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I
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Abstract. Let I be a proper ideal of H∞(D) . We prove the corona theorem for infinitely many
generators in the algebra H∞

I
(D) . This extends the finite corona results of Mortini, Sasane, and

Wick [8]. We also provide the estimates for corona solutions. Moreover, we prove a generalized
Wolff’s Ideal Theorem for this sub-algebra.

1. Introduction

Let D := {z∈C : |z|< 1} be an open unit disk in the complex plane C and H∞(D)
be the set of all bounded analytic functions with the norm ‖ f‖∞ = sup

z∈D

| f (z)| < ∞ . In

1962, Carleson proved his famous corona theorem which states that the ideal, I , gen-
erated by a finite set of functions { fi}n

i=1 ⊂ H∞(D) is the entire space H∞(D), if for
some ε > 0, ∑n

i=1 | fi(z)|2 � ε for all z ∈ D. In 1979, Wolff gave a simplified proof of
Carleson’s corona theorem, which can be found in [5], that made use of H2 -Carleson’s
measures and Littlewood-Paley expressions. Both Carleson and Wolff provided the
bounds for corona solutions depending on the number of functions n . Later, Rosen-
blum [14], Tolokonnokov [20], and Uchiyama [26], independently, extended the corona
theorem for infinitely many functions, where as the best estimate for the corona solution
was due to Uchiyama as follows:

CORONA THEOREM. Let { fi}∞
i=1 ⊂ H∞(D) , with

0 < ε2 �
∞

∑
i=1

| fi(z)|2 � 1 for all z ∈ D.

Then there exist {gi}∞
i=1 ⊂ H∞(D) such that

∞

∑
i=1

fi(z)gi(z) = 1 for all z ∈ D

and

sup
z∈D

{
∞

∑
i=1

|gi(z)|2} � 9
ε2 ln

1
ε2 , for ε2 <

1
e
.
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The main purpose of this paper is to extend the corona theorem for infinitely many
functions in H∞

I
(D). Moreover, we provide the estimates for the corona solutions. This

will completely settle the conjecture of Ryle [15].
The algebra, H∞

I
(D), of our interest is defined as follows:

Let I be any proper closed ideal in H∞(D) , and define

H∞
I (D) := {c+ φ | c ∈ C and φ ∈ I}.

Then H∞
I

(D) is a sub-algebra of H∞(D) . We regard
(
H∞

I
(D)
)
l2 as a sub-algebra of

H∞
l2
(D) , where H∞

l2
(D) is a sequence of bounded analytic functions. Also, for F =

( f1, f2, . . .), f j ∈ H∞(D), we use the norm

‖F‖∞ = sup
z∈D

(
∞

∑
i=1

| fi(z)|2
)1/2

.

In [8], Mortini, Sasane, and Wick proved the corona theorem for finitely many
generators in H∞

I
(D) . In fact, [8] provided the estimates on the solutions g j in terms

of the parameters ε and n (the number of functions f j ). In this paper, we prove an
analogous result of Uchiyama for the sub-algebra H∞

I
(D) by removing the dependency

of estimates on n.
Let f ∈ H∞

I
(D) , say f (z) = c + φ(z) , for φ ∈ I and c ∈ C. For simplicity, we

use the notation: f (z) = fc + φ f (z), where fc ∈ C and φ f ∈ I. Similarly, let F =
( f1, f2, . . .), f j ∈ H∞

I
(D) . Then for z ∈ D, we write F(z) = Fc + φF(z).

We are now ready to state our Main Theorem, which extends to the corona theorem
for infinitely many functions in H∞

I
(D).

THEOREM 1.1. Let F(z) = ( f1(z), f2(z), . . .) , f j ∈ H∞
I
(D) and

0 < ε2 � F(z)F(z)∗ � 1 for all z ∈ D.

