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THE INVERTIBILITY FOR LINEAR COMBINATIONS OF
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Abstract. In this paper, it is given that the sufficient and necessary conditions for the invertibility
of linear combinations of bounded linear operators with closed range. Furthermore, some related
results are obtained.

1. Introduction

Let H and K be Hilbert spaces. We use B(H ,K ) to denote the set of
all bounded linear operators from H into K and B(H ) = B(H ,H ) . If T ∈
B(H ,K ) , we use R(T ) , N (T ) and T ∗ to denote the range space, the null space
and the adjoint of T , respectively. For a closed subspace M ⊂ H , its orthogonal
complement is denoted by M⊥ .

Let T ∈ B(H ,K ) . If there exists S ∈ B(K ,H ) such that ST = IH , then T
is called left invertible; If there exists S ∈ B(K ,H ) such that TS = IK , then T is
called right invertible. An operator T is invertible if T is both left and right invertible.
It is obvious that T is left invertible if and only if T ∗ is right invertible. From [5, pp.
347-348] one can find that T is left invertible if and only if T is injective and R(T ) is
closed; T is right invertible if and only if T is surjective.

Recall [5, pp. 36-37] that an operator P ∈ B(H ) is idempotent if P2 = P . It
is evident that if P is idempotent, then both R(P) and N (P) are closed, and H =
N (P)�R(P) . Conversely, if M and L are closed subspace of H , and H = M �
L , then there is an idempotent P ∈ B(H ) such that R(P) = M and N (P) = L .
If P ∈ B(H ) is idempotent and N (P) = R(P)⊥ , then P is called the orthogonal
projection of H onto R(P) . Clearly, M is a closed subspace of H if and only
if there exists a unique orthogonal projection P of H onto M . We will denote the
orthogonal projection P of H onto M by PM . It is well known that P∗

M = PM and
I −PM = PM⊥ . Define an operator P′

M ∈ B(H ,M ) in the following way: P′
M x =

PM x for any x ∈ H .
For T ∈ B(H ,K ) , if there exists an operator S ∈ B(K ,H ) such that

STS = S, TST = T, (TS)∗ = TS, (ST )∗ = ST,
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then S is called a Moore-Penrose inverse of T , and denoted by T † . It is well known
that T has a Moore-Penrose inverse if and only if R(T ) is closed. Furthermore, the
Moore-Penrose inverse T † of T is unique(if T † exists). If T is a closed range operator,
from the above equations we can see that TT † = PR(T) and T †T = I−PN (T ) .

For orthogonal projections P and Q on H , D. Buckholtz [3] has shown that
P−Q is invertible if and only if H = R(P)�R(Q) . Motivated by this results, many
authors have considered questions concerning the idempotents and orthogonal projec-
tions(see [2, 6, 7, 12, 13, 11, 17, 20, 21, 16, 19]). For idempotent matrices P and Q ,
J. Groβ and G. Trenkler [17] have considered the nonsingularity of P−Q , and ob-
tained that if P−Q is nonsingular, then so is P+Q , and then J. K. Baksalary and O.
M. Baksalary in [2] have proved that the nonsingularity of P+Q is equivalent to the
nonsingularity of any linear combination αP+ βQ , where α,β ∈ C and α + β �= 0.
For idempotent operators P and Q on an infinite dimensional Hilbert space, H. Du, X.
Yao and C. Deng [11] have extend the main results of [2] to infinite dimensional Hilbert
space case, and proved that the invertibility of αP+ βQ is independent of the choice
of α and β , where α + β �= 0, αβ �= 0. Furthermore, the Fredholmness and stability
theorems of linear combinations of idempotents were considered in [13, 16, 21], re-
spectively. It need to mention that the method used in the above papers rely strongly on
the idempotency of idempotent or the positivity of the orthogonal projection.

Inspired by the results of [2, 11, 13, 21, 16], we are interested in the question that
what we say about a linear combination of bounded linear operators? In this paper,
we investigate the invertibility of linear combinations of bounded linear operators with
closed range. As an application of our results the invertibility of linear combinations of
EP operators is considered. In this paper a systematic use is made of operator matrix
representations, and of generalized inverses of closed range operators.

2. Main result

Our main result of this paper is the following theorem.

