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Abstract. We provide a characterization for operator-valued completely bounded linear maps on
Hilbert C∗-modules in terms of ϕ -maps. Also, we show that for every operator-valued com-
pletely positive map ϕ on a C∗ -algebra A , there is a unique (up to multiplication by a unitary
operator) non-degenerate ϕ -map on each Hilbert A -module.

1. Introduction

The study of ϕ -maps on Hilbert C∗-modules has increased significantly during
recent decades. In this context, several concepts such as representation theory of Hilbert
C∗-modules, dilation theory of ϕ -maps and CP-extendable maps were studied ([1, 3,
4, 5, 6, 9, 11, 12, 16, 17]). Therefore, it becomes natural to concentrate on ϕ -maps
as important maps on Hilbert C∗-modules. To confirm this statement, we show that an
operator-valued map on a Hilbert C∗-module is completely bounded if and only if it can
be decomposed to a bounded operator and a ϕ -map, for a completely positive map ϕ
on the underlying C∗ -algebra of the Hilbert C∗-module.

Moreover, for a given operator-valued completely positive map ϕ on a C∗ -algebra
A and its minimal Stinespring dilation π , we construct a ϕ -map and a π -representation
for each Hilbert A -module E and also we show that every non-degenerate ϕ -map
(non-degenerate π -representation) on E is a unitary operator multiple of the above
constructed ϕ -map (π -representation).

We denote Hilbert spaces by H ,K ,L . The set of all bounded operators between
Hilbert spaces H ,K is denoted by B(H ,K ), and B(H ) := B(H ,H ).

Assume E is a Hilbert C∗-module over a unital C∗ -algebras A . The linking C∗ -

algebra of E is denoted by L (E ) and defined as L (E ) := {
[
T x
y∗ a

]
: a ∈ A ,T ∈

K(E ),x,y ∈ E }, where K(E ) is the set of compact operators on E . Also, for arbitrary
given maps ρ : A → B(H ) , σ : K(E ) → B(K ) and Ψ : E → B(H ,K ) , the map[
T x
y∗ a

]
�→

[
σ(T ) Ψ(x)
Ψ(y)∗ ρ(a)

]
from L (E ) into B(K ⊕H ) is denoted by

[
σ Ψ

Ψ∗ ρ

]
.

If ϕ : A →B(H ) is a completely positive map and Φ : E → B(H ,K ) a map,
then we say that
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(1) Φ is non-degenerate, if [Φ(E )H ] = K .

(2) Φ is a ϕ -map, if Φ(x)∗Φ(y) = ϕ(〈x,y〉) , for all x,y ∈ E .
(3) Φ is a representation (or ρ -representation), if there is a ∗ -representation ρ :

A → B(H ) such that Φ is a ρ -map.
(4) Φ is a completely semi-ϕ -map, if Φn(x)∗Φn(x) � ϕn(〈x,x〉) for every n ∈ N

and x ∈ Mn(E ).
(5) Φ is a CP-extendablemap, if there exist completely positive maps φ1 : K(E )→

B(K ) and φ2 : A → B(H ) such that

[
φ1 Φ
Φ∗ φ2

]
: L (E ) → B(K ⊕H ), is a com-

pletely positive map.
(6) Φ is dilatable if there is a representation Ψ : E → B(H ′,K ′) and bounded

operators V : H → H ′ and W : K → K ′ such that Φ(x) = W ∗Ψ(x)V, for every
x ∈ E .

Positive definite kernels are a non-linear version of completely positive maps
which are older than their linear counterpart (see [2, 7, 8, 14]) for more details). A
positive definite kernel on a set X is a two-variable function φ : X ×X → B(H ) ,
where H is a Hilbert space, such that [φ(xi,x j)] ∈ Mn(B(H ))+, for any choice of
x1, · · ·,xn in X . From now on we use PD kernel to abbreviate positive definite kernel.

For a given PD kernel φ : X ×X → B(H ) there is a standard way to construct
another Hilbert space K such that φ is decomposed into more tractable functions from
X into B(H ,K ) [7, 8].

DEFINITION 1.1. Let X be a non-empty set and φ : X ×X → B(H ) be a PD
kernel. A Kolmogorov decomposition pair for φ is a pair (ν,K ) consists of a Hilbert
space K a map ν : X → B(H ,K ) such that φ(x,y) = ν(x)∗ν(y). A Kolmogorov
decomposition pair is called minimal when [ν(X)H ] = K .