Then there exists U = (u1(z),u2(z), . . .) , u j ∈ H∞
I

(D) such that

(a) F(z)U(z)T = 1 for all z ∈ D

and

(b) ‖U‖∞ �
(

1+
1

‖Fc‖
)

9
ε2 ln

(
1
ε2

)
.

In order to generalize the corona theorem, it is natural to ask if the corona theorem
still holds true if we replace the lower bound, ε, in the corona condition by any H∞(D)
functions. Namely, let h, f1, f2, . . . , fn ∈ H∞(D) such that

|h(z)| �
n

∑
i=1

| fi(z)| � 1 for all z ∈ D. (1)

Then the question is does (1) always implies h ∈ I ( f1, f2, . . . , fn), ideal generated by
f1, f2, . . . , fn ? Of course, (1) is a necessary condition, but the counter example provided
by Rao [12] suggests that it is far from being sufficient.
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RAO’S COUNTER EXAMPLE. If B1 and B2 are Blaschke products without com-
mon zeros for which inf

z∈D

(|B1(z)|+ |B2(z)|) = 0, then |B1B2| �
(|B1|2 + |B2|2

)
, but

B1B2 /∈ I
(
B2

1,B
2
2

)
.

However, T. Wolff’s beautiful proof (see [5], Theorem 2.3 in page 319) showed
that the condition (1) is sufficient for h3 ∈ I ( f1, f2, . . . , fn). Wolff’s Theorem can be
rephrased as follows:

WOLFF’S THEOREM. Let F(z)= ( f1(z), f2(z), . . . , fn(z)), f j ∈H∞(D) , h∈H∞(D).
If

|h(z)| �
√

F(z)F(z)∗ for all z ∈ D,

then
h3 ∈ I ({ f j}n

j=1).

But, it was shown by Treil [21] that this is not sufficient for p = 2.
Many authors, independently, have considered this question, including Cegrell [2],

Pau [11], Trent [23], and Treil [22], for p = 1. We refer this as a problem of “ideal
membership”. It is Treil who has given the best known sufficient condition for ideal
membership. We state Treil’s Theorem as follows:

IDEAL THEOREM (TREIL). Let F(z)= ( f1(z), f2(z), . . .) , f j ∈H∞(D) , F(z)F(z)∗
� 1 for all z ∈ D , and h ∈ H∞(D) such that

F(z)F(z)∗ ψ (F(z)F(z)∗) � |h(z)| for all z ∈ D,

where ψ : [0,1] → [0,1] is a non-decreasing function such that
∫ 1
0

ψ(t)
t dt < ∞. Then

there exists G ∈ H∞
l2

(D) such that

F(z)G(z)T = h(z), for all z ∈ D.

An example of a function ψ that works in the case when F(z) is an n -tuple,
n < ∞, is

ψ(t) =
1

(ln t−2)(ln2 t−2) . . . (lnn t−2)(lnn+1 t−2)1+ε ,

where lnk(t) = ln ln . . . ln︸ ︷︷ ︸
k+1 times

(t) and ε > 0.

Applying Treil’s result, we extend the analogue of “ideal theorem” on H∞
I

(D).
Recall that H∞

I
(D) is a sub-algebra of H∞(D). Also, for F = ( f1, f2, . . .), f j = fc j +

φ f j ∈ H∞
I

(D) , we denote F = Fc + φF . In the case that Fc = 0, several authors have
given sufficient conditions for ideal membership, for example, see [6], [7], and [13].
For the case Fc �= 0, we provide the following theorem:

THEOREM 1.2. Let F(z) = ( f1(z), f2(z), . . .) , f j ∈ H∞
I

(D) such that Fc �= 0 , and
suppose

|h(z)| � F(z)F(z)∗ψ (F(z)F(z)∗) � 1 for all z ∈ D,
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where ψ is the function given in Treil’s theorem. Then there exists V = (v1(z),v2(z), . . .) ,
v j ∈ H∞

I
(D) such that

(a) F(z)V (z)T = h(z) for all z ∈ D

and

(b) ‖V‖∞ � C0

(
1+

1
‖Fc‖

)
,

where C0 is the estimate for the H∞(D) solution obtained in [22].

