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ASYMPTOTICS OF GENERALIZED VALUE

DISTRIBUTION FOR HERGLOTZ FUNCTIONS

Y. CHRISTODOULIDES

(Communicated by F. Gesztesy)

Abstract. Estimates of limiting value distributions for boundary values of Herglotz functions
are extended to allow the possibility of value distributions with respect to measures other than
Lebesgue measure. We establish a relation between the generalized theory of value distribution
and the angle subtended at a point in the upper half-plane, and we carry out an analysis of the
corresponding composed Herglotz functions and their measures. The results are applicable to a
description of boundary behaviour for the Weyl m -function in Sturm-Liouville theory.

1. Introduction

A value distribution mapping M for a Lebesgue measurable function f : R → R

is a mapping M (A,S) = |A∩ f−1(S)|, where A , S are any Borel sets and |.| denotes
Lebesgue measure. Thus, M (A,S) is the Lebesgue measure of the points λ ∈ A for
which f (λ ) ∈ S .

A special case of particular interest is when f is the (real) boundary value function
of a Herglotz function F , that is, a function which is analytic with positive imaginary
part in the upper half-plane C+ = {z ∈ C : Imz > 0} . A theory of value distribution
in this case was developed in [13], and the theory may be extended to give a meaning
to the value distribution mapping where the real function f is replaced by a Herglotz
function having real or complex eigenvalues. There are applications of this theory to
the spectral analysis of Herglotz measures, and more especially, when F is taken to
be the Weyl-Titchmarsh m-function ([7]), to the spectral analysis of Sturm-Liouville
differential operators ([3], [2]). In general, ‘averages’ of families of spectral measures
and their properties have been studied extensively. See, for example, [8], [9], [10], [12].

The theory of value distribution for boundary values of Herglotz functions was
generalized in [5], to allow a description of value distribution in terms of measures
other than Lebesgue measure. A close connection between the generalized theory and
compositions of Herglotz functions was established. See [6] for results regarding the
integral representation of composed Herglotz functions.

In [4], we obtained a description of the asymptotic generalized value distribution
of solutions of the Schrödinger equation. That result generalizes the respective result in
[3], in the standard case of Lebesgue measure, where the asymptotic value distribution
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of solutions of the Schrödinger equation was obtained in terms of a limiting integral
involving the boundary values of the m-function. We refer the reader to [4] for the
precise statement of the result as well as a detailed proof. A key result that was used in
[4] was an estimate of generalized value distribution for a family of Herglotz functions
translated by an increment iδ in a direction parallel to the real axis (equation (10)
in [4]). In this paper, we give a complete proof of this estimate ((26) in Theorem 1
below). Some of the equations and inequalities that we present are of interest in their
own right, and exhibit the interrelation between ideas of the theory of value distribution
and geometrical properties of the upper half-plane.

The paper is organized as follows. In Section 2 we state some basic results regard-
ing Herglotz functions, in particular their integral representation. The generalized value
distribution associated with a Herglotz function F is introduced in Section 3. In Sec-
tion 4 we prove the results for the generalized value distribution of translated Herglotz
functions. Our main results are presented in Lemma 2, Theorem 1, and Corollary 1.

2. Herglotz function preliminaries

Let F be a Herglotz function, that is, analytic with positive imaginary part in
the upper half-plane C+ = {z : Im z > 0} . Then, F admits the integral representation
[11, 1]

F(z) = c1 + c2z+
∫

R

{
1

t − z
− t

t2 +1

}
dρ(t), (1)

where c1 , c2 are real constants (c2 � 0), and the function ρ(t) is non-decreasing, right-
continuous, and determined up to an additive constant. For a given Herglotz function
F , the constants c1 , c2 are specified by

c1 = ReF(i), c2 = lim
s→+∞

1
s
ImF(is).

