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HYPONORMAL TOEPLITZ OPERATORS ON THE BERGMAN SPACE

HOUCINE SADRAOUI AND MOHAMED GUEDIRI

(Communicated by R. Curto)

Abstract. A Hilbert space operator is hyponormal if T ∗T − TT ∗ is positive. We consider hy-
ponormality of Toeplitz operators on the Bergman space with a symbol in the class of f + g
where f is a monomial and g is a polynomial. We give sufficient conditions for hyponormality
in this case.

1. Introduction

Let U denote the unit disk, dA the area measure on the plane. The Bergman
space L2

a is the Hilbert space of analytic functions on U such that
∫
U | f |2dA < ∞ and

L∞(U) is the space of bounded measurable functions on U . If P denotes the orthogonal
projection of L2(U,dA) onto L2

a , the Toelpitz operators on the Bergman space are
defined by Tf (k) = P( f k) for f bounded measurable and k in L2

a. Hankel operators on
the Bergman space are defined by Hf (k) = (I −P)( f k) where f and k are as before.
Basic properties of the Bergman space and their operators can be found in [16]. In this
work we consider the hyponormality of Toeplitz operators on the Bergman space. More
specifically we give sufficient conditions for hyponormality of Toeplitz operators with
a symbol of the form f + g where f is a monomial and g is a polynomial. We begin
by recalling some general properties relevant to our problem.

2. Some general properties

We list some well known properties of Topeplitz operators on the Bergman space
(see [2], [3], [16]).

We assume f ,g are in L∞(U). Then we have
1) Tf+g = Tf +Tg

2) T ∗
f = Tf

3) Tf Tg = Tfg if f or g analytic
Using these properties enables us to describe hyponormality in more than one

form.
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PROPOSITION 1. Let f ,g be bounded and analytic on U . Then the following are
equivalent

i) Tf+g is hyponormal
ii) H∗

gHg � H∗
f
Hf

iii) ||(I−P)(gk)|| � ||(I−P)( f k)|| for any k in L2
a

iv) ||gk||2 −||P(gk)||2 � || f k||2 −||P( f k)||2 for any k in L2
a

v) Hg = KHf where K is of norm less than or equal to one.

Proof. Only ii)⇒ v) needs to be proved and this is a well known lemma ([8]). �
The following lemma is needed. We will omit its proof ([15]).

LEMMA 2. Let f =
∞
∑
0
anzn be bounded and analytic on U. The matrix of the

operator H∗
f
Hf with respect to orthonormal basis

{√
n+1zn,n � 0

}
is given by:

λi, j = ∑am+i− jam
m� j−i

m�0

√
i+1

√
j +1

i+m+1
− ∑

i− j�m�i
0�m

amam+ j−i
i−m+1√
i+1

√
j +1

LEMMA 3. The matrix of H∗
zq

Hzq , where q is a positive integer, is a diagonal

matrix where the diagonal term is given by: Di,i =

⎧⎨⎩
i+1

i+q+1 if q > i

q2

(i+q+1)(i+1) if q � i
.

3. The results

In this section we give sufficient conditions for hyponormality. We set E = H∗
gHg

and C = H∗
zq

H , where g is bounded analytic on U and q a positive integer.

LEMMA 4. If ||C−1/2EC−1/2|| � 1 then Tzq+g is hyponormal.

Proof. Note that C is a positive operator and has a square root and E is a positive
operator. So formally C−1/2EC−1/2 exists as a possibly unbounded positive operator.
Moreover ||C−1/2EC−1/2|| � 1 leads to C−1/2EC−1/2 � I which implies E � C and
thus Tzq+g is hyponormal by ii) of proposition1. �

In what follows we set g =
r
∑
q

αnzn . We will show the following theorem:

THEOREM 5. If |g′| � 1 on ∂U then Tzq+g is hyponormal.

The plan of the proof of the theorem is as follows: we set A = C−1/2EC−1/2.
By the previous lemma it is enough to show ‖A‖ � 1. We define an operator G (a
modification of A) the norm of which can be estimated. Under the assumption of
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positivity of G we show that |g′| � 1 on ∂U implies ‖G‖ � 1/q2. Then we define an
operator G′ (a finite rank perturbation of G) which satisfies A � G′. From the definition
of G′ and the previous inequality we will deduce the positivity of G and the estimate
‖G′‖ � 1. This leads to hyponormality by the previous lemma.