The existence of the Kolmogorov decomposition pair for a PD kernel is a well-
known result:

THEOREM 1.2. Let φ : X ×X → B(H ) be a PD kernel, then there is a Hilbert
space K and a map ν : X → B(H ,K ) such that φ(x,y) = ν(x)∗ν(y) , for all x,y ∈
X .

REMARK 1.3. Minimal Kolmogorov decomposition pairs of φ are unique up to
unitary equivalence. That is, if (ν,K ) is a minimal Kolmogorov decomposition of φ
and (υ ,L ) is an arbitrary Kolmogorov decomposition pair of φ , then there is a unique
isometry V : K → L such that Vν(x) = υ(x).

To every map Φ : X → B(H ,K ), one can associate a PD kernel ΛΦ : X ×X →
B(H ) by ΛΦ(x,y) = Φ(x)∗Φ(y), which has Φ as its Kolmogorov decomposition.
Also, a completely positive map ϕ : A → B(H ) induces a PD kernel ϕ̃ : E ×E →
B(H ) by ϕ̃(x,y) = ϕ(〈x,y〉) , on every Hilbert A -module E .
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2. Main Theorems

The following theorem says that each operator-valued completely bounded map
on a Hilbert C∗-module is an operator multiple of some ϕ -map. We mention that a
similar discussion can be found in [17, Section 3]. In fact, the main idea of the proof is
to use the fact that the space B(K⊕H) is injective in the category of operator systems.

THEOREM 2.1. Let E be a right Hilbert C∗-module over a unital C∗ -algebra A
and Φ : E → B(H ,K ) be a map. The following statements are equivalent

(i) Φ is a completely bounded linear map.
(ii) There exist a completely positive map ϕ : A → B(H ) , a Hilbert space L ,

a ϕ -map Γ : E → B(H ,L ) and a bounded operator S : L → K such that Φ(x) =
SΓ(x) , for all x ∈ E .

The following lemma provides a representation theorem for completely positive
maps on C∗ -algebras, in term of maps on Hilbert C∗-modules.

LEMMA 2.2. Let E be a right Hilbert C∗-module over a unital C∗ -algebra A ,
ϕ : A → B(H ) a completely positive map and (π ,K ,V ) be the minimal Stine-
spring dilation triple of ϕ . Then, there exists a triple ((Φϕ ,Hϕ ),(Ψπ ,Kπ),Wϕ ) con-
sisting of Hilbert spaces Hϕ and Kπ , a unitary operator Wϕ : Hϕ → Kπ , a non-
degenerate ϕ -map Φϕ : E → B(H ,Hϕ ) and a non-degenerate π -representation
Ψπ : E → B(K ,Kπ) such that Φϕ (x) = W ∗

ϕ Ψπ(x)V, for all x ∈ E .

Now, we summarize some results about ϕ -maps on Hilbert C∗-modules. In fact,
in the following theorem, part (i) is the same as Bhat-Ramesh-Sumesh’s theorem [5,
Theorem 2.1] and also says that for every completely positive map on a C∗ -algebra
A , such as ϕ : A → B(H ) , there is a unique (up to multiplication by a unitary
operator) non-degenerate ϕ -map on each Hilbert A -module. Part (ii) strengthens [4,
Theorem 3.4] and characterizes completely semi-ϕ -maps as operator multiples of ϕ -
maps. Also, part (iii) is a similar result to (i) and finally, part (iv) exposes the relation
between every pair of ϕ -maps and π -representations on a same Hilbert C∗-module.

THEOREM 2.3. With the notations of the above lemma, one has
(i) a map Φ : E → B(H ,H ′) is a (non-degenerate) ϕ -map if and only if there

exist a (unitary) isometry SΦ : Hϕ → H ′ and a (unitary) coisometry W : H ′ → Kπ
such that SΦΦϕ (x) = Φ(x) and Φ(x) = W ∗Ψπ(x)V, for all x ∈ E ;

(ii) a map Φ : E → B(H ,H ′) is a (non-degenerate) completely semi-ϕ -map
if and only if there exist a (dense range) contraction S : Hϕ → H ′, and a (injective)
contraction W : H ′ → Kπ such that SΦϕ(x) = Φ(x) and Φ(x) = W ∗Ψπ(x)V, for all
x ∈ E ;