The function ρ(t) gives rise to a measure μ , defined for finite intervals (a,b] by
μ((a,b]) = ρ(b)− ρ(a) , and μ extends to Borel sets. The measure μ is referred
to as the ‘spectral measure’ corresponding to the Herglotz function F , and satisfies the
condition ∫

R

1
1+ t2

dμ(t) < ∞, (2)

which is sufficient for the integral in (1) to converge absolutely.
The decomposition of μ into an absolutely continuous part μa.c. , and a singular

part μs , with respect to Lebesgue measure, is determined by the boundary behaviour
of F near the real axis ([14]). The boundary value F+(λ ) of F at the point λ ∈ R , is
defined by F+(λ ) = limε→0+ F(λ + iε) , and exists as a finite number Lebesgue almost
everywhere. Then, the support of μa.c. is the set {λ ∈ R : 0 < ImF+(λ ) < +∞} , and
the density function f of μa.c. is given by f (λ ) = 1

π ImF+(λ ) , whereas the support of
μs is the set {λ ∈ R : ImF+(λ ) = +∞}.
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3. Herglotz functions and generalized value distribution

Given a Herglotz function F , we define a one-parameter family of Herglotz func-
tions Fy (y ∈ R) by

Fy(z) =
1

y−F(z)
. (3)

Let {μy} be the measures corresponding to Fy through the integral representation (1).
The generalized value distribution associated with the Herglotz function F is defined
by

νS(A) =
∫

S
μy(A)dσ(y), (4)

for any Borel sets A , S , where the measure σ corresponds to a Herglotz function φ ,
with integral representation

φ(z) = aφ +bφ z+
∫

R

{
1

t − z
− t

t2 +1

}
dσ(t). (5)

(We note that in the case of the standard theory of value distribution of Herglotz func-
tions, the integral in (4) takes place with respect to Lebesgue measure). The measure
νS may also be verified to satisfy condition (2) and hence corresponds to a Herglotz
function H , with representation

H(z) = aH +bH z+
∫

R

{
1

t− z
− t

t2 +1

}
dνS(t). (6)

In the special case when the boundary values of F are real almost everywhere, then the
measures μy are purely singular, and we have ([5])

νS(A) = νS
(
A∩F−1

+ (S)
)

= νR

(
A∩F−1

+ (S)
)
. (7)

Thus the measure νS of the set A is concentrated on the points λ in A at which the
boundary value of F is in S , and also it agrees on this set with the measure νR (for
which the integral in (4) takes place over R).

The measure νS is closely related with compositions of Herglotz functions. For
any Borel set B , we have ([5])

νS(B) = μ(φS◦F)(B)−bφ μ(B), (8)

where μ(φS◦F) is the measure corresponding to the composed Herglotz function φS ◦F ,
and the Herglotz functions φS , φS ◦F have the following representations:

φS(z) = aφ +bφ z+
∫
S

{
1

t− z
− t

t2 +1

}
dσ(t), (9)

(
φS ◦F

)
(z) = a(φS◦F) +b(φS◦F)z+

∫
R

{
1

t− z
− t

t2 +1

}
dμ(φS◦F)(t). (10)
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Thus, φS is the Herglotz function having the same representation as φ , except that
integration takes place over the set S . Hence the case S = R corresponds to φ . Note
also that if bφ = 0, then νS is precisely the measure corresponding to the function
φS ◦F .

In the next Section, we shall obtain a relation between the generalized value dis-
tribution and the angle θ subtended at the point z ∈ C+ by the set S on the real axis,
defined by

θ (z,S) =
∫

S
Im

[
1

t− z

]
dt. (11)

4. Generalized value distribution and translated Herglotz functions

Given a Herglotz function F , define a Herglotz function Fδ , obtained from F by
translation through an increment iδ parallel to the real axis, thus

Fδ (z) = F(z+ iδ ), δ > 0,

and define a family of translated Herglotz functions Fδ
y by

Fδ
y (z) =

1

y−Fδ (z)
, δ > 0, y ∈ R. (12)

LEMMA 1. We have Fδ (z) → F(z) uniformly, as δ → 0+ , for z on any compact
subset of the upper half-plane.

Proof. Let D be a compact subset of the upper half-plane. There exist constants
KD , εD > 0 such that |Re z| � KD and 0 < εD � Im z � KD for all z ∈ D . From the
representation of F in (1) we have

∣∣Fδ (z)−F(z)
∣∣ � bF δ + δ

∫
R

1
|t − z− iδ ||t− z| dμ(t).