COROLLARY 1. Let F(z) = ( f1(z), f2(z), . . .) , f j ∈ H∞
I

(D) such that Fc �= 0 ,
and suppose

|h(z)| �
√

F(z)F(z)∗ � 1 for all z ∈ D.

Then there exists V = (v1(z),v2(z), . . .) , v j ∈ H∞
I
(D) such that

(a) F(z)V (z)T = h3(z) for all z ∈ D

and

(b) ‖V‖∞ � C1

(
1+

1
‖Fc‖

)
,

where C1 is the estimate for the H∞(D) solution obtained in [23].

2. Preliminaries

In this section, we discuss the method of our proofs and also provide some required
lemmas. To prove Theorem 1.1 and Theorem 1.2 in H∞

I
(D), we first find the corre-

sponding solutions in the bigger algebra H∞(D). Then we add some correction terms
on the H∞(D) - solutions to get the required solutions in our smaller algebra H∞

I
(D) .

For example, provided the corona condition, using Uchiyama version of corona theo-
rem, we can easily find a solution G in (H∞(D))l2 such that F(z)G(z)T = 1 for all
z ∈ D . But, our goal is finding a solution U ∈ (H∞

I
(D)
)
l2 such that F(z)U(z)T = 1 for

all z ∈ D. For this, if we can find an operator Q so that MQ(H∞(D))l2 ⊆ (H∞(D))l2

and for all z ∈ D , ranQ(z) = kerF(z), then we can construct the required solution U
as

UT := GT +QXT ,

with a right choice of X ∈ (H∞(D))l2 . This solves our problem as follows:

F(z)U(z)T = F(z)G(z)T = 1, for all z ∈ D,

and the proper choice of X will make U ∈ (H∞
I

(D)
)
l2 .

The next lemma is a linear algebra result which gives us the desired Q operator
and so enables us to write down the most general pointwise solution of F(z)U(z)T = 1.
This lemma can be found in Ryle -Trent [16], but we provide a proof for convenience.
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LEMMA 2.1. Let {a j}∞
j=1 ∈ l2 and A = (a1,a2, . . .) ∈B(l2,C). Then there exists

a matrix QA of order ∞×∞ such that the entries of QA are either +
−

a j or 0 and QA

satisfies:
ranQA = kerA (2)

and
(AA∗)Il2 −A∗A = QAQ∗

A with ‖QA‖B(l2) � ‖A‖l2 .

Also, if {d j}∞
j=1 ∈ l2 and D = (d1,d2, . . .) , then

(ADT )Il2 −DTA = QAQT
D. (3)

Following few examples should be helpful to understand the Lemma 2.1 in a sim-
ple way.

Let f1, f2, . . . , fn ∈ H∞(D) and fix z ∈ D . Take F = [ f1 f2 , . . . , fn].

For n = 2, F = [ f1 f2], QF =
[

f2
− f1

]
.

Thus,

(FF∗)I2−F∗F =

[
| f2|2 − f1 f2
f2 f1 | f1|2

]
= QFQ∗

F .

Also, for any

D =
[
d1 d2

]
, (FDT )I2−DTF =

[
f2d2 −d1 f2

−d2 f1 f1d1

]
= QFQT

D.

Similarly, for n = 3, we take F =
[
f1 f2 f3

]
.

So, QF =

⎡
⎣ f2 f3 0
− f1 0 f3
0 − f1 − f2

⎤
⎦ .

And, for n = 4, F =
[
f1 f2 f3 f4

]
and QF =

⎡
⎢⎢⎣

f2 f3 f4 0 0 0
− f1 0 0 f3 f4 0
0 − f1 0 − f2 0 f4
0 0 − f1 0 − f2 f3

⎤
⎥⎥⎦ .

