ∞)-isometry, where possibly $m \neq \mu$. In the single operator case this question is trivial and answered in [8]: If $T=T_{1}$ is a single operator, then the condition that T_{1} is an (m, p)-isometry is equivalent to the mappings $n \mapsto\left\|T_{1}^{n} x\right\|^{p}$ being polynomial of degree $\leqslant m-1$ for all $x \in X$. This has been already been observed for operators on Hilbert spaces in [9] and shown in the Banach space/normed space case in [8]; the necessity of the mappings $n \mapsto\left\|T_{1}^{n} x\right\|^{p}$ being polynomial has also been proven in [3] and [5]. On the other hand, in [8] it is shown that if a bounded operator $T=T_{1} \in B(X)$ is a (μ, ∞)-isometry, then the mappings $n \mapsto\left\|T_{1}^{n} x\right\|$ are bounded for all $x \in X$. The conclusion is obvious: if $T=T_{1} \in B(X)$ is both (m, p) and (μ, ∞)-isometric, then for all $x \in X$ the $n \mapsto\left\|T_{1}^{n} x\right\|^{p}$ are always constant and T_{1} has to be an isometry (and, since every isometry is (m, p) and (μ, ∞)-isometric, we have equivalence).

The situation is, however, far more difficult in the multivariate, that is, in the operator tuple case. Again, we have equivalence between $T=\left(T_{1}, \ldots, T_{d}\right)$ being an (m, p) isometry and the mappings $n \mapsto \sum_{|\alpha|=n} \frac{n!}{\alpha!}\left\|T^{\alpha} x\right\|^{p}$ being polynomial of degree $\leqslant m-1$ for all $x \in X$. The necessity part of this statement has been proven in the Hilbert space case in [9] and equivalence in the general case has been shown in [7]. On the other hand, one can show that if $T \in B(X)^{d}$ is a (μ, ∞)-isometry, then the families $\left(\left\|T^{\alpha} x\right\|\right)_{\alpha \in \mathbb{N}^{d}}$ are bounded for all $x \in X$, which has been proven in [7]. But this fact only implies that the polynomial growth of the $n \mapsto \sum_{|\alpha|=n} \frac{n!}{\alpha!}\left\|T^{\alpha} x\right\|^{p}$ has to caused by the factors $\frac{n!}{\alpha!}$ and does not immediately give us any further information about the tuple T.

There are several results in special cases proved in [7]. For instance, if a commuting tuple $T=\left(T_{1}, \ldots, T_{d}\right) \in B(X)^{d}$ is an (m, p)-isometry as well as a (μ, ∞)-isometry and we have $m=1$ or $\mu=1$ or $m=\mu=d=2$, then there exists one operator $T_{j_{0}} \in\left\{T_{1}, \ldots, T_{d}\right\}$ which is an isometry and the remaining operators T_{k} for $k \neq j_{0}$ are in particular nilpotent of order m. Although, we are not able to obtain such a results for general $m \in \mathbb{N}$ and $\mu, d \in \mathbb{N} \backslash\{0\}$, yet, we can prove a weaker property: In all proofs of the cases discussed in [7], the fact that the tuple $\left(T_{1}^{m}, \ldots, T_{d}^{m}\right)$ is a $(1, p)$-isometry is of critical importance (see the proofs of Theorem 7.1 and Proposition 7.3 in [7]). We will show in this paper that this fact holds in general for any tuple which is both (m, p)-isometric and (μ, ∞)-isometric, for general m, μ and d.

The notation we will be using is basically standard, with one possible exception: We will denote the tuple of $d-1$ operators obtained by removing one operator $T_{j_{0}}$
from $\left(T_{1}, \ldots, T_{d}\right)$ by $T_{j_{0}}^{\prime}$, that is $T_{j_{0}}^{\prime}:=\left(T_{1}, \ldots, T_{j_{0}-1}, T_{j_{0}+1}, \ldots, T_{d}\right) \in B(X)^{d-1}$ (not to be confused with the dual of the operator $T_{j_{0}}$, which will not appear in this paper). Analogously, we denote by $\alpha_{j_{0}}^{\prime}$ the multi-index obtained by removing $\alpha_{j_{0}}$ from $\left(\alpha_{1}, \ldots, \alpha_{d}\right)$. We will further use the notation $N\left(T_{j}\right)$ for the kernel (or nullspace) of an operator T_{j}.

2. Preliminaries

In this section, we introduce two needed definitions/notations and compile a number of propositions and theorems from [7], which are necessary for our considerations.