(iii) a map Ψ : E → B(K ,K ′) is a (non-degenerate) π -representation if and
only if there exists an (unitary) isometry SΨ : Kπ → K ′ such that Ψ(x) = SΨΨπ(x),
for all x ∈ E ;
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(iv) if Ψ : E → B(K ,K ′) is a π -representation and Φ : E → B(H ,H ′) is a
ϕ -map, then there exists a partial isometry W : H ′ →K ′ such that Φ(x) =W ∗Ψ(x)V,
for all x ∈ E . Moreover, W is unitary when Φ and Ψ are non-degenerate.

Completely semi-ϕ -maps were introduced in [4] as generalizations of ϕ -maps.
By the above theorem, every completely semi-ϕ -map can be dilated to a representation
of the Hilbert C∗-module and therefore it is a linear map. Also, CP-extendable maps
were introduced in [17], and the authors in [4, Theorem 4.2] showed that an operator-
valued map on a Hilbert C∗-module is dilatable if and only if it is CP-extendable. There-
fore, we have the following result.

COROLLARY 2.4. Let E be a right Hilbert C∗-module over a unital C∗ -algebra
A and Φ : E → B(H ,K ) be a map. The following statements are equivalent

(i) Φ is a completely bounded linear map.
(ii) There exist a completely positive map ϕ : A → B(H ) , a Hilbert space L ,

a ϕ -map Γ : E → B(H ,L ) and a bounded operator S : L → K such that Φ(x) =
SΓ(x) , for all x ∈ E .

(iii) There is a completely positive map ψ : A → B(H ) such that Φ is a com-
pletely semi-ψ -map.

(iv) Φ is dilatable.
(v) Φ is CP-extendable.

The following corollary is a well known theorem on completely bounded maps on
C∗ -algebras [15]. However, we can conclude it as a special case of the above result,
since each C∗ -algebra is a right Hilbert C∗-module over itself and also K(A ) ∼= A ,
M2(A ) ∼= L (A ).

COROLLARY 2.5. Let A be a unital C∗ -algebra. If ψ : A → B(H ) is a com-
pletely bounded map, there exist completely positive maps φi : A → B(H ) , i = 1,2 ,

such that the map

[
φ1 ψ
ψ∗ φ2

]
: M2(A ) → B(H ⊕H ) is completely positive.

3. Proofs

Proof of Theorem 2.1. (i) ⇒ (ii) : Assume Φ is completely bounded. Since

B(K ⊕H ) =
[

B(K ) B(H ,K )
B(K ,H ) B(H )

]
, we can consider Φ as a map from E into

B(K ⊕H ).

Let L1(E ) := {
[
T x
y∗ a

]
: a ∈ A ,T ∈ K1(E ) := K(E ) + CIE ,x,y ∈ E }, be the

unitization of the linking C∗ -algebra of E , then ϕ can be extended to a completely
bounded map Ψ : L1(E ) → B(K ⊕H ) by Wittstock’s extension theorem. Then
there is a ∗ -representation π : L1(E ) → B(L ) and bounded operators Vi : K⊕H →
L , i = 1,2 such that Ψ(X) = V ∗

1 π(X)V2 for every X ∈ L1(E ). Using [1, Proposition
3.1] L decomposes to L2 ⊕L1 for two orthogonal closed subspaces L1 and L2
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and there exist ∗ -representations ρ : A → B(L1), σ : K1(E )→ B(L2) and a σ -ρ -

representation Γ0 : E →B(L1,L2) such that π =
[

σ Γ0

Γ∗
0 ρ

]
: L1(E ) →B(L2⊕L1).

