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Abstract. It is shown that every bounded linear operator T in a complex Hilbert space H is the
(1,1) -compression of an operator in H ⊕H that is similar to a self-adjoint operator.

1. Introduction and notation

Let H1,H2 denote complex Hilbert spaces, and K := H1⊕H2 denote their orthog-
onal sum. An operator matrix (or matrix operator) with respect to this decomposition
of K is a 2×2 matrix

T =
(

T11 T12

T21 T22

)
,

where Tjk is a bounded linear operator mapping Hk into Hj ( j,k = 1,2) , in sign: Tjk ∈
L(Hk,Hj) .

Denote the orthogonal projection of K onto Hj by Pj , and the canonical injection
of the space Hk into K by Jk , i.e., let

Pj(x1⊕ x2) := x j ∈ Hj, J1x1 := (x1⊕0), J2x2 := (0⊕ x2).

Then we see that Tjk = PjTJk , and we have Pk = J∗k , where ∗ denotes the Hilbert space
adjoint ( j,k = 1,2). In the general situation described above, we shall say that T is a
( j,k)-dilation of the operator Tjk and, equivalently, Tjk is a ( j,k)-compression of the
operator T .

We shall show that though it may not have a self-adjoint (1,1)-dilation, every T ∈
L(H) has a (1,1)-dilation that is similar to a self-adjoint operator.

The notation is standard with mild exceptions. An (either classical or generalized)
resolution of the identity (operator-valued measure) of the operator T at the Borel set
b is denoted by E(T ;b) or G(T ;b) , integration with respect to it (in the spirit of [1])
by

∫
f (z)G(T ;dz) . The dilation T of the operator T ∈ L(H) is written in boldface.

〈,〉 denotes scalar product, ⊕ denotes orthogonal sum, � orthogonal complement. For
T ∈ L(H) , |T | will denote the operator (T ∗T )1/2 , and ||T || the norm of T . T =
U(T )|T | will denote the polar decomposition of the operator T . R+ and R− denote
the open intervals (0,∞) and (−∞,0) , respectively.
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2. Completely bounded measures and dilations

Recall the following concepts and facts (see, e.g., [3]).
Let X be a compact subset of C , and let B be the σ -algebra of all Borel subsets of

X . Let H be a complex Hilbert space, and L(H) denote the C∗ -algebra of all bounded
linear operators in H . An L(H)-valued measure E on X is a map B → L(H) which is
weakly countably additive. It is called bounded if ||E|| := sup{||E(b)|| : b ∈ B} < ∞.
The measure E is regular if for every x,y ∈ H the complex valued measure mx,y(b) :=
〈E(b)x,y〉 is regular. For such a measure E the map

φ : C(X) → L(H), φ( f ) :=
∫

X
f (z)E(dz),

where C(X) is the unital C∗ -algebra of all continuous complex valued functions on X ,
is bounded and linear. In the converse direction: a bounded, linear map φ : C(X) →
L(H) determines uniquely operators E(b) ∈ L(H) for b ∈ B such that the map b 	→
E(b) is a bounded regular L(H)-valued measure. Such measures are called

(1) spectral if E(a∩b) = E(a)E(b) ,
(2) positive if E(b) � 0,
(3) self-adjoint if E(b)∗ = E(b) ,
(4) normalized if E(X) = I

(for all Borel sets a,b ). It is clear that if E is spectral and self-adjoint, then its values are
orthogonal projections, hence E is positive. The basic relationships between properties
of a pair E,φ are listed in the following

SCHOLIUM. (cf. [3, p. 49]) Let E,φ be as above.
(i) E is self-adjoint ⇔ φ is a self-adjoint map,
(ii) E is positive ⇔ φ is a positive map,
(iii) E is spectral ⇔ φ is a homomorphism,
(iv) E is spectral and self-adjoint ⇔ φ is a ∗ -homomorphism,
(v) E is completely bounded ⇔ φ is a completely bounded map.

The definition of a completely bounded map can be found in [3, pp. 4–5], and we can
accept (v) as the definition of a completely bounded L(H)-valued measure.

The basic characterization of a completely bounded L(H)-valued measure was
obtained by Hadwin [2, Theorems 3, 20] (cf. also Wittstock [6]), and was completed
later by Suen [5, Theorem 3.1]. We cite it in the latter form, and bring only one proof
which is useful in our study. We readily acknowledge that the main ideas in this part
come from Hadwin [2, Lemma 2, Theorem 3].