In the following, for $T \in B(X)^{d}$ and given $p \in(0, \infty)$, define for all $x \in X$ the sequences $\left(Q^{n, p}(T, x)\right)_{n \in \mathbb{N}}$ by

$$
\begin{equation*}
Q^{n, p}(T, x):=\sum_{|\alpha|=n} \frac{n!}{\alpha!}\left\|T^{\alpha} x\right\|^{p} \tag{2.1}
\end{equation*}
$$

Define further for all $\ell \in \mathbb{N}$ the mappings $P_{\ell}^{(p)}(T, \cdot): X \rightarrow \mathbb{R}$, by

$$
\begin{align*}
P_{\ell}^{(p)}(T, x) & :=\sum_{k=0}^{\ell}(-1)^{\ell-k}\binom{\ell}{k} Q^{k, p}(T, x) \\
& =\sum_{k=0}^{\ell}(-1)^{\ell-k}\binom{\ell}{k} \sum_{|\alpha|=k} \frac{k!}{\alpha!}\left\|T^{\alpha} x\right\|^{p} \tag{2.2}
\end{align*}
$$

It is clear that $T \in B(X)^{d}$ is an (m, p)-isometry if, and only if, $P_{m}^{(p)}(T, \cdot) \equiv 0$.
If the context is clear, we will simply write $P_{\ell}(x)$ and $Q^{n}(x)$ instead of $P_{\ell}^{(p)}(T, x)$ and $Q^{n, p}(T, x)$.

Further, for $n, k \in \mathbb{N}$, define the (descending) Pochhammer symbol $n^{(k)}$ as follows:

$$
n^{(k)}:= \begin{cases}0, & \text { if } k>n \\ \binom{n}{k} k!, & \text { else }\end{cases}
$$

Then $n^{(0)}=0^{(0)}=1$ and, if $n, k>0$ and $k \leqslant n$, we have

$$
n^{(k)}=n(n-1) \cdots(n-k+1)
$$

As mentioned above, a fundamental property of (m, p)-isometries is that their defining property can be expressed in terms of polynomial sequences.

THEOREM 2.1. ([7, Theorem 3.1]) $T \in B(X)^{d}$ is an (m, p)-isometry if, and only if, there exists a family of polynomials $f_{x}: \mathbb{R} \rightarrow \mathbb{R}, x \in X$, of degree $\leqslant m-1$ with $\left.f_{x}\right|_{\mathbb{N}}=\left(Q^{n}(x)\right)_{n \in \mathbb{N}} .{ }^{1}$

[^1]The following statement describes the Newton-form of the Lagrange-polynomial f_{x} interpolating $\left(Q^{n}(x)\right)_{n \in \mathbb{N}}$.

COROLLARY 2.2. ([7, Proposition 3.2.(i)]) Let $m \geqslant 1$ and $T \in B(X)^{d}$ be an (m, p)-isometry. Then we have for all $n \in \mathbb{N}$

$$
Q^{n}(x)=\sum_{k=0}^{m-1} n^{(k)}\left(\frac{1}{k!} P_{k}(x)\right), \forall x \in X
$$

Regarding (m, ∞)-isometries, we will need the following two statements. Theorem 2.4 is a combination of several fundamental properties of (m, ∞)-isometric tuples.

THEOREM 2.3. ([7, Corollary 5.1]) Let $T=\left(T_{1}, \ldots, T_{d}\right) \in B(X)^{d}$ be an (m, ∞) isometry. Then $\left(\left\|T^{\alpha} x\right\|\right)_{\alpha \in \mathbb{N}^{d}}$ is bounded, for all $x \in X$, and

$$
\max _{\alpha \in \mathbb{N}^{d}}\left\|T^{\alpha} x\right\|=\max _{|\alpha|=0, \ldots, m-1}\left\|T^{\alpha} x\right\|
$$

for all $x \in X$.
Theorem 2.4. ([7, Proposition 5.5, Theorem 5.1 and Remark 5.2])
Let $T=\left(T_{1}, \ldots, T_{d}\right) \in B(X)^{d}$ be an (m, ∞)-isometric tuple. Define the norm $|.|_{\infty}: X \rightarrow$ $[0, \infty)$ via $|x|_{\infty}:=\max _{\alpha \in \mathbb{N}^{d}}\left\|T^{\alpha} x\right\|$, for all $x \in X$, and denote

$$
X_{j,|\cdot| \infty}:=\left\{\left.x \in X| | x\right|_{\infty}=\left|T_{j}^{n} x\right|_{\infty} \text { for all } n \in \mathbb{N}\right\}
$$

Then

$$
X=\bigcup_{j=1, \ldots, d} X_{j\left|,| |_{\infty}\right.}
$$

(Note that, by Theorem 2.3, |. $\left.\right|_{\infty}=\|$.$\| if m=1$.)
We will also require a fundamental fact on tuples which are both (m, p) and (μ, ∞)-isometric and an (almost) immediate corollary.