Since Ψ is an extension of Φ, and the operators Vi, i = 1,2 has the matrix de-

compositions Vi =
[
Si,1 Si,2

Si,3 Si,4

]
∈ B(K ⊕H ,L2 ⊕L1), i = 1,2, one has

[
0 Φ(x)
0 0

]
= Ψ

([
0 x
0 0

])
=

[
S1,1 S1,2

S1,3 S1,4

]∗ [
σ(0) Γ0(x)

Γ0(0)∗ ρ(0)

][
S2,1 S2,2

S2,3 S2,4

]
,

for every x ∈ E . Thus Φ(x) = S∗1,1Γ0(x)S2,4 for every x ∈ E .
Now, if we set ϕ(·) = S∗2,4ρ(·)S2,4 and Γ(·) = Γ0(·)S2,4 , then ϕ is a completely

positive map, Γ is a ϕ -map and Φ(·) = S∗1,1Γ(·) .
(ii) ⇒ (i) Let Φ(·) = SΓ(·) . Let [xi j] ∈ Mn(E ) , then

Φn([xi j])∗Φn([xi j]) = [Γ(x ji)∗S∗][SΓ(xi j)]
= [Γ(x ji)∗]diag(S∗, · · ·,S∗)diag(S, · · ·,S)[Γ(xi j)]

� ||S||2[Γ(x ji)∗][Γ(xi j)] = ||S||2ϕn(〈[xi j], [xi j]〉)

Therefore,

‖Φn([xi j])‖2 = ‖Φn([xi j])∗Φn([xi j])‖ � ||S||2‖ϕ‖cb‖[xi j]‖2

and then Φ is a completely bounded map. �

Proof of Lemma 2.2. Define ϕ̃ : E ×E → B(H ) by

ϕ̃(x,y) := ϕ(〈x,y〉A )

for all x,y ∈ E . Note that the A -valued inner-product on E , 〈·, ·〉A : E ×E →A is a
PD kernel and ϕ is a completely positive map on A , therefore ϕ̃ is a PD kernel on E .
There is a (unique) minimal Kolmogorov decomposition (Φϕ ,Hϕ ) for ϕ̃ , consisting
of a Hilbert space Hϕ and a map Φϕ : E → B(H ,Hϕ ) such that the linear span of
Φϕ(E )H is a dense subspace of Hϕ and ϕ̃(x,y) = Φϕ(x)∗Φϕ (y) for all x,y ∈ E .
Thus Φϕ is a non-degenerate ϕ -map from E into B(H ,Hϕ ).

Similarly, define π̃ : E × E → B(K ) by π̃(x,y) := π(〈x,y〉A ) , for all x,y ∈
E . By the same reasoning as above, one shows the existence of a (unique) minimal
Kolmogorov decomposition pair (Ψπ ,Kπ) for π̃ , consisting of a Hilbert space Kπ and
a map Ψπ : E →B(H ,Kπ) such that the linear span of Ψπ(E )H is a dense subspace
of Kπ and π̃(x,y) = Ψπ(x)∗Ψπ(y) for all x,y ∈ E . Thus Ψπ is a non-degenerate π -
map from E into B(H ,Kπ).

Since (π ,V,K ) is a dilation triple for ϕ , and Φϕ is a ϕ -map, for every x,y ∈ E ,
we have

Φϕ (x)∗Φϕ (y) = ϕ(〈x,y〉A ) = V ∗π(〈x,y〉A )V = V ∗Ψπ(x)∗Ψπ(y)V. (1)
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The above equation implies that for every x1, . . . ,xn ∈ E and h1, . . . ,hn ∈ H

‖
n

∑
i=1

Φϕ (xi)hi‖Hϕ = ‖
n

∑
i=1

Ψπ(xi)Vhi‖Kπ .

Since Φϕ is a non-degenerate ϕ -map, the above equality guarantees the existence of
a unique isometry Wϕ : Hϕ → Kπ such that WϕΦϕ (x) = Ψπ(x)V satisfies for all x ∈
E . Since Φϕ and Ψπ are non-degenerate continuous linear maps and (π ,K ,V ) is a
minimal Stinespring dilation for ϕ ,

Wϕ (Hϕ ) = Wϕ([Φϕ (E )H ]) = [WϕΦϕ (E )H ] = [Ψπ(E )VH ]
= [Ψπ(E )π(A )VH ] = [Ψπ(E )[π(A )VH ]] = [Ψπ(E )K ] = Kπ

so Wϕ is a unitary operator with the desired property. �

Proof of Theorem 2.3. (i) As in the proof of Lemma 2.2, for every x1, . . . ,xn ∈ E
and h1, . . . ,hn ∈ H we have

‖
n

∑
i=1

Φ(xi)hi‖H ′ = ‖
n

∑
i=1

Φϕ (xi)hi‖Hϕ .