Form the above pattern, it is easy to see that the operators QF ’s can be constructed
inductively. Also, it is clear from (3), applied to A = F(z) and QD = QF(z) , that
ranQF(z) = kerF(z).

We are now ready to prove Lemma 2.1.

Proof of Lemma 2.1. For k ∈ N, define

Ak =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . .
...

...
...

. . .
ck+1 ck+2 ck+3 . . .
−ck 0 0 . . .
0 −ck 0 . . .
0 0 −ck . . .
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Multiplying Ak by A∗
k , we get

AkA
∗
k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0 0 0 0 . . .
... 0

...
...

...
... . . .

0 . . . 0 0 0 0 . . .
0 . . . 0 ∑∞

j=k+1 |c j|2 −ckck+2 −ckck+3 . . .

0 . . . 0 −ck ck+2 |ck|2 0 . . .
0 . . . 0 −ck ck+3 0 |ck|2 . . .
...

...
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence,

∞

∑
k=1

AkA
∗
k =

⎡
⎢⎢⎢⎣

∑∞
k �=1 |ck|2 −c1c2 −c1c3 . . .

−c2c1 ∑∞
k �=2 |ck|2 −c2c3 . . .

−c3c1 −c3c2 ∑∞
k �=3 |ck|2 . . .

...
...

...
. . .

⎤
⎥⎥⎥⎦= CC∗Il2 −C∗C.

Thus the required operator QA can be defined as

QA = [A1,A2, . . . .] ∈ B(⊕∞
1 l2, l2).

We note that (3) follows in a similar manner. �

We also need the following key lemma.

LEMMA 2.2. Assume that { f j}∞
j=1 ⊂ H∞

I
(D) and

0 < ε2 �
∞

∑
j=1

| f j(z)|2 � 1 for all z ∈ D.

Then

(a) ε2 � FcF
�
c =

∞

∑
j=1

| fc j |2 � 1

and

(b) ‖φF‖∞ = sup
z∈D

(
∞

∑
j=1

|φ f j (z)|2
)1/2

� 2.

Proof. Since for all z ∈ D,

ε2 �
∞

∑
j=1

| fc j + φ f j(z)|2 � 1,

we have that for each N ∈ N,

N

∑
j=1

| fc j + φ f j(z)|2 � 1.
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But, {φ f j}N
j=1 ⊂ I and I is a proper ideal, so by the corona theorem

inf
z∈D

N

∑
j=1

|φ f j (z)|2 = 0.

This means that for each N

N

∑
j=1

| fc j |2 � 1, and hence
∞

∑
j=1

| fc j |2 � 1.

Thus, (b) holds, since for z ∈ D(
∞

∑
j=1

|φ f j (z)|2
) 1

2

�
(

∞

∑
j=1

| fc j + φ f j(z)|2
) 1

2

+

(
∞

∑
j=1

| fc j |2
) 1

2

� 2.

Now by the Rosenblum- Tolokonnikov-Uchiyama version of the corona theorem,
since {φ f j}∞

j=1 ⊂ I and I is a proper closed ideal and sup
z∈D

∑∞
j=1 |φ f j (z)|2 � 2 < ∞, we

have

inf
z∈D

∞

∑
j=1

|φ f j (z)|2 = 0.

Thus there exist {zk}∞
k=1 ⊂ D so that lim

k→∞
∑∞

j=1 |φ f j (zk)|2 = 0.

Therefore, from

ε �
(

∞

∑
j=1

| fc j + φ f j(zk)|2
) 1

2

�
(

∞

∑
j=1

| fc j |2
) 1

2

+

(
∞

∑
j=1

|φ f j (zk)|2
) 1

2

,

we deduce that

ε2 �
∞

∑
j=1

| fc j |2.

So (a) follows. �
Now we are ready to prove our theorems.

3. The proofs

Proof of Theorem 1.1. Let F ∈ (H∞
I

(D)
)
l2 , and suppose

0 < ε2 � F(z)F(z)∗ � 1 for all z ∈ D.