For z ∈ D we have
(|t − z− iδ ||t − z|)−1 � |t − z|−2 � const.(1 + t2)−1 . Thus the

integral above is finite, and taking the limit as δ → 0+ we see that |Fδ (z)−F(z)| → 0
uniformly for all z ∈ D . �

It is straightforward to show that also Fδ
y (z) → Fy(z) uniformly, as δ → 0+ , on

compact subsets of the upper half-plane. This follows from the relation

∣∣Fδ
y (z)−Fy(z)

∣∣ =
|F(z+ iδ )−F(z)|

|y−F(z+ iδ )||y−F(z)| .

The following lemma shows how the generalized value distribution of the trans-
lated Herglotz function Fδ may be expressed in terms of an integral of angle subtended
with respect to the measure νS .
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LEMMA 2. Let μδ
y be a family of measures corresponding to the Herglotz func-

tions Fδ
y , for δ > 0 , y ∈ R , and σ an arbitrary Herglotz measure. Let A be any

bounded Borel set, and S any Borel set. Then, we have

∫
S

μδ
y (A)dσ(y) =

1
π
|A|(b(φS ◦F) −bφbF )+

1
π

∫
R

θ (t + iδ ,A)dνS(t). (13)

Moreover, if the measure σ is absolutely continuous, (13) reduces to

∫
S

μδ
y (A)dσ(y) =

1
π

∫
R

θ (t + iδ ,A)dνS(t). (14)

Proof. Fix δ > 0. Then, the Herglotz function Fδ has boundary values with
strictly positive imaginary part, as do the functions Fδ

y . Thus, the measures μδ
y are

absolutely continuous, with density functions 1
π ImFy(λ + iδ ) . Hence we have

∫
S

μδ
y (A)dσ(y) =

∫
S

{
1
π

∫
A
Im

[
1

y−F(λ + iδ )

]
dλ

}
dσ(y).

For λ ∈ A and fixed δ we have Im
[
y− F(λ + iδ )

]−1 � const.(1 + y2)−1 . Thus,
the double integral above is absolutely convergent and we may change the order of
integration. From the integral representation of φS in (9) we have

ImφS
(
F(λ + iδ )

)−bφ ImF(λ + iδ ) =
∫

S
Im

[
1

t −F(λ + iδ )

]
dσ(t),

so that
∫

S
μδ

y (A)dσ(y) =
1
π

∫
A

{
ImφS

(
F(λ + iδ )

)−bφ ImF(λ + iδ )
}

dλ .

Similarly, by using expressions for Im
(
φS ◦F

)
(λ + iδ ) , ImF(λ + iδ ) from the rep-

resentations of the functions φS ◦F , F in (10), (1) respectively, and equation (8), we
obtain
∫

S
μδ

y (A)dσ(y) =
1
π

∫
A

δ
(
b(φS◦F) −bφbF

)
dλ

+
1
π

∫
A

{∫
R

δ
(t−λ )2 + δ 2 dμ(φS◦F)(t)−bφ

∫
R

δ
(t−λ )2 + δ 2 dμ(t)

}
dλ

=
1
π

δ |A|(b(φS◦F)−bφ bF

)
+

1
π

∫
A

{∫
R

δ
(t −λ )2 + δ 2 dνS(t)

}
dλ .

The above double integral is also absolutely convergent, since from the representation
of the Herglotz function H in (6) we have

∫
R

δ
(t −λ )2 + δ 2 dνS(t) = ImH(λ + iδ )−bH δ � ImH(λ + iδ ),
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which is uniformly bounded for λ in A . Hence, by changing the order of integration
we obtain∫

S
μδ

y (A)dσ(y) =
1
π

δ |A|(b(φS◦F) −bφbF

)
+

1
π

∫
R

θ (t + iδ ,A)dνS(t),

from the definition of the angle subtended θ . In the case that σ is absolutely continuous
the term 1

π δ |A|(b(φS◦F) −bφbF

)
vanishes ([6]), and the lemma is proved. �

In the remainder of the paper we shall assume that the measure σ is absolutely
continuous with density function hσ . For any Borel set S , we define the sets S0 , S1 by

S0 = {y ∈ S : hσ (y) � C}, S1 = {y ∈ S : hσ (y) > C}, (15)

where C > 0 is a constant.
We now define Herglotz functions φ0 , φ1 and the corresponding composed Her-

glotz functions
(
φ0 ◦F

)
,
(
φ1 ◦F

)
with the following representations:

φ0(z) = aφ +bφz+
∫

S0

{
1

t− z
− t

t2 +1

}
dσ(t), (16)

φ1(z) =
∫

S1

{
1

t− z
− t

t2 +1

}
dσ(t), (17)

(
φ0 ◦F

)
(z) = a0 +b0z+

∫
R

{
1

t− z
− t

t2 +1

}
dν0(t), (18)

(
φ1 ◦F

)
(z) = a1 +b1z+

∫
R

{
1

t− z
− t

t2 +1

}
dν1(t). (19)

Since
(
φS ◦F

)
(z) = φ0

(
F(z)

)
+ φ1

(
F(z)

)
for all z ∈ C+ , we have μ(φS◦F) (B) =

ν0(B)+ ν1(B) for any Borel set B , and also from equation (8) we obtain

νS(B) = ν0(B)+ ν1(B)−bφ μ(B). (20)

The measure corresponding to φ1 is the restriction of σ to the set S1 , and the mea-
sure α corresponding to φ0 is the restriction of σ to S0 , and is bounded by Lebesgue
measure. For any Borel set B we have α(B) � C|B| , where C is the constant in (15),
and |.| denotes Lebesgue measure. A similar result is given in the next lemma.

LEMMA 3. For any Borel set B, we have ν0(B)− bφ μ(B) � C|B| . Thus, the
measure (ν0 − bφ μ) is absolutely continuous with respect to Lebesgue measure, with
density function bounded by C.

Proof. Note first that
(
ν0 − bφ μ

)
is the measure corresponding to the composed

Herglotz function φ0(F) , in the case when bφ = 0.
For points a , b (a < b ) which are not discrete points of

(
ν0 −bφ μ

)
we have

(
ν0 −bφ μ

)(
(a,b]

)
= lim

ε→0+

1
π

∫ b

a

{∫
S0

Im

[
1

t−F(λ + iε)

]
dσ(t)

}
dλ � C(b−a),
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by an application of the Lebesgue dominated convergence theorem, since σ is bounded
by Lebesgue measure on the set S0 , and for any fixed value of ε > 0 we have

∫
R

Im
[
t−

F(λ + iε)
]−1

dt = π .
By considering sequences of intervals whose endpoints are not discrete points of(

ν0 −bφ μ
)
, this result extends to arbitrary open intervals, and hence to open Borel sets.

Fix C > 0. If B is any bounded Borel set, given any ε > 0 there is an open
set G containing B such that |G| < |B|+ ε

C . Then, we have
(
ν0 − bφ μ

)
(B) �

(
ν0 −

bφ μ
)
(G) �C|G| �C|B|+ ε , and since ε was arbitrary we can infer

(
ν0 −bφ μ

)
(B) �

C|B| .
Finally, the result generalizes to arbitrary Borel sets through the relation

(
ν0 −

bφ μ
)
(B) =

(
ν0 −bφ μ

)(⋃
N
B∩ [−N,N]

)
, and the lemma is proved. �

The following lemma provides a useful bound for the angle subtended by an inter-
val.

LEMMA 4. Let a, b ∈ R with a < b, and fix δ with 0 < δ < 1 . Then, for t ∈
[a−1,b+1]c we have

θ
(
t + iδ , [a,b]

)
� δa1

1
1+ t2

,

where a1 > 0 is a constant depending on a and b but independent of δ .

Proof. For t ∈ [a−1,b+1]c, the result follows from the bound

0 <
b−a

δ 2 +(t−a)(t−b)
� a1

1
1+ t2

,

where a1 is a positive constant, on noting the inequality tan−1 x < x for x > 0. �

LEMMA 5. Let [a,b] be a finite closed interval, and suppose that the measure σ
is absolutely continuous with respect to Lebesgue measure. Let ε > 0 be given, and
take δ with 0 < δ < 1 . Then, a constant N = N(ε) can be found such that

(i)
1
π

∫
Ac

θ (t + iδ ,A)dν1(t) < ε and (ii)
1
π

∫
A

θ (t + iδ ,Ac)dν1(t) < ε

hold for all C > N(ε) and for all Borel sets A ⊆ [a,b] . Here C is the constant in (15) .