THEOREM 2.1. Let A ∈B(H ) and B ∈ B(H ) be closed range operators, and
let α,β ∈ C \ {0} . Assume that M = B†(R(A)∩R(B)) and S = (A∗)†(R(A∗)∩
R(B∗)) . Then αA+ βB is invertible if and only if the following statements hold:

(i) N (A)∩N (B) = {0} , R(A)⊥ ∩R(B)⊥ = {0} ;

(ii) Both A†A(I−B†B) and (I−AA†)BB† are closed range operators;

(iii) P′
S (αAB†B+ βAA†B)|M : M −→ S is invertible.

For the proof of Theorem 2.1 we need a result, which is well known so its proof
will be omitted.

LEMMA 2.2. Let H1 , H2 , K1 and K2 be Hilbert spaces, and let A∈B(H1,K1) ,
B ∈ B(H2,K2) and C ∈ B(H2,K1) . Assume that

M =
[

A C
0 B

]
: H1 ⊕H2 −→ K1⊕K2.



LINEAR COMBINATIONS OF BOUNDED LINEAR OPERATORS 717

(i) M is invertible if and only if A is left invertible, B is right invertible and C1 =
P′

R(A)⊥C|N (B) : N (B) −→ R(A)⊥ is invertible.

(ii) If C = 0 , then M is invertible if and only if A and B are invertible.

(iii) If any two of operators A, B and M are invertible, then the third is invertible.

Proof of Theorem 2.1. Let A and B be closed range operators on H , and let
α,β ∈ C\ {0} .

Claim 1. αA+ βB is an invertible operator if and only if[
αA βB
−IH IH

]
: H ⊕H −→ H ⊕H

is an invertible operator.

This directly follows from[
αA+ βB 0

0 IH

]
=

[
IH −βB
0 IH

][
αA βB
−IH IH

][
IH 0
IH IH

]
.

Claim 2. The operator matrix[
αA βB
−IH IH

]
: H ⊕H −→ H ⊕H

is invertible if and only if the operator[
αP′

R(A)AP′
N (A)⊥|N (B) P′

R(A)(βB+ αA)|N (B)⊥

0 βP′
R(A)⊥P′

R(B)B|N (B)⊥

]

from N (B)⊕N (B)⊥ into R(A)⊕R(A)⊥ is invertible.

Indeed, since [
αA βB
−IH IH

]
as an operator from N (A)⊥⊕N (A)⊕N (B)⊕N (B)⊥ into R(A)⊕R(A)⊥⊕N (A)⊥
⊕N (A) has the following operator matrix representation⎡⎢⎢⎣

αA1 0 0 βB1

0 0 0 βB2

−IN (A)⊥ 0 C1 C2

0 −IN (A) C3 C4

⎤⎥⎥⎦ ,

there exist invertible operators

U =

⎡⎢⎢⎣
IR(A) 0 αA1 0

0 IR(A)⊥ 0 0
0 0 IN (A)⊥ 0
0 0 0 IN (A)

⎤⎥⎥⎦
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on R(A)⊕R(A)⊥⊕N (A)⊥⊕N (A) and

V =

⎡⎢⎢⎣
IN (A)⊥ 0 C1 C2

0 IN (A) C3 C4

0 0 IN (B) 0
0 0 0 IN (B)⊥

⎤⎥⎥⎦
on N (A)⊥⊕N (A)⊕N (B)⊕N (B)⊥ such that

U

[
αA βB
−IH IH

]
V =

⎡⎢⎢⎣
0 0 αA1C1 αA1C2 + βB1

0 0 0 βB2

−IN (A)⊥ 0 0 0
0 −IN (A) 0 0

⎤⎥⎥⎦ .

Thus [
αA βB
−IH IH

]
: H ⊕H −→ H ⊕H

is invertible if and only if[
αA1C1 βB1 + αA1C2

0 βB2

]
: N (B)⊕N (B)⊥ −→ R(A)⊕R(A)⊥

is invertible. Now, Claim 2 directly follows from

A1 = P′
R(A)A|N (A)⊥ , B1 = P′

R(A)B|N (B)⊥ , B2 = P′
R(A)⊥B|N (B)⊥ ,

C1 = P′
N (A)⊥|N (B), C2 = P′

N (A)⊥|N (B)⊥ .

Claim 3. The operator matrix[
αP′

R(A)AP′
N (A)⊥|N (B) P′

R(A)(αA+ βB)|N (B)⊥

0 βP′
R(A)⊥P′

R(B)B|N (B)⊥

]

from N (B)⊕N (B)⊥ into R(A)⊕R(A)⊥ is invertible if and only if the state-
ments (i), (ii) and (iii) in Theorem 2.1 hold true.