LEMMA 2.5. ([7, Lemma 7.2]) Let $T=\left(T_{1}, \ldots, T_{d}\right) \in B(X)^{d}$ be an (m, p)-isometry as well as a (μ, ∞)-isometry. Let $\gamma=\left(\gamma_{1}, \ldots, \gamma_{d}\right) \in \mathbb{N}^{d}$ be a multi-index with the property that $\left|\gamma_{j}^{\prime}\right| \geqslant m$ for every $j \in\{1, \ldots, d\}$. Then $T^{\gamma}=0$.

Conversely, this implies that if an operator T^{α} is not the zero-operator, the multiindex α has to be of a specific form. The proof in [7] of the following corollary appears to be overly complicated, the statement is just the negation of the previous lemma.

COROLLARY 2.6. ([7, Corollary 7.1]) Let $T=\left(T_{1}, \ldots, T_{d}\right) \in B(X)^{d}$ be an $(m, p)-$ isometry for some $m \geqslant 1$ as well as a (μ, ∞)-isometry. If $\alpha \in \mathbb{N}^{d}$ is a multi-index with $T^{\alpha} \neq 0$ and $|\alpha|=n$, then there exists some $j_{0} \in\{1, \ldots, d\}$ with $T^{\alpha}=T_{j_{0}}^{n-\left|\alpha_{j_{0}}^{\prime}\right|}\left(T_{j_{0}}^{\prime}\right)^{\alpha_{j_{0}}^{\prime}}$ and $\left|\alpha_{j_{0}}^{\prime}\right| \leqslant m-1$.

This fact has consequences for the appearance of elements of the sequences $\left(Q^{n}(x)\right)_{n \in \mathbb{N}}$, since several summands become zero for large enough n. That is, we have trivially by definition (2.1) of $\left(Q^{n}(x)\right)_{n \in \mathbb{N}}$:

COROLLARY 2.7. (see [7, proof of Theorem 7.1]) Let $T=\left(T_{1}, \ldots, T_{d}\right) \in B(X)^{d}$ be an (m, p)-isometry for some $m \geqslant 1$ as well as a (μ, ∞)-isometry. Then, for all $n \in \mathbb{N}$ with $n \geqslant 2 m-1$, we have

$$
Q^{n}(x)=\sum_{\substack{\beta \in \mathbb{N}^{d-1} \\|\beta|=0, \ldots, m-1}} \sum_{j=1}^{d} \frac{n!}{(n-|\beta|)!\beta!}\left\|T_{j}^{n-|\beta|}\left(T_{j}^{\prime}\right)^{\beta} x\right\|^{p}, \quad \forall x \in X
$$

where $\frac{n!}{(n-|\beta|)!\beta!}=\frac{n^{(|\beta|)}}{\beta!}$. (We set $n \geqslant 2 m-1$ to ensure that every multi-index only appears once.)

3. The main result

We first present the main result of this article, which is a generalisation of [7, Proposition 7.3], before stating a preliminary lemma needed for its proof.

THEOREM 3.1. Let $T=\left(T_{1}, \ldots, T_{d}\right) \in B(X)^{d}$ be an (m, p)-isometric as well a (μ, ∞)-isometric tuple. Then
(i) the sequences $n \mapsto\left\|T_{j}^{n} x\right\|$ become constant for $n \geqslant m$, for all $j \in\{1, \ldots, d\}$, for all $x \in X$.
(ii) the tuple $\left(T_{1}^{m}, \ldots, T_{d}^{m}\right)$ is a $(1, p)$-isometry, that is

$$
\sum_{j=1}^{d}\left\|T_{j}^{m} x\right\|^{p}=\|x\|^{p}, \quad \forall x \in X
$$

(iii) for any $\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{N}^{d}$ with $n_{j} \geqslant m$ for all j, the operators $\sum_{j=1}^{d} T_{j}^{n_{j}}$ are isometries, that is

$$
\left\|\sum_{j=1}^{d} T_{j}^{n_{j}} x\right\|=\|x\|, \quad \forall x \in X
$$

Of course, (i) and (ii) imply that, for any $\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{N}^{d}$ with $n_{j} \geqslant m$ for all j,

$$
\sum_{j=1}^{d}\left\|T_{j}^{n_{j}} x\right\|^{p}=\|x\|^{p}, \quad \forall x \in X
$$

Theorem 3.1 is a consequence of the following lemma, which is a weaker version of 3.1.(i).

LEMMA 3.2. Let $T=\left(T_{1}, \ldots, T_{d}\right) \in B(X)^{d}$ be an (m, p)-isometric as well as a (μ, ∞)-isometric tuple. Let further $\kappa \in \mathbb{N}^{d-1}$ be a multi-index with $|\kappa| \geqslant 1$. Then the mappings

$$
n \mapsto\left\|T_{j}^{n}\left(T_{j}^{\prime}\right)^{\kappa} x\right\|
$$

become constant for $n \geqslant m$, for all $j \in\{1, \ldots, d\}$, for all $x \in X$.