Then we know that there is a corona solution for F , say G , which lies in (H∞(D))l2

such that

F(z)G(z)T =1, for all z ∈ D and

‖G‖∞ � 9
ε2 ln

(
1
ε2

)
.
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Our aim is finding U ∈ (H∞
I

(D)
)
l2 such that F(z)U(z)T = 1 for all z ∈ D. For this, we

construct a new solution by adding a correction term to G(z)T .
Write F(z) = Fc +φF(z) , where Fc = { fc1 , fc2 , . . .} ∈ l2 and φF = {φ f1 ,φ f2 , . . .} ∈

Il2 .
Using (3), we have that

Il2 = (F(z)G(z)T )I = G(z)T F(z)+QF(z)Q
T
G(z)

This implies that
Il2 = G(z)T Fc +QF(z)Q

T
G(z) +G(z)T φF(z). (4)

Applying F�
c to (4), we get

F�
c = G(z)T FcF

�
c +QF(z)Q

T
G(z)F

�
c +G(z)T φF(z)F�

c .

Also, from Lemma 2.2, we know that ‖Fc‖2 > 0, so

F�
c

‖Fc‖2 = G(z)T +QF(z)Q
T
G(z)

F�
c

‖Fc‖2 +G(z)T φF(z)
F�

c

‖Fc‖2 .

Thus,

G(z)T +QF(z)Q
T
G(z)

F�
c

‖Fc‖2 =
F�

c

‖Fc‖2 −G(z)T φF(z)
F�

c

‖Fc‖2 . (5)

Define

U(z)T := G(z)T +QF(z)Q
T
G(z)

F�
c

‖Fc‖2 .

Using (2), we can clearly see that

F(z)U(z)T = F(z)G(z)T +F(z)QF(z)Q
T
G(z)

F�
c

‖Fc‖2 = F(z)G(z)T = 1, for all z ∈ D.

Also, the right side of ( 5) shows that the solution U is in
(
H∞

I
(D)
)
l2 .

For the norm estimate, we have that ‖U‖∞ �
(
1+ 1

‖Fc‖
)
‖G‖∞.

Hence,

‖U‖∞ �
(

1+
1

‖Fc‖
)

9
ε2 ln

(
1
ε2

)
.

This completes the proof of Theorem 1. �

Proof of Theorem 1.2. Let F ∈ H∞
I

(D)l2 , and suppose

|h(z)| � F(z)F(z)∗ψ (F(z)F(z)∗) � 1 for all z ∈ D

By Treil’s theorem, there exists G ∈ H∞
l2

(D) such that

F(z)G(z)T = h(z) for all z ∈ D
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and ‖G‖∞ � C0, where C0 is the estimate for the H∞(D)-solution obtained in [22].
Writing F(z) = Fc + φF(z) , h(z) = hc + φh(z) and using the relation (3) as in the

proof of Theorem 1.1, we get

hc
F∗

c

‖Fc‖2 +
(
φh −G(z)T φF(z)

) F∗
c

‖Fc‖2 = G(z)T +QF(z)Q
T
G(z)

F∗
c

‖Fc‖2 . (6)

Define

V (z)T := G(z)T +QF(z)Q
T
G(z)

F∗
c

‖Fc‖2

It’s clear that
F(z)V (z)T = h(z), for all z ∈ D.

Since G ∈ (H∞(D))l2 and the elements of φF are in I , the left side of the equation (6)
shows that the solution V is in (H∞

I
(D))l2 .

As in the corona theorem, for the norm estimate, we have that

‖V‖∞ �
(

1+
1

‖Fc‖
)
‖G‖∞ � C0

(
1+

1
‖Fc‖

)
,

where C0 is the norm of the H∞(D) solution, G , obtained in [22]. �

Proof of Corollary 1. The proof of this corollary follows similarly as the proof of
Theorem 1.2 by using Wolff’s Theorem instead of Treil’s Theorem. �
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