In fact, let

Ã = P′
R(A)AP′

N (A)⊥|N (B) : N (B) −→ R(A),

B̃ = P′
R(A)⊥P′

R(B)B|N (B)⊥ : N (B)⊥ −→ R(A)⊥,

C̃ = P′
R(A)(αA+ βB)|N (B)⊥ : N (B)⊥ −→ R(A).

By Lemma 2.2 (i) one can see that[
αÃ C̃
0 β B̃

]
: N (B)⊕N (B)⊥ −→ R(A)⊕R(A)⊥
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is an invertible operator if and only if Ã is a left invertible operator, B̃ is a right
invertible operator and C̃1 = P′

R(Ã)⊥C̃|N (B̃) : N (B̃) −→ R(Ã)⊥ is invertible. Since

P′
R(A)A|N (A)⊥ : N (A)⊥ −→ R(A) is invertible, it follows that

Ã = P′
R(A)A|N (A)⊥P′

N (A)⊥|N (B)

is left invertible if and only if P′
N (A)⊥|N (B) : N (B) −→ N (A)⊥ is left invertible,

which is equivalent to the fact that N (A)∩N (B) = {0} and PN (A)⊥PN (B) has closed

range. In a similar way one can show that B̃ is right invertible if and only if R(A)⊥ ∩
R(B)⊥ = {0} and PR(A)⊥PR(B) has closed range. On the other hand, note that

N (B̃) = N (PR(A)⊥PR(B)BPN (B)⊥)∩N (B)⊥

= B†N (PR(A)⊥PR(B))

= B†(R(A)∩R(B)),

R(Ã)⊥ = R(PR(A)APN (A)⊥PN (B))
⊥ ∩R(A)

= N (PR(B∗)⊥PR(A∗)A
∗PN (A∗)⊥)∩N (A∗)⊥

= (A∗)†(R(A∗)∩R(B∗)),

and hence, by

AA† = PR(A),

A†A = I−PN (A),

BB† = PR(B),

B†B = I−PN (B),

we obtain Claim 3.
Now, Theorem 2.1 directly follows from Claims 1, 2 and 3. �

REMARK 1. Note that

A†A(I−B†B) = PN (A)⊥PN (B),

(I−AA†)BB† = PR(A)⊥PR(B),

and hence one can infer that A†A(I−B†B) has closed range if and only if A|N (B) has
closed range; (I−AA†)BB† has closed range if and only if B∗|N (A∗) has closed range.
On the other hand, by [8, 12] we can also see that the statement (ii) in Theorem 2.1 has
some equivalent conditions.
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3. Some related results

From Theorem 2.1 we obtain some related results.

PROPOSITION 3.1. Let A ∈ B(H ) and B ∈ B(H ) , and let α,β ∈ C\ {0} . If
R(A)∩R(B) = {0} or R(A∗)∩R(B∗) = {0} , then αA+βB is invertible if and only
if

(i) R(A) and R(B) are closed;

(ii) P′
N (A)⊥|N (B) : N (B) −→ N (A)⊥ and P′

R(A)⊥|R(B) : R(B) −→ R(A)⊥ are in-

vertible.

Proof. The sufficiency directly follows from Lemma 2.2 (iii) and the proof of
Theorem 2.1. Now suppose that αA+ βB is invertible. If R(A)∩R(B) = {0} , then
by the invertibility of αA+ βB one can infer that

H = R(αA+ βB)⊂ R(A)+R(B),

which implies R(A)+R(B) = H . This, together with R(A)∩R(B) = {0} , shows
that R(A) and R(B) are closed by [15, Theorem 2.3]; If R(A∗)∩R(B∗) = {0} ,
note that the invertibility of αA+ βB implies that of αA∗ + βB∗ , and hence a similar
argument gives that R(A∗) and R(B∗) are closed. From the Banach closed range
theorem it follows that R(A) and R(B) are closed. This proves (i). (ii) follows from
Lemma 2.2 (ii) and the proof of Theorem 2.1. �

As a consequence of Proposition 3.1 we obtain the following result.

COROLLARY 3.2. Let A ∈ B(H ) and B ∈ B(H ) . If R(A)∩R(B) = {0} or
R(A∗)∩R(B∗) = {0} , then the invertibility of αA+ βB is independent of the choice
of α and β , where α,β ∈ C\ {0} .

REMARK 2. It is worthy to be mentioned that

(i) For idempotent operators, the result in Corollary 3.2 was appeared in [11, p.
1455].