Proof. If $m=0$, then $X=\{0\}$ and if $m=1$, the statement holds trivially, since $T_{j} T_{i}=0$ for all $i \neq j$ by Lemma 2.5. So assume $m \geqslant 2$. Further, it clearly suffices to consider $|\kappa|=1$, since the statement then holds for all $x \in X$. The proof, however, works by proving the theorem for $|\kappa| \in\{1, \ldots, m-1\}$ in descending order. (Note that the case $|\kappa| \geqslant m$ is also trivial, again by Lemma 2.5.)

Now fix an arbitrary $j_{0} \in\{1, \ldots, d\}$, let $\kappa \in \mathbb{N}^{d-1}$ with $|\kappa| \in\{1, \ldots, m-1\}$ and set $\ell:=m-|\kappa|$. Then $\ell \in\{1, \ldots, m-1\}$ and $|\kappa|=m-\ell$. We apply Lemma 2.5 to $Q^{k}\left(T_{j_{0}}^{m}\left(T_{j_{0}}^{\prime}\right)^{\kappa} x\right)$.

By definition (2.1),

$$
\begin{align*}
& Q^{k}\left(T_{j_{0}}^{m}\left(T_{j_{0}}^{\prime}\right)^{\kappa} x\right)=\sum_{|\alpha|=k} \frac{k!}{\alpha!}\left\|T^{\alpha}\left(T_{j_{0}}^{m}\left(T_{j_{0}}^{\prime}\right)^{\kappa} x\right)\right\|^{p} \\
& =\left\|T_{j_{0}}^{k}\left(T_{j_{0}}^{m}\left(T_{j_{0}}^{\prime}\right)^{\kappa} x\right)\right\|^{p}+\sum_{j=1}^{k} \sum_{\substack{ \\
|\beta|=\mathbb{N}^{d-1}}} \frac{k!}{(k-j)!\beta!}\left\|T_{j_{0}}^{k-j}\left(T_{j_{0}}^{\prime}\right)^{\beta}\left(T_{j_{0}}^{m}\left(T_{j_{0}}^{\prime}\right)^{\kappa} x\right)\right\|^{p} \\
& \stackrel{2.5}{=}\left\|T_{j_{0}}^{m+k}\left(T_{j_{0}}^{\prime}\right)^{\kappa} x\right\|^{p}+\sum_{j=1}^{\min \{k, \ell-1\}} \sum_{\substack{\beta \in \mathbb{N}^{d-1} \\
|\beta|=j}} \frac{k!}{(k-j)!\beta!}\left\|T_{j_{0}}^{m+k-j}\left(T_{j_{0}}^{\prime}\right)^{\kappa+\beta} x\right\|^{p} \\
& =\left\|T_{j_{0}}^{m+k}\left(T_{j_{0}}^{\prime}\right)^{\kappa} x\right\|^{p}+\sum_{j=1}^{\ell-1} k^{(j)} \sum_{\substack{\beta \in \mathbb{N}^{d-1} \\
|\beta|=j}} \frac{1}{\beta!}\left\|T_{j_{0}}^{m+k-j}\left(T_{j_{0}}^{\prime}\right)^{\kappa+\beta} x\right\|^{p}, \tag{3.1}
\end{align*}
$$

for all $k \in \mathbb{N}$, for all $x \in X$. Here, in the last line, we utilise the fact that $k^{(j)}=0$ if $j>k$.

We now prove our statement by (finite) induction on ℓ.
$\ell=1:$
For $\ell=1$ and $|\kappa|=m-1$, we have, by (3.1),

$$
Q^{k}\left(T_{j_{0}}^{m}\left(T_{j_{0}}^{\prime}\right)^{\kappa} x\right)=\left\|T_{j_{0}}^{m+k}\left(T_{j_{0}}^{\prime}\right)^{\kappa} x\right\|^{p}, \quad \forall k \in \mathbb{N}, \forall x \in X
$$

Since we know by Theorem 2.1 that the sequences $k \mapsto Q^{k}\left(T_{j_{0}}^{m}\left(T_{j_{0}}^{\prime}\right)^{\kappa} x\right)$ are polynomial for all $x \in X$, and by Theorem 2.3 that the $k \mapsto\left\|T_{j_{0}}^{m+k}\left(T_{j_{0}}^{\prime}\right)^{\kappa} x\right\|^{p}$ are bounded for
all $x \in X$, it follows that

$$
n \mapsto\left\|T_{j_{0}}^{n}\left(T_{j_{0}}^{\prime}\right)^{\kappa} x\right\|
$$

become constant for $n \geqslant m$, for all $x \in X$.
Since $\ell \in\{1, \ldots, m-1\}$, if we have $m=2$, we are already done. So assume in the following that $m \geqslant 3$.