The proofs rely on matrices. We begin by recalling that the matrix of A is given
by ai, j = did jλi, j where di = 1√

Di,i
and λi, j is as in Lemma2. From the expression of

λi, j we get

ai,i+p =

⎛⎜⎝ r

∑
m�p+q

αm−pαm

√
i+1

√
i+ p+1

i+m+1
−

r−p

∑
m�q
i�m

αmαm+p
i−m+1√

i+1
√

i+ p+1

⎞⎟⎠didi+p

(1)
where p � r−q (a banded matrix of band width 2(r−q)+1) .

LEMMA 6. For i � r− p we have:

ai,i+p =
1
q2

r

∑
l�p+q

αl−pαl(l− p)l
√

i+q+1
√

i+ p+q+1
i+ l +1

.

Proof. In this case
r−p
∑

m�q
i�m

αmαm+p
i−m+1√

i+1
√

i+p+1
=

r
∑

l�p+q
αl−pαl

i−l+p+1√
i+1

√
i+p+1

(set m =

l− p ). Now set m = l in the first sum in (1) and compute. �
Define G to be the operator with matrix

bi,i+p =
1
q2

r

∑
l�p+q

αl−pαl(l− p)l
√

i+q+1
√

i+ p+q+1
i+ l +1

, i � 0

and bi+p,i = bi,i+p (a banded matrix with bandwidth 2(r−q)+1).
Notice that for i � r− p we have ai,i+p = bi,i+p . To obtain an estimate of ‖G‖ the

following partially defined matrices (assume all are n×n with n � r ) will be needed.
Define M1 as follows:

m1
i,i+p =

1
q2

√
i+q+1

√
i+ p+q+1

i+ p+q+1
,

m1
i+p,i = m1

i,i+p

where 0 � p � r−q (a banded matrix of band width 2(r−q)+1).
For 2 � s � r−q+1 define Ms as follows:

ms
i,i+p =

1
q2

(√
i+q+1

√
i+ p+q+1

i+ p+q+ s−1
−

√
i+q+1

√
i+ p+q+1

i+ p+q+ s

)
,

ms
i+p,i = ms

i,i+p
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where 0 � p � r−q− s+1 (a banded matrix of band width 2(r−q− s+1)+1).
Note that Mr−q+1 is a diagonal matrix. To find positive extensions of the matrices

Ms (1 � s � r− q+ 1) we need a slight generalization of a theorem of Dym and Go-
hberg ([11], Theorem 6.1) on positive definite extensions of partially defined matrices.

LEMMA 7. Suppose the entries bi, j for |i− j|� k are specified in an n×n matrix
B (n � k + 2) and suppose that every principal (k + 1)× (k + 1) submatrix of B is
positive then there is a positive matrix B̃ such that b̃i, j = bi, j for |i− j| � k.

Using this lemma we can find extensions of the matrices Ms.

LEMMA 8. For 1 � s � r−q+1, the matrix Ms has a positive extension M̃s.

Proof. By the previous lemma it is enough to show that the principal submatices
are positive. First we consider the case s = 1.

For any (r−q+1)× (r−q+1) principal submatrix of M1, denoted by Mc
1, we

can write Mc
1 = L1 ◦F1 where ◦ is the Hadamard product of matrices and L1 and F1

defined as follows:

L1(i, i+ p) =
1

q2(i+ p+q+1)
, 0 � p � r−q

L1(i+ p, i) = L1(i, i+ p), i0 � i � i0 + r−q.

The (r−q+1)× (r−q+1) matrix F1 is given by:

F1(i, i+ p) =
√

i+q+1.
√

i+ p+q+1

F1(i+ p, i) = F1(i, i+ p), p � r−q, i0 � i � i0 + r−q

where i0 is the index of the first element on the diagonal of Mc
1. Clearly L1 is an

L -shaped matrix, so by [13, Lemma 4] L1 is positive. F1 is of rank one and in fact

we have F1 = X1X∗
1 where X1 is the (r−q+1)×1 matrix X1 =

⎛⎜⎝
√

i0+q+1
...√

i0+r+1

⎞⎟⎠ , so Mc
1

as a Hadamard product of positive matrices, is positive [13, Theorem 7.5.3 p. 458].
For 1 < s � r−q+1 one can write for any (r−q− s+2)× (r−q− s+2) principal
submatrix of Ms an equality similar to the case s = 1, Mc

s = Ls ◦Fs where

Ls(i, i+ p) =
1

q2(i+ p+q+ s)(i+ p+q+ s−1)
Ls(i+ p, i) = Ls(i, i+ p), i0 � i � i0 + r−q− s+1

where i0 is as defined before. Ls is a Hadamard product of two L -shaped matrices so
it is positive. Fs = XsX∗

s where Xs is the (r− q− s + 2)× 1 matrix given by: Xs =⎛⎜⎝
√

i0+q+1
...√

i0+r−s+2

⎞⎟⎠ and the rest of the argument is similar to the case s = 1. �
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The following computational lemma will be needed in the sequel.