THEOREM (HWS). Let E be a regular, bounded L(H)-valued measure. The
following are equivalent:

(i) E has a Hahn decomposition E = (E1 −E2)+ i(E3−E4) , where each Ek is a
positive measure on B;

(ii) there exist positive measures F1,F2 such that the L(H ⊕H)-valued operator
measure (

F1(·) E(·)
E(·)∗ F2(·)

)
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is positive;
(iii) there exist a Hilbert space K , a self-adjoint, spectral, L(K)-valued measure

F on X , and linear operators A : K → H, V : H → K such that E(·) = AF(·)V ;
(iv) there exist a Hilbert space M ⊃H and a (not necessarily self-adjoint) spectral,

L(M)-valued measure G such that

E(·) = P[G(·)|H],

where P is the orthogonal projection of M onto H ;
(v) E is completely bounded.

Proof. As mentioned before, we shall prove here only that (iii) ⇒ (iv) . At first
we show that in (iii) we can assume that K = H , without restricting the generality.

Indeed, under the conditions of (iii) define the following objects:

E(·) : H ⊕K → H⊕K, E(·) := E(·)|H⊕0|K,

A : H ⊕K → H⊕K, A := 0|H +A|K,

F(·) : H⊕K → H⊕K, F(·) := 0|H⊕F(·)|K,

V : H ⊕K → H⊕K, V := V |H +0|K.

We have then for every h⊕ k ∈ H⊕K

AF(·)V[h⊕ k] = AF(·)[0⊕Vh] = A[0⊕F(·)Vh] = AF(·)Vh⊕0 = E(·)h⊕0

= E(·)[h⊕ k],

each of the four objects map H⊕K into H⊕K , F is a self-adjoint, spectral, L(H⊕K)-
valued (not necessarily normalized!) measure on X , and E is a regular, bounded,
L(H ⊕K)-valued (not necessarily normalized) measure on X .

Hence we see that in (iii) we can assume that the two Hilbert spaces H,K occur-
ring there are identical.

We shall denote this Hilbert space by Z , and apply the notation in (iii).
Let M := Z1⊕Z2 , where Zk = Z (k = 1,2) , let Pk denote the orthogonal projection

of M onto Zk , and let Jk := P∗
k be the injection of Zk into M (k = 1,2) . Define the

operator valued measure

FM : B → M, FM(·) := F(·)⊕0.

This measure is self-adjoint, spectral, and not normalized. Define the matrix operators
in L(M) :

S :=
(

V I
I−AV −A

)
, W :=

(
A I

I−VA −V

)
.

Then W = S−1 , and it is easy to check that

P1S
−1FM(·)SJ1 = AF(·)V = E(·) ∈ L(Z).
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Define now G(·) := S−1FM(·)S . In general this is an L(M)-valued, spectral, not self-
adjoint and not normalized measure, which is clearly similar to the measure FM . For
any z ∈ Z we have

E(·)z = P1G(·)J1z = P1G(·)[z⊕0],

which is statement (iv). �

REMARK. With the notation above consider the polar decomposition S =U(S)|S| .
Since S is invertible, the positive operator |S| is invertible and U(S) is unitary in L(M) .
The measure F̃M(·) := U(S)∗FM(·)U(S) is self-adjoint, spectral, and not necessarily
normalized. Since

G(·) = S−1FM(·)S = |S|−1U(S)∗FM(·)U(S)|S|= |S|−1F̃M(·)|S|,
the measure G is similar to a self-adjoint, spectral measure via the positive invertible
operator |S| .

COROLLARY 1. Consider the polar decomposition U(T )|T | of the operator T ∈
L(H) , and for every Borel set b ⊂ [0,∞) let

F(b) := U(T )E(|T |;b)I.

Applying the method of the preceding proof, define

S :=
(

I I
I−U(T) −U(T )

)
∈ L(H ⊕H).

Then S is invertible, and we obtain

F(b) = P1S
−1(E(|T |;b)⊕0)SJ1,

i.e. F is the (1,1)-compression of a measure in L(H ⊕H) that is similar to a self-
adjoint, spectral, not normalized measure.

Proof. The (constructive) proof of the statement is contained in the proof of the
preceding theorem. �

A modification of the method above yields the proof of

THEOREM 1. Let T ∈ L(H) with polar decomposition U(T )|T | , and define the
operator matrix S as above. Then

T = P1S
−1(|T |⊕0)SJ1 = P1|S|−1U(S)∗[|T |⊕0]U(S)|S|J1,

i.e. T is the (1,1)-compression of an operator in L(H ⊕H) that is similar to a self-
adjoint operator. Further, T is the (1,1)-compression of an operator in L(H⊕H) that
is similar to a self-adjoint operator via a positive invertible operator.