$$
\ell \rightarrow \ell+1:
$$

Assume that the statement holds for some $\ell \in\{1, \ldots, m-2\}$. That is, for all $\kappa \in \mathbb{N}^{d-1}$ with $|\kappa|=m-\ell$ the sequences

$$
n \mapsto\left\|T_{j_{0}}^{n}\left(T_{j_{0}}^{\prime}\right)^{\kappa}{ }_{x}\right\|
$$

become constant for $n \geqslant m$, for all $x \in X$.
Now take a multi-index $\tilde{\kappa} \in \mathbb{N}^{d-1}$ with $|\tilde{\kappa}|=m-(\ell+1)$ and consider

$$
Q^{k}\left(T_{j_{0}}^{m}\left(T_{j_{0}}^{\prime}\right)^{\tilde{\kappa}} x\right)=\left\|T_{j_{0}}^{m+k}\left(T_{j_{0}}^{\prime}\right)^{\tilde{\kappa}} x\right\|^{p}+\sum_{j=1}^{\ell} k^{(j)} \sum_{\substack{\beta \in \mathbb{N}^{d-1} \\|\beta|=j}} \frac{1}{\beta!}\left\|T_{j_{0}}^{m+k-j}\left(T_{j_{0}}^{\prime}\right)^{\tilde{\kappa}+\beta} x\right\|^{p}
$$

(Where we are now summing over all j running from 1 to $(\ell+1)-1=\ell$.)
Since $|\beta| \geqslant 1$, we have $|\tilde{\kappa}+\beta| \geqslant m-\ell$. Hence, if $k \geqslant j$, by our induction assumption,

$$
\left\|T_{j_{0}}^{m+k-j}\left(T_{j_{0}}^{\prime}\right)^{\tilde{\kappa}+\beta} x\right\|^{p}=\left\|T_{j_{0}}^{m}\left(T_{j_{0}}^{\prime}\right)^{\tilde{\kappa}+\beta} x\right\|^{p}, \quad \forall x \in X
$$

since $n \mapsto\left\|T_{j_{0}}^{n}\left(T_{j_{0}}^{\prime}\right)^{\tilde{\kappa}+\beta} x\right\|$ become constant for $n \geqslant m$.
Hence, we have, for all $x \in X$,

$$
\begin{equation*}
Q^{k}\left(T_{j_{0}}^{m}\left(T_{j_{0}}^{\prime}\right)^{\tilde{\kappa}} x\right)=\left\|T_{j_{0}}^{m+k}\left(T_{j_{0}}^{\prime}\right)^{\tilde{\kappa}} x\right\|^{p}+\sum_{j=1}^{\ell} k^{(j)} \sum_{\substack{\beta \in \mathbb{N}^{d-1} \\|\beta|=j}} \frac{1}{\beta!}\left\|T_{j_{0}}^{m}\left(T_{j_{0}}^{\prime}\right)^{\tilde{\kappa}+\beta} x\right\|^{p} \tag{3.2}
\end{equation*}
$$

That is, for all $x \in X$, the sequences $k \mapsto Q^{k}\left(T_{j_{0}}^{m}\left(T_{j_{0}}^{\prime}\right)^{\tilde{\kappa}} x\right)$ become almost polynomial (of degree $\leqslant \ell$), with the term $\left\|T_{j_{0}}^{m+k}\left(T_{j_{0}}^{\prime}\right)^{\tilde{\kappa}} x\right\|^{p}$ instead of a (constant) trailing coefficient.

But, as before, by Theorem 2.1, we know that for any $x \in X$, the sequences $k \mapsto Q^{k}\left(T_{j_{0}}^{m}\left(T_{j_{0}}^{\prime}\right)^{\tilde{\kappa}} x\right)$ are indeed polynomial. Through Corollary 2.2 we know that their trailing coefficients are $\left\|T_{j_{0}}^{m}\left(T_{j_{0}}^{\prime}\right)^{\tilde{\kappa}} x\right\|^{p}$. Since, by Theorem 2.3, for each $x \in X$, the sequences $k \mapsto\left\|T_{j_{0}}^{m+k}\left(T_{j_{0}}^{\prime}\right)^{\tilde{\kappa}} x\right\|^{p}$ are bounded, we can successively compare and
remove coefficients of the formulae for $Q_{k}\left(T_{j_{0}}^{m}\left(T_{j_{0}}^{\prime}\right)^{\tilde{\kappa}} x\right)$ as given through Corollary 2.2 and (3.2), until we eventually obtain that

$$
\left\|T_{j_{0}}^{m+k}\left(T_{j_{0}}^{\prime}\right)^{\tilde{\kappa}} x\right\|^{p}=\left\|T_{j_{0}}^{m}\left(T_{j_{0}}^{\prime}\right)^{\tilde{\kappa}} x\right\|^{p}
$$

for all $k \in \mathbb{N}$, for all $x \in X$. That is, the sequences

$$
n \mapsto\left\|T_{j_{0}}^{n}\left(T_{j_{0}}^{\prime}\right)^{\tilde{\kappa}} x\right\|
$$

become constant for $n \geqslant m$, for all $x \in X$. This concludes the induction step and the proof.