(ii) Corollary 3.2 can be seen as an extension of [1, Proposition 3.15]: if A∈B(H ) ,
B∈B(H ) and R(A)∩R(B)= {0} , then A−B is invertible if and only if A+B
is invertible.

PROPOSITION 3.3. Let A and B be closed range operators on H , and let α,β ∈
C\ {0} . If AB†B = AA†B = 0 , then αA+ βB is invertible if and only if the following
four equations hold:

N (A)∩N (B) = {0}, N (A)⊥ ∩N (B)⊥ = {0},
R(A)∩R(B) = {0}, R(A)⊥∩R(B)⊥ = {0}.
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Proof. If AB†B = AA†B = 0, then A†A(I−B†B) = A†A and (I−AA†)BB† = BB† ,
and so the statement (ii) in Theorem 2.1 automatically holds true. Thus, αA+ βB is
invertible if and only if the statements (i) and (iii) in Theorem 2.1 hold true. It is not
hard to find that the statement (iii) in Theorem 2.1 and Lemma 2.2 (iii) implies that
R(A)∩R(B) = {0} and N (A)⊥∩N (B)⊥ = {0} . This proves Proposition 3.3. �

One can see from Proposition 3.3 that

COROLLARY 3.4. Let A and B be closed range operators on H . If AB†B =
AA†B = 0 , then the invertibility of αA+ βB is independent of the choice of α and β ,
where α,β ∈ C\ {0} .

In the following, we consider the invertibility of linear combination of EP op-
erators. Recall that T ∈ B(H ) is called an EP operator if R(T ) is closed and
TT † = T †T . Clearly, T ∈B(H ) is an EP operator if and only if R(T ) = R(T ∗) . For
some related results of EP operators, see [4, 9, 10, 14, 18, 22].

Applying Theorem 2.1 to EP operators, we get the following results.

PROPOSITION 3.5. Let A ∈ B(H ) and B ∈ B(H ) be EP operators, and let
α,β ∈ C\{0} . Assume that M = B†(R(A)∩R(B)) and S = (A∗)†(R(A)∩R(B)) .
Then αA+ βB is invertible if and only if the following statements hold true:

(i) N (A)∩N (B) = {0} ;

(ii) A†A(I−B†B) has closed range;

(iii) P′
S (αAB†B+ βAA†B)|M : M −→ S is invertible.

Proof. If T ∈ B(H ) is an EP operator, then

R(T ) = R(T ∗), R(T )⊥ = N (T ), TT † = T †T.

Now, Proposition 3.5 follows from Theorem 2.1. �

In Particular, we have

COROLLARY 3.6. Let A ∈ B(H ) be an orthogonal projection, and let B ∈
B(H ) be an EP operator. Assume that C = P′

R(A)∩R(B)(AB†)|R(A)∩R(B) ∈B(R(A)∩
R(B)) , and ρ(C) denotes the resolvent set of C . Then the invertibility of αA+ βB is

independent of the choice of α and β , where α,β ∈ C\ {0} and − β
α ∈ ρ(C) .

Proof. If A is an orthogonal projection, then the statement (iii) in Proposition 3.5
is equivalent to the fact that C+ β

α I is an invertible operator on R(A)∩R(B) , which

implies − β
α ∈ ρ(C) . This, together with Proposition 3.5, shows Corollary 3.6. �
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REMARK 3. In Corollary 3.6, if A and B are orthogonal projections, then C =
IR(A)∩R(B) , and so ρ(C) = C \ {1} , which implies that − β

α ∈ ρ(C) if and only if
α + β �= 0. Thus Corollary 3.6 shows that the invertibility of αA+ βB is independent
of the choice of α and β , where α,β ∈ C \ {0} and α + β �= 0. This coincide with
[11, Theorem 1].

Finally, we give the following result, which has been obtained in [22, Theorem
2.1] when the space is finite dimensional.

PROPOSITION 3.7. Let A ∈ B(H ) and B ∈ B(H ) be EP operators, and let
α,β ∈ C\ {0} . If AB = 0 , Then αA+ βB is invertible if and only if R(A)∩R(B) =
{0} and N (A)∩N (B) = {0}

Proof. If A and B are EP operators and AB = 0, it is not hard to find that AA† =
A†A , BB† = B†B and BA = 0. Now, Proposition 3.7 follows from Corollary 3.4. �

COROLLARY 3.8. Let A ∈ B(H ) and B ∈ B(H ) be EP operators, and let
AB = 0 . Then the invertibility of αA+ βB is independent of the choice of α and β ,
where α,β ∈ C\ {0} .
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