Proof. Define the operator S ∈ L(H⊕H) as in the preceding proof. Then F(b) =
P1S−1(E(|T |;b)⊕0)SJ1, , hence

T = U(T )
∫

R+
zE(|T |;dz) =

∫
R+

zF(dz) = P1S
−1[

∫
R+

zE(|T |;dz)⊕0]SJ1

= P1S
−1[|T |⊕0]SJ1 = P1|S|−1U(S)∗[|T |⊕0]U(S)|S|J1. �
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Let Hk := ⊕k
j=1H . Assume that the self-adjoint L(H2)-valued spectral measure

F(·) is a (1,2)-dilation of a regular, completely bounded L(H)-valued measure E(·) ,
i.e.,

E(·) = P(H2;1)F(·)J(H → H2;2) ∈ L(H).

Here P(H2;1) denotes the (orthogonal) projection of H2 onto the first orthogonal sum-
mand space H (parallel to the second space H ), J(H → H2;2) denotes the canonical
injection of H onto the second summand of H2 , and we shall employ similar notation
in what follows. The results above have the following

COROLLARY 2. In the situation (and with the notation) described above, there
is a spectral, L(H6)-valued measure G6 that is similar to a self-adjoint measure, and
satisfies for every h ∈ H

E(·)h = P(H6;1)G6(·)J(H → H6;1)h.

Proof. The proof of the theorem (HWS) (iii) =⇒ (iv) shows that we can choose
Z := H⊕H2 = H3 , and there is an L(H6)-valued measure G6 with the indicated prop-
erties such that

E(·) = P(H3⊕H3;1)G6(·)J(H3 → H3⊕H3;1).

Pre- and postmultiplying with two suitable operators, we obtain

E(·) = P(H3;1)E(·)J(H → H3;1)

= P(H3;1)P(H3⊕H3;1)G6(·)J(H3 → H3⊕H3;1)J(H → H3;1)

= P(H6;1)G6(·)J(H → H6;1). �

For the basics on equivalent scalar products we refer to [4]. From Theorem 1 we
obtain the following

THEOREM 2. Let T ∈ L(H) , and apply the notation of Theorem 1. Let H2 :=
H1⊕H2 , where H1 = H2 = H , and T̂ := S−1(|T |⊕0)S∈ L(H2) . Then there is a scalar
product (,) in H2 that is equivalent to the original scalar product 〈,〉 in H2 := H⊕H ,
with respect to which the operator T̂ is self-adjoint. In the relation

T = P1T̂ J1

the operators J1 : H1 → H2, P1 : H2 → H1 have the meanings as before, and are linear
and bounded (also) with respect to the new norm in H2 . In other words: T is the clas-
sical (1,1)-compression of the operator T̂ ∈ L(H2) , which is self-adjoint with respect
to the new scalar product (,) , and the operators J1,P1 correspond to the direct sum
decomposition H2 := H1⊕H2 , which need not be orthogonal in the scalar product (,) .

Proof. Since S : H2 → H2 is a bijection, in its polar decomposition S = U(S)|S|
the operator U(S) is a unitary, and |S| is a strictly positive operator in H2 . Further,
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T̂ = |S|−1U(S)∗(|T |⊕0)U(S)|S| , and the middle operator V :=U(S)∗(|T |⊕0)U(S) is
self-adjoint in the scalar product 〈,〉 in H2 . Define the new scalar product (,) in H2

with the notation B := |S| by

(h,k) := 〈Bh,Bk〉 (h,k ∈ H2).

This induces the B-norm |h|B = (Bh,Bh)1/2 in H2 , which is equivalent to the old norm
and, together with the original Hilbert space X := [H2,〈,〉] , we also consider the new
Z := [H2,(,)] . Any operator W ∈ L(X) clearly lies in L(Z) , and conversely. Further,
the adjoints W ∗ ∈ L(X) and WB ∈ L(Z) are connected as follows. For any x,y ∈ H2

we have

〈BWBB−1Bx,By〉 = 〈BWBx,By〉 = (WBx,y) = (x,Wy) = 〈Bx,BWy〉 = 〈Bx,BWB−1By〉.

It implies BWBB−1 = [BWB−1]∗ , hence

WB = B−2W ∗B2.

Since T̂ = B−1VB , we obtain that

T̂B = B−2T̂ ∗B2 = B−2BVB−1B2 = B−1VB = T̂ ,

i.e., T̂ is self-adjoint in the new scalar product (,) .
It is clear that the direct sum decomposition H2 := H1⊕H2 need not be orthogonal

in the new scalar product (,) . Further, the definitions of the operators J1,P1 remain
formally the same, e.g., J1h1 = h1 ⊕ 0 ∈ H2 . Since the old and the new norms in H2

are equivalent, the operators J1,P1 remain bounded also with respect to the new norms
in H2 . �
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