We can now prove the main result.
Proof of Theorem 3.1. By Corollary 2.7 and the lemma above, we have for $n \geqslant$ $2 m-1$,

$$
\begin{align*}
Q^{n}(x) & =\sum_{\substack{\beta \in \mathbb{N}^{d-1} \\
|\beta|=0, \ldots, m-1}} n^{(|\beta|)} \sum_{j=1}^{d} \frac{1}{\beta!}\left\|T_{j}^{n-|\beta|}\left(T_{j}^{\prime}\right)^{\beta} x\right\|^{p} \\
& =\sum_{\substack{\beta \in \mathbb{N}^{d-1} \\
|\beta|=1, \ldots, m-1}} n^{(|\beta|)} \sum_{j=1}^{d} \frac{1}{\beta!}\left\|T_{j}^{m}\left(T_{j}^{\prime}\right)^{\beta} x\right\|^{p}+\sum_{j=1}^{d}\left\|T_{j}^{n} x\right\|^{p}, \quad \forall x \in X . \tag{3.3}
\end{align*}
$$

That is, for all $x \in X$, for $n \geqslant 2 m-1$, the sequences $n \mapsto Q^{n}(x)$ become almost polynomial (of degree $\leqslant m-1$), with the term $\sum_{j=1}^{d}\left\|T_{j}^{n} x\right\|^{p}$ instead of a (constant) trailing coefficient.

Again, by Theorem 2.1, we know that for any $x \in X$, the sequences $n \mapsto Q^{n}(x)$ are indeed polynomial. And since, by Theorem 2.3, for each $x \in X$, the sequences $n \mapsto$ $\sum_{j=1}^{d}\left\|T_{j}^{n} x\right\|^{p}$ are bounded, we can again successively compare and remove coefficients of the formulae for $Q_{n}(x)$ as given in Corollary 2.2 and (3.3), until we eventually obtain that

$$
\begin{equation*}
\sum_{j=1}^{d}\left\|T_{j}^{n} x\right\|^{p}=\|x\|^{p}, \quad \forall x \in X, \forall n \geqslant 2 m-1 \tag{3.4}
\end{equation*}
$$

Since $T_{i}^{m} T_{j}^{m}=0$ for all $i \neq j$, by Lemma 2.5, replacing x by $T_{j}^{v} x$ with $v \geqslant m$ in this last equation, gives $\left\|T_{j}^{v} x\right\|=\left\|T_{j}^{n+v} x\right\|$ for all $n \geqslant 2 m-1$, for all $x \in X$. Hence, the sequences $n \mapsto\left\|T_{j}^{n} x\right\|$ become constant for $n \geqslant m$, for all $j \in\{1, \ldots, d\}$, for all $x \in X$. This is 3.1.(i).

But then, (3.4) becomes

$$
\sum_{j=1}^{d}\left\|T_{j}^{m} x\right\|^{p}=\|x\|^{p}, \quad \forall x \in X
$$

This is 3.1.(ii).

Now take any $\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{N}^{d}$ with $n_{j} \geqslant m$ for all j and replace x in the equation above by $\sum_{j=1}^{d} T_{j}^{n_{j}}$. Then, again, since $T_{i}^{m} T_{j}^{m}=0$ for $i \neq j$, and since $n \mapsto\left\|T_{j}^{n} x\right\|$ become constant for $n \geqslant m$,

$$
\sum_{j=1}^{d}\left\|T_{j}^{m+n_{j}} x\right\|^{p}=\sum_{j=1}^{d}\left\|T_{j}^{m} x\right\|^{p}=\left\|\sum_{j=1}^{d} T_{j}^{n_{j}} x\right\|^{p}, \forall x \in X
$$

Together with 3.1.(i), this implies 3.1.(iii).
It is not hard to see that we actually have a stronger result in some special cases.
Corollary 3.3. Let $T=\left(T_{1}, \ldots, T_{d}\right) \in B(X)^{d}$ be an (m, p)-isometric as well a (μ, ∞) -isometric tuple.
(i) If one of the operators $T_{j_{0}} \in\left\{T_{1}, \ldots, T_{d}\right\}$ is surjective, then $T_{j_{0}}$ is actually an isometric isomorphism and the remaining operators are nilpotent of order m.
(ii) If one of the operators $T_{j_{0}} \in\left\{T_{1}, \ldots, T_{d}\right\}$ is injective, then $T_{j_{0}}^{m}$ is an isometry and the remaining operators are nilpotent of order m.

