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DILATIONS SIMILAR TO A SELF-ADJOINT OPERATOR
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Dedicated to the memory of Professor Leiba Rodman
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Abstract. 1t is shown that every bounded linear operator 7 in a complex Hilbert space H is the
(1,1) -compression of an operator in H & H that is similar to a self-adjoint operator.

1. Introduction and notation

Let Hy,H, denote complex Hilbert spaces, and K := H; & H, denote their orthog-
onal sum. An operator matrix (or matrix operator) with respect to this decomposition

of K is a 2 x 2 matrix
T Tz
T— ,
<T21 T

where T is a bounded linear operator mapping Hy into H; (j,k=1,2), insign: Tj, €
L(Hy,Hj).

Denote the orthogonal projection of K onto H; by P;, and the canonical injection
of the space Hy into K by Ji, i.e., let

Pj(x1 @)Cz) =Xj e Hj7 Jixy = (x1 EBO), Joxy = (0 EBXQ).

Then we see that Tj; = P;TJ;, and we have P, = J;', where * denotes the Hilbert space
adjoint (j,k = 1,2). In the general situation described above, we shall say that T is a
(J,k)-dilation of the operator Ty, and, equivalently, Ty is a (j,k)-compression of the
operator T.

We shall show that though it may not have a self-adjoint (1,1)-dilation, every T €
L(H) has a (1,1)-dilation that is similar to a self-adjoint operator.

The notation is standard with mild exceptions. An (either classical or generalized)
resolution of the identity (operator-valued measure) of the operator 7 at the Borel set
b is denoted by E(T;b) or G(T;b), integration with respect to it (in the spirit of [1])
by [ f(z)G(T;dz). The dilation T of the operator T € L(H) is written in boldface.
(,) denotes scalar product, @ denotes orthogonal sum, & orthogonal complement. For
T € L(H), |T| will denote the operator (T*T)'/?, and ||T|| the norm of 7. T =
U(T)|T| will denote the polar decomposition of the operator 7. Ry and R_ denote
the open intervals (0,e0) and (—eo,0), respectively.
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2. Completely bounded measures and dilations

Recall the following concepts and facts (see, e.g., [3]).

Let X be a compact subset of C, and let B be the ¢ -algebra of all Borel subsets of
X . Let H be a complex Hilbert space, and L(H) denote the C*-algebra of all bounded
linear operators in H. An L(H)-valued measure E on X is amap B — L(H) which is
weakly countably additive. It is called bounded if ||E|| := sup{||E(D)|| : b € B} < .
The measure E is regular if for every x,y € H the complex valued measure ni, ,(b) :=
(E(D)x,y) is regular. For such a measure E the map

0:C(X) = L(H),  o(f) = /X F(2)E(dz),

where C(X) is the unital C* -algebra of all continuous complex valued functions on X,
is bounded and linear. In the converse direction: a bounded, linear map ¢ : C(X) —
L(H) determines uniquely operators E(b) € L(H) for b € B such that the map b —
E(b) is a bounded regular L(H)-valued measure. Such measures are called

(1) spectral if E(anb) = E(a)E(D),

(2) positive if E(b) >0,

(3) self-adjoint if E(b)* = E(b),

(4) normalized if E(X) =1
(for all Borel sets a,b). Itis clear thatif E is spectral and self-adjoint, then its values are
orthogonal projections, hence E is positive. The basic relationships between properties
of a pair E, ¢ are listed in the following

SCHOLIUM. (cf.[3,p.49]) Let E, ¢ be as above.

(i) E is self-adjoint < ¢ is a self-adjoint map,

(ii) E is positive < @ is a positive map,

(iii) E is spectral < ¢ is a homomorphism,

(iv) E is spectral and self-adjoint < ¢ is a *-homomorphism,

(v) E is completely bounded < ¢ is a completely bounded map.
The definition of a completely bounded map can be found in [3, pp. 4-5], and we can
accept (v) as the definition of a completely bounded L(H )-valued measure.

The basic characterization of a completely bounded L(H)-valued measure was
obtained by Hadwin [2, Theorems 3, 20] (cf. also Wittstock [6]), and was completed
later by Suen [5, Theorem 3.1]. We cite it in the latter form, and bring only one proof
which is useful in our study. We readily acknowledge that the main ideas in this part
come from Hadwin [2, Lemma 2, Theorem 3].

THEOREM (HWS). Let E be a regular, bounded L(H)-valued measure. The
following are equivalent:

(i) E has a Hahn decomposition E = (E; — E») +i(Ez — E4), where each Ey is a
positive measure on B;

(ii) there exist positive measures Fy,F, such that the L(H @ H )-valued operator
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is positive;

(iii) there exist a Hilbert space K, a self-adjoint, spectral, L(K)-valued measure
F on X, and linear operators A: K — H, V : H — K such that E(-) =AF(-)V;

(iv) there exist a Hilbert space M D H and a (not necessarily self-adjoint) spectral,
L(M)-valued measure G such that

E(-) = P[G()|H],

where P is the orthogonal projection of M onto H ;
(v) E is completely bounded.