Thus there is an (onto) isometry SΦ : Hϕ → H ′ such that SΦΦϕ(x)h = Φ(x)h
for every x ∈ E and h ∈ HΦ. Then Φ(x) = SΦW ∗

ϕ Ψπ(x)V for every x ∈ E . Put W :=
WϕS∗Φ. Since Wϕ is a unitary and SΦ is an isometry, W is a coisometry. Besides,
Φ(x) = W ∗Ψπ(x)V and SΦΦϕ (x) = Φ(x) for every x ∈ E .

For the non-degenerate case, we have [Φ(E )H ] = H ′ . Hence, the isometry SΦ
is onto and so it is unitary. Consequently, W is a unitary operator, too.

Conversely, each of the equations Φ(·) =W ∗Ψπ(·)V when W is a coisometry and
Φ(·) = SΦΦϕ (·) when SΦ is an isometry, imply that Φ is a ϕ -map.

(ii) Let Φ be a (non-degenerate) completely semi-ϕ -map. For every x1, . . . ,xn ∈
E , we have

[Φ(xi)∗Φ(x j)]i, j � [ϕ(〈xi,x j〉)]i, j.
Consequently, for every x1, . . . ,xn ∈ E and h1, . . . ,hn ∈ H we have

‖
n

∑
i=1

Φ(xi)hi‖2 �
n

∑
i=1

n

∑
j=1

〈ϕ(〈x j,xi〉)hi,h j〉 = ‖
n

∑
i=1

Φϕ(xi)hi‖2.

Thus there is a (dense range) contractive linear operator S : Hϕ → H ′ such that
SΦϕ(x) = Φ(x) for every x ∈ E . Therefore Φ(x) = SW ∗

ϕ Ψπ(x)V for every x ∈ E .
Put W := WϕS∗. Since Wϕ is a unitary and S is a (dense range) contractive operator,
W is a (injective) contraction, and Φ(x) = W ∗Ψπ(x)V for every x ∈ E .

Conversely, when W : H ′ → Kπ is a contraction, then WW ∗ � ‖W‖2idKπ �
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idKπ . Hence, the equation Φ(·) = W ∗Ψπ(·)V implies that

Φn([xi j])∗Φn([xi j]) = [W ∗Ψπ(xi j)V ]∗[W ∗Ψπ(xi j)V ] = [(Ψπ(x ji)V )∗W ][W ∗(Ψ(xi j)V )]
= [(Ψπ(x ji)V )∗]diag(W, . . . ,W )diag(W ∗, . . . ,W ∗)[Ψπ(xi j)V ]
� [V ∗Ψπ(x ji)∗]diag(idKπ , . . . , idK π)[(Ψ(xi j)V )]
� [V ∗Ψπ(x ji)∗][Ψπ(xi j)V ]
� diag(V ∗, . . . ,V ∗)[Ψπ(x ji)∗][Ψπ(xi j)]diag(V, . . . ,V )
= diag(V ∗, . . . ,V ∗)πn(〈[xi j], [xi j]〉)diag(V, . . . ,V ) = ϕn(〈[xi j], [xi j]〉),

for every n ∈ N and every [xi j] ∈ Mn(E ). Thus, Φ is a completely semi-ϕ -map.
(iii) We note that every π -representation is a π -map. Therefore, part (iii) is a

special case of part (i).
(iv) In order to prove this, it is sufficient to set W := SΨWϕS∗Φ. �

Proof of Corollary 2.4. (i ⇔ ii) By Theorem 2.1.
( ii ⇒ iii) Let ψ := ‖S‖2ϕ . Let [xi j] ∈ Mn(E ) . Thus

Φn([xi j])∗Φn([xi j]) = [Γ(x ji)∗S∗][SΓ(xi j)]
= [Γ(x ji)∗]diag(S∗, · · ·,S∗)diag(S, · · ·,S)[Γ(xi j)]

� ||S||2[Γ(x ji)∗][Γ(xi j)] = ||S||2ϕn(〈[xi j], [xi j]〉)

and then Φ is a completely semi-ψ -map.
( iii ⇒ iv) By part (ii) of Theorem 2.3.
( iv ⇒ v) See [4, Theorem 4.2]
(v ⇒ i) As Φ is the 1− 2 corner of some completely positive mapping on the

linking C∗ -algebra L (E ) , then Φ is a completely bounded map. �
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