Proof. (i): If one $T_{j_{0}}$ is surjective, then $T_{j_{0}}^{m}$ is surjective and, since $\left\|T_{j_{0}}^{m} x\right\|=$ $\left\|T_{j_{0}}^{m+1} x\right\|$ by Theorem 3.1.(i), $T_{j_{0}}$ is isometric. The nilpotency of the remaining operators follows from 3.1.(ii).
(ii): If one $T_{j_{0}}$ is injective, then $T_{j_{0}}^{m}$ is injective. Since Lemma 2.5 states that, in particular, $T_{j_{0}}^{m} T_{i}^{m}=0$ for all $i \neq j_{0}$, we must have $T_{i}^{m}=0$ for all $i \neq j_{0}$. Then $T_{j_{0}}^{m}$ is an isometry by 3.1.(ii).

With respect to part (ii) note that while, by definition of an (m, p)-isometry, we must have $\bigcap_{j=1}^{d} N\left(T_{j}\right)=\{0\}$, it is not clear that the kernel of a single operator has to be trivial.

4. Some further remarks and the case $d=2$

We finish this note with a stronger result for the case of a commuting pair $\left(T_{1}, T_{2}\right) \in$ $B(X)^{2}$. We first state the following two easy corollaries of Theorem 3.1 which hold for general d.

Corollary 4.1. Let $T=\left(T_{1}, \ldots, T_{d}\right) \in B(X)^{d}$ be an (m, p)-isometry as well as a (μ, ∞)-isometry. Then $T_{j}^{m}=0$ or $\left\|T_{j}^{m}\right\|=1$ for any $j \in\{1, \ldots, d\}$.

Proof. By Theorem 3.1.(ii) we have $\left\|T_{j}^{m}\right\| \leqslant 1$ for any j. On the other hand, by 3.1.(i) we have

$$
\left\|T_{j}^{m} x\right\|=\left\|T_{j}^{m+1} x\right\| \leqslant\left\|T_{j}^{m}\right\| \cdot\left\|T_{j}^{m} x\right\|, \quad \forall x \in X,
$$

for any j. That is, $T_{j}^{m}=0$ or $\left\|T_{j}^{m}\right\| \geqslant 1$.

LEMMA 4.2. Let $T=\left(T_{1}, \ldots, T_{d}\right) \in B(X)^{d}$ be an (m, p)-isometry as well as a (μ, ∞)-isometry. Define $|\cdot|_{\infty}: X \rightarrow[0, \infty)$ and $X_{j,|\cdot|}^{\infty}$ as in Theorem 2.4. Then

$$
\begin{gathered}
X_{j,|\cdot| \infty}=\left\{x \in X \mid \exists \alpha(x) \in \mathbb{N}^{d} \text {, s.th. }|\alpha(x)| \leqslant \mu-1\right. \text { and } \\
\left.|x|_{\infty}=\left\|T_{j}^{n}\left(T_{j}^{\prime}\right)^{\alpha_{j}^{\prime}(x)} x\right\|, \forall n \in \mathbb{N}\right\} .
\end{gathered}
$$

Proof. By Theorem 2.3 we know that for every $x \in X$, there exists an $\alpha(x) \in \mathbb{N}^{d}$ with $\max _{\alpha \in \mathbb{N}^{d}}\left\|T^{\alpha} x\right\|=\left\|T^{\alpha(x)} x\right\|$ and $|\alpha(x)| \leqslant \mu-1$.

Then $x \in X_{j,| |_{\infty}}$ if, and only if, for all $n \in \mathbb{N}$, there exists an $\alpha(x, n) \in \mathbb{N}^{d}$ with $|\alpha(x, n)| \leqslant \mu-1$ s.th. $|x|_{\infty}=\left\|T_{j}^{n} T^{\alpha(x, n)} x\right\|$. Hence, the inclusion " \supset " is clear.

To show " \subset " let $0 \neq x \in X_{j,| |_{\infty}}$. Then $T_{j}^{m} \neq 0$ and, hence, $\left\|T_{j}^{m}\right\|=1$.
Since $|\alpha(x, n)| \leqslant \mu-1$ for all $n \in \mathbb{N}$, there are only finitely many choices for each $\alpha(x, n)$. Thus, there exists an $\alpha(x) \in \mathbb{N}^{d}$ and an infinite set $M(x) \subset \mathbb{N}$ s.th.

$$
|x|_{\infty}=\left\|T_{j}^{n} T^{\alpha(x)} x\right\|, \forall n \in M(x)
$$

By Theorem 3.1.(i), $M(x)$ contains all $n \geqslant m$ and further,

$$
\left\|T_{j}^{n} T^{\alpha(x)} x\right\|=\left\|T_{j}^{n}\left(T_{j}^{\prime}\right)^{\alpha_{j}^{\prime}(x)} x\right\|, \text { for all } n \geqslant m
$$

Since $\left\|T_{j}^{m}\right\|=1$, the statement holds for all $n \in \mathbb{N}$.
Proposition 4.3. Let $T=\left(T_{1}, T_{2}\right) \in B(X)^{2}$ be both an (m, p)-isometric and a (μ, ∞)-isometric pair. Then T_{1}^{m} is an isometry and $T_{2}^{m}=0$ or vice versa.