LEMMA 9. Given two sets of complex numbers {Al,u � l � v} and {Bl,u � l
� v} where u,v are fixed integers such that 1 � u � v the following equality holds:

v

∑
u

AlBl = Au

v

∑
u

Bl −
v−1

∑
u

(Al −Al+1)(
m=v

∑Bm
m=l+1

).

The matrix of the Toeplitz operator on the Hardy space with symbol |g′|2 ,where
g is as in Theorem5 is given by

(T|g′|2)i,i+p =
r

∑
p+q

l(l− p)αlαl−p,(T|g′|2)i,i+p = (T|g′|2)i+p,i

(a banded matrix of band width 2(r−q)+1).

If gs =
r

∑αl
q+s−1

zl and 1 � s � r−q+1 then the matrix of T|g′s|2 is given by

(T|g′s|2)i,i+p =
r

∑
p+q+s−1

l(l− p)αlαl−p,(T|g′s|2)i,i+p = (T|g′s|2)i+p,i

(a banded matrix of band width 2(r−q− s+1)+1).
In the last equality p satisfies p � r−q−s+1. If p > r−q−s+1 then (T|g′s|2)i,i+p

= 0. Since the band width of the matrix of T|g′s|2 is the same as the band width of Ms ,

we have T|g′s|2 ◦Ms = T|g′s|2 ◦ M̃s (∗).For a fixed integer i and a fixed integer p satisfy-

ing p � r− q , where r and q are as in theorem 5, choose Al =
√

i+q+1
√

i+p+q+1
q2(i+l+1) and

Bl = l(l− p)αlαl−p.
Using the previous lemma, lemma7, the definitions of the matrices Ms, and (∗)

we see that the following equality holds:

G = (T|g′|2 ◦ M̃1− (T|g′2|2 ◦ M̃2 + . . .+T∣∣∣g′r−q+1

∣∣∣2 ◦ ˜Mr−q+1))

Denote by Mc the upper left corner of size n of a matrix M. Then we have

Gc = (T|g′|2 ◦ M̃1− (T|g′2|2 ◦ M̃2 + . . .+T∣∣∣g′r−q+1

∣∣∣2 ◦ ˜Mr−q+1))c (2)

We are now ready to find an upper bound of the norm of G.

LEMMA 10. If G is positive, then |g′| � 1 on ∂U implies ‖G‖ � 1
q2

Proof. It is enough to show that an upper left corner of arbitrary size n satisfies the
estimate. The Hadamard product of positive matrices is a positive matrix and the sum of
positive matrices is a positive matrix. It follows from (2) that 0 � Gc � (T|g′|2 ◦ M̃1)c.
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Since the diagonal term of M̃1 is smaller than 1
q2 , we see by a theorem on completely

positive maps [14, Proposition 3.4] that ‖Gc‖ � sup
∣∣∣m1

i,i

∣∣∣ |g′|2 . It follows that |g′| � 1

implies that ‖Gc‖ � 1
q2 . This being true for any upper left corner of the matrix of G

the lemma is proved. �
Now recall that the matrix of A is given by (from (1)):

ai,i+p =

⎛⎜⎝ r

∑
l�p+q

αl−pαl

√
i+1

√
i+ p+1

i+ l +1
−

r−p

∑
l�p+q
i�l−p

αl−pαl
i− l + p+1√
i+1

√
i+ p+1

⎞⎟⎠didi+p

where di is as before, and notice that bi,i+p = ai,i+p for i � r− p. Define an operator
C′ with a diagonal matrix given by:

c′i,i =
{ q

i+1 if i � q−1
1 if i � q

.

It is obvious that ‖C′‖ � q. Set G′ = C′GC′ we have

G′ −A = C′GC′ −A = C′(G− (C′)−1A(C′)−1)C′

It is easy to see that the matrix of (C′)−1A(C′)−1 is given by⎛⎜⎝ r

∑
l�p+q

αl−pαl

√
i+1

√
i+ p+1

i+ l +1
−

r−p

∑
l�p+q
i�l−p

αl−pαl
i− l + p+1√
i+1

√
i+ p+1

⎞⎟⎠eiei+p

where ei = 1
q

√
i+1

√
i+q+1. We note that ei = di if i � q .