Proof. Since A ⊆ [a,b] , we have θ (t + iδ ,A) � θ
(
t + iδ , [a,b]

)
, and it follows

from lemma 4 that

1
π

∫
Ac∩[a−1,b+1]c

θ (t + iδ ,A)dν1(t) � 1
π

δa1

∫
R

1
1+ t2

dν1(t), (21)

for some constant a1 independent of δ . Moreover,

1
π

∫
Ac∩[a−1,b+1]

θ (t + iδ ,A)dν1(t) � a2

∫
R

1
1+ t2

dν1(t), (22)
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where a2 is a constant satisfying 1+ t2 � a2 for t ∈ [a−1,b+1] . From the represen-
tations of the functions φ1 ◦F , φ1 in (19), (17) respectively, we have

Im
(
φ1 ◦F

)
(i) = b1 +

∫
R

1
1+ t2

dν1(t), (b1 � 0)

Imφ1

(
F(i)

)
=

∫
S1

Im

[
1

t−F(i)

]
dσ(t).

Therefore, from (21) and (22) we obtain

1
π

∫
Ac

θ (t + iδ ,A)dν1(t) � (δa1/π +a2)
∫

S1

Im

[
1

t −F(i)

]
dσ(t). (23)

Since Im
[
t −F(i)

]−1 � const.(1+ t2)−1 , the constant C in the definition of S1 can
now be chosen ([5]) such that the expression on the right of inequality (23) is less than
ε , and the first assertion of the lemma follows.

To verify the second assertion, note that

1
π

∫
A

θ (t + iδ ,Ac)dν1(t) � a2

∫
R

1
1+ t2

dν1(t)

� a2

∫
S1

Im

[
1

t −F(i)

]
dσ(t) < ε

by our choice of C , and the lemma is proved. �

LEMMA 6. With the same assumptions as in Lemma 5 we have

(i)
1
π

∫
Ac

θ (t + iδ ,A)d
(
ν0 −bφ μ

)
(t) � CEA(δ ),

and

(ii)
1
π

∫
A

θ (t + iδ ,Ac)d
(
ν0 −bφ μ

)
(t) � CEA(δ ),

where

EA(δ ) =
1
π

∫
Ac

θ (t + iδ ,A)dt =
1
π

∫
A

θ (t + iδ ,Ac)dt. (24)

Proof. The result follows from lemma 3. Note that

EA(δ ) =
1
π

∫
Ac

θ (t + iδ ,A)dt =
1
π

∫
R

θ (t + iδ ,A)dt− 1
π

∫
A

{
π −θ (t + iδ ,Ac)

}
dt

=
1
π

∫
R

{∫
A

δ
(t−λ )2 + δ 2 dλ

}
dt−|A|+ 1

π

∫
A

θ (t + iδ ,Ac)dt

=
1
π

∫
A

θ (t + iδ ,Ac)dt. �
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REMARK 1. Note that in the special case in which σ is Lebesgue measure, we
can take C = 1 and φ0 = φ = iπ , with aφ = bφ = 0, so that ν0 and ν are then also
Lebesgue measure. In this special case, the two integrals under (i) and (ii) of the
lemma are identical.

Note also that in the case when A is a finite interval [a,b] , then ([3])

EA(δ ) =
2
π

(b−a) tan−1 δ
(b−a)

+
δ
π

ln
[
(b−a)2 + δ 2]− 2

π
δ lnδ . (25)

THEOREM 1. Define the measures μδ
y as in lemma 2 , and EA(δ ) by (24) . With

the same assumptions as in lemma 5 , and for any given ε > 0 , a constant N = N(ε)
can be found such that

∣∣∣∣
∫

S
μδ

y (A)dσ(y)−
∫
S

μy(A)dσ(y)
∣∣∣∣ � CEA(δ )+ ε, (26)

for all C > N(ε) and for all Borel sets A ⊆ [a,b] .