Proof. By Theorem 2.4, we have $X=X_{1,|\cdot|_{\infty}} \cup X_{2, \mid \|_{\infty}}$.
Let $x_{1} \in X_{1,| |_{\infty}}$. Then, by the previous lemma, there exists an $\alpha_{2}\left(x_{1}\right) \in \mathbb{N}$ with $\alpha_{2}\left(x_{1}\right) \leqslant \mu-1$ s.th. $\left|x_{1}\right|_{\infty}=\left\|T_{1}^{n} T_{2}^{\alpha_{2}\left(x_{1}\right)} x_{1}\right\|$ for all $n \in \mathbb{N}$.

Furthermore, we have $\|x\|^{p}=\left\|T_{1}^{m} x\right\|^{p}+\left\|T_{2}^{m} x\right\|^{p}$, for all $x \in X$, by Theorem 3.1.(ii). Replacing x by $T_{2}^{\alpha_{2}\left(x_{1}\right)} x_{1}$ gives

$$
\begin{aligned}
\left\|T_{2}^{\alpha_{2}\left(x_{1}\right)} x_{1}\right\|^{p} & =\left\|T_{1}^{m} T_{2}^{\alpha_{2}\left(x_{1}\right)} x_{1}\right\|^{p}+\left\|T_{2}^{m+\alpha_{2}\left(x_{1}\right)} x_{1}\right\|^{p} \\
\Leftrightarrow\left\|T_{2}^{\alpha_{2}\left(x_{1}\right)} x_{1}\right\|^{p} & =\left|x_{1}\right|_{\infty}^{p}+\left\|T_{2}^{m} x_{1}\right\|^{p} .
\end{aligned}
$$

This implies $\left\|T_{2}^{\alpha_{2}\left(x_{1}\right)} x_{1}\right\|=\left|x_{1}\right|_{\infty}$ and, moreover, $\left\|T_{2}^{m} x_{1}\right\|=0$.
An analogous argument shows that $X_{2,| | \infty} \subset N\left(T_{1}^{m}\right)$. Hence,

$$
X=N\left(T_{1}^{m}\right) \cup N\left(T_{2}^{m}\right)
$$

which forces $T_{1}^{m}=0$ or $T_{2}^{m}=0$. The statement follows from $\|x\|^{p}=\left\|T_{1}^{m} x\right\|^{p}+$ $\left\|T_{2}^{m} x\right\|^{p}$, for all $x \in X$.

REFERENCES

[1] J. AGLER, A disconjugacy theorem for Toeplitz operators, Am. J. Math. 112 (1) (1990), 1-14.
[2] J. Agler and M. Stankus, m-isometric transformations of Hilbert space, I, Integr. equ. oper. theory 21 (4) (1995), 383-429.
[3] F. BAYART, m-Isometries on Banach Spaces, Mathematische Nachrichten 284 (17-18) (2011), 21412147.
[4] T. Bermúdez, A. Martinón and V. Müller, (m, q)-isometries on metric spaces, J. Operator Theory 72 (2) (2014), 313-329.
[5] T. Bermúdez, A. Martinón and E. Negrín, Weighted Shift Operators Which are m-Isometries, Integr. equ. oper. theory 68 (3) (2010), 301-312.
[6] F. Botelho, On the existence of n-isometries on ℓ_{p} spaces, Acta Sci. Math. (Szeged) 76 (1-2) (2010), 183-192.
[7] P. H. W. Hoffmann and M. Mackey, (m, p) -isometric and (m, ∞) -isometric operator tuples on normed spaces, Asian-Eur. J. Math. 8 (2) (2015).
[8] P. Hoffmann, M. Mackey and M. Ó Searcóid, On the Second Parameter of an (m, p) Isometry, Integr. equ. oper. theory 71 (3) (2011), 389-405.
[9] J. Gleason and S. Richter, m-Isometric Commuting Tuples of Operators on a Hilbert Space, Integr. equ. oper. theory 56 (2) (2006), 181-196.
[10] S. Richter, Invariant subspaces of the Dirichlet shift, J. reine angew. Math. 386 (1988), 205-220.
[11] O. A. Sid Ahmed, m-isometric Operators on Banach Spaces, Asian-Eur. J. Math. 3 (1) (2010), 1-19.

[^0]: Mathematics subject classification (2010): 47B99, 05A10.
 Keywords and phrases: Operator tuple, normed space, Banach space, m-isometry, (m, p) -isometry, (m, ∞) -isometry.

[^1]: ${ }^{1}$ Set $\operatorname{deg} 0:=-\infty$ to account for the case $m=0$.