Using this we obtain

LEMMA 11. The following inequality holds 0 � A � G′

Proof. Writing

bi,i+p =
1
q2

r

∑
l�p+q

αl−pαl(l− p)l
√

i+q+1
√

i+ p+q+1
i+ l +1

=

(
r

∑
l�p+q

αl−pαl

√
i+1

√
i+ p+1

i+ l +1
−

r

∑
l�p+q

αl−pαl
i− l + p+1√
i+1

√
i+ p+1

)
eiei+p

we see that G− (C′)−1A(C′)−1 has a matrix given by:

hi,i+p =

(
r

∑
l�p+q
l−p>i

αl−pαl
l− p− i−1√
i+1

√
i+ p+1

)
eiei+p

=
1
q2

r

∑
l−p>i
l�p+q

αl−pαl(l− p− i−1)
√

i+q+1
√

i+ p+q+1
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where p � r−q and hi,i+p = hi+p,i. Define an (r+1)× (r+1) matrix T by:

ti, j =
1
q

√
j
√

i+q+1αi+ j+1

where αs = 0 if s > r. Then the matrix of V = TT ∗ is given by

vi, j =
r

∑
k=0

ti,kt
∗
k, j =

r

∑
k=0

ti,kt j,k.

We set j = i+ p to get

vi,i+p =
1
q2

r

∑
k=0

√
k
√

i+q+1
√

i+ p+q+1
√

kαi+k+1αi+p+k+1.

Put l = i+ p+ k+1 to get

vi,i+p =
1
q2

√
i+q+1

√
i+ p+q+1

r

∑
l�p+q
l−p>i

(l− p− i−1)αl−pαl.

We see that vi,i+p = hi,i+p and it follows that G− (C′)−1A(C′)−1 � 0 and 0 � A �
G′. �

We can now prove Theorem 5.

Proof. By lemma 4 it is enough to show ‖A‖ � 1.From the definition of G′ and
the previous lemma we see that G is positive. Consequently we have‖G‖ � 1

q2 by

lemma 10. It follows that ‖G′‖ � ‖C′‖2 ‖G‖ � q2 ‖G‖ � 1 and ‖A‖ � 1. �

In the particular case q = 1 we have a necessary and sufficient condition for hy-
ponormality.

COROLLARY 12. Let g =
r
∑
1

αnzn . Then Tz+g is hyponormal if and only if |g′|� 1

on ∂U.

Proof. Only the necessary condition needs to be proved and this a particular case
of a general theorem [15] (see also theorem 5 in [1]). �

REMARK 13. It easy to see that an operator R is hyponormal if and only if R+λ I
is hyponormal, where λ is any complex number.Thus in the case of Tzq+g it is enough
to consider the case where g(0) = 0.

We also have the following theorem.
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THEOREM 14. Let g =
q

∑
1

αnzn . Then |g′| �
√

2
q+1 on ∂U implies Tzq+g is hy-

ponormal.

Proof. We give an outline of the proof since the method used is the same as the
one used to prove theorem 5. We define an operator G1 by its matrix

ai,i+p =
1
q2

l=q−p

∑
l=1

αlαl+pl(l + p)
√

i+q+1
√

i+ p+q+1
i+ l + p+1

, ai+p,i = ai,i+p

(a banded matrix of bandwidth 2(q− 1)+ 1). As in the proof of theorem 5 we define
partially matrices and find positive extensions of these matrices. Using an identity

similar to (2) we show |g′| �
√

2
q+1 on ∂U implies ‖G1‖ � 1

q2 . We also show, as in

theorem 5, that G1−C′−1A1C′−1 � 0, where A1 =C−1/2H∗
g HgC−1/2 and C and C′ are

as before. This leads to ‖A1‖ � 1. �
We conclude with a corollary.

COROLLARY 15. Let g =
r
∑
q

αnzn and f =
q
∑
1

αnzn. Assume that |g′| � 1 , | f ′| �√
2

q+1 on ∂U, and β ,γ are two complex numbers satisfying |β |+ |γ| � 1. If h =
β f + γg, then Tzq+h is hyponormal.

Proof. Use theorem 5 and theorem 14 and the fact that Wzq = {ϕ analytic and
bounded on U such that Tzq+ϕ is hyponormal is convex and balanced ([15]). �
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