Proof. From equation (14) and the definition of νS we have

∣∣∣∣
∫

S
μδ

y (A)dσ(y)−
∫
S

μy(A)dσ(y)
∣∣∣∣

=
∣∣∣∣ 1
π

∫
R

θ (t + iδ ,A)dνS(t)−νS(A)
∣∣∣∣

=
∣∣∣∣
∫

A

{ 1
π

θ (t + iδ ,A)−1
}
dνS(t)+

1
π

∫
Ac

θ (t + iδ ,A)dνS(t)
∣∣∣∣. (27)

In (27) the integral on the left is negative and the integral on the right is positive. Hence,
an upper bound for this expression is

sup

{
1
π

∫
A

θ (t + iδ ,Ac)dνS(t),
1
π

∫
Ac

θ (t + iδ ,A)dνS(t)
}

.

From (20) we have νS(B) =
(
ν0 −bφ μ

)
(B)+ν1(B) for any Borel set B , and Theorem

1 now follows from lemmas 5 and 6. �

COROLLARY 1. With the same assumptions as those in lemma 5 we have

lim
δ→0+

∣∣∣∣
∫

S
μδ

y (A)dσ(y)−
∫
S

μy(A)dσ(y)
∣∣∣∣ = 0, (28)

with the convergence being uniform over all Borel sets S , over all Borel sets A⊆ [a,b] ,
and over all Herglotz functions F such that F(i) belongs to some compact subset of
the upper half-plane.
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Proof. The function EA(δ ) defined in (24) is a non-decreasing function of δ ([3]),
and limδ→0+ EA(δ ) = 0 by an application of the Lebesgue dominated convergence
theorem. (The specific expression for EA(δ ) in (25) in the case when A = [a,b] exhibits
the convergence of EA(δ ) to zero in the limit δ → 0+ ). Corollary 1 now follows from
Theorem 1, since ε > 0 was arbitrary. The requirement for F(i) to belong to a compact
subset of C+ emerges from lemma 5, and in particular inequality (23); if this condition
is satisfied then Im [t −F(i)]−1 � const.(1+ t2)−1 , and we can choose the constant C
as stated. �

REMARK 2. Since Fδ
y (z) → Fy(z) uniformly, as δ → 0+ , on compact subsets of

the upper half-plane, we have μδ
y

(
(a,b]

) → μy
(
(a,b]) for finite intervals (a,b] whose

endpoints a , b are not discrete points of the measures μδ
y , μy ([5]).

RE F ER EN C ES

[1] N. I. AKHIEZER AND I. M. GLAZMAN, Theory of Linear Operators in Hilbert space I, Pitman,
London, 1981.

[2] S. V. BREIMESSER, J. D. E. GRANT, AND D. B. PEARSON, Value distribution and spectral theory
of Schrödinger operators with L2 -sparse potentials, J. Comput. Appl. Math. 148 (2002), 307–322.

[3] S. V. BREIMESSER AND D. B. PEARSON, Asymptotic value distribution for solutions of the
Schrödinger equation, Math. Phys. Anal. Geom. 3 (4) (2000), 385–403.

[4] Y. T. CHRISTODOULIDES, Asymptotic generalized value distribution of solutions of the Schrödinger
equation, Oper. Matrices 8 (1) (2014), 279–285.

[5] Y. T. CHRISTODOULIDES AND D. B. PEARSON, Generalized value distribution for Herglotz func-
tions and spectral theory, Math. Phys. Anal. Geom. 7 (4) (2004), 309–331.

[6] Y. T. CHRISTODOULIDES AND D. B. PEARSON, Spectral theory of Herglotz functions and their
compositions, Math. Phys. Anal. Geom. 7 (4) (2004), 333–345.

[7] E. A. CODDINGTON AND N. LEVINSON, Theory of Ordinary Differential Equations, McGraw-Hill,
New York, 1955.

[8] R. DEL RIO, S. JITOMIRSKAYA, Y. LAST, AND B. SIMON, Operators with singular continuous spec-
trum. IV. Hausdorff dimensions, rank one perturbations, and localization, J. Anal. Math. 69 (1996),
153–200.

[9] R. DEL RIO AND O. TCHEBOTAREVA, Sturm-Liouville operators in the half-axis with local pertur-
bations, J. Math. Anal. Appl. 329 (2007), 557–566.

[10] F. GESZTESY AND A. MAKAROV, SL(2,C) , exponential Herglotz representations, and spectral av-
eraging, S. Petersburg Math. J. 15 (2004), 393–418.
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