Proof. As mentioned before, we shall prove here only that (iii) = (iv). At first
we show that in (iii) we can assume that K = H, without restricting the generality.
Indeed, under the conditions of (iii) define the following objects:

E():HOK—H®K, E():=E()|H®OK,
A:H®K ->H&K, A:=0H+AK,
F():HGK—H&K, F():=0H®aF()K,
V:HoK -H®K, V:=V|H+0K.

We have then for every hbk € HB K

AF(-)V[h& k] = AF(-)[0®Vh] = A[0® F(-)Vh] = AF (-)Vh@&0=E(-)h&0
=E()[ho A,

each of the four objects map H @K into H® K, F is a self-adjoint, spectral, L(H &K )-
valued (not necessarily normalized!) measure on X, and E is a regular, bounded,
L(H @® K)-valued (not necessarily normalized) measure on X .

Hence we see that in (iii) we can assume that the two Hilbert spaces H,K occur-
ring there are identical.

We shall denote this Hilbert space by Z, and apply the notation in (iii).

Let M :=Z,®Z,, where Z, =Z (k= 1,2), let P, denote the orthogonal projection
of M onto Z;, and let J; := P’ be the injection of Z; into M (k = 1,2). Define the
operator valued measure

Fy:B—M, Fy():=F()®0.

This measure is self-adjoint, spectral, and not normalized. Define the matrix operators

in L(M):
\%4 I A 1
Si= <I—AV —A)’ W= <I—VA —V)'

Then W = S~!, and it is easy to check that

PSS~ Fy(-)SJy = AF(-)V = E()) € L(Z).
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Define now G(-) := S~'Fy/(-)S. In general this is an L(M)-valued, spectral, not self-
adjoint and not normalized measure, which is clearly similar to the measure Fj;. For
any z € Z we have
E()z=PG(-)iz=PG()[z®0],

which is statement (iv). [l

REMARK. With the notation above consider the polar decomposition S = U (S)|S].
Since S is invertible, the positive operator |S| is invertible and U (S) is unitary in L(M).
The measure Fy(-) := U(S)*Fy(-)U(S) is self-adjoint, spectral, and not necessarily
normalized. Since

G()=S""Fu(-)S =S| U(S) Fu(-)U(S)IS| = IS|"" Fu(-)IS],

the measure G is similar to a self-adjoint, spectral measure via the positive invertible
operator |S|.

COROLLARY 1. Consider the polar decomposition U(T)|T| of the operator T €
L(H), and for every Borel set b C [0,0) let

F(b):=U(T)E(|T|;b)I.
Applying the method of the preceding proof, define

1 1
S:= (I—U(T) —U(T)) €L(H®H).

Then S is invertible, and we obtain
F(b) =P S YE(|T|;b) ®0)S],,
i.e. F isthe (1,1)-compression of a measure in L(H ® H) that is similar to a self-
adjoint, spectral, not normalized measure.
Proof. The (constructive) proof of the statement is contained in the proof of the
preceding theorem. [J

A modification of the method above yields the proof of

THEOREM 1. Let T € L(H) with polar decomposition U(T)|T
operator matrix S as above. Then

T =PS '(|T|®0)SJy =Pi|S|"'U(S)*(|T|&0]U(S)|S|J1,

, and define the

i.e. T isthe (1,1)-compression of an operatorin L(H @ H) that is similar to a self-
adjoint operator. Further, T is the (1,1)-compression of an operatorin L(H & H) that
is similar to a self-adjoint operator via a positive invertible operator.

Proof. Define the operator S € L(H @ H) as in the preceding proof. Then F(b) =
PiS~YE(|T|;b) ©0)SJ1,, hence

T=u(r) [ E(ThdD) = [ Pl =P [ zE(Tlde) @0l

=PSTY|T|&0]Ss = P [S|"'U(S)*(|IT| & 0]U(S)[S|y. O
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Let H* := ©f_|H. Assume that the self-adjoint L(H?)-valued spectral measure
F(-) is a (1,2)-dilation of a regular, completely bounded L(H)-valued measure E(-),
i.e.,

E(-)=P(H*1)F(-)J(H — H*2) € L(H).
Here P(H?;1) denotes the (orthogonal) projection of H? onto the first orthogonal sum-
mand space H (parallel to the second space H), J(H — H?;2) denotes the canonical

injection of H onto the second summand of H?, and we shall employ similar notation
in what follows. The results above have the following

COROLLARY 2. In the situation (and with the notation) described above, there
is a spectral, L(H®)-valued measure Gg that is similar to a self-adjoint measure, and
satisfies for every h € H

E(-Yh=P(H®1)Gs(-)J(H — H® 1)h.

Proof. The proof of the theorem (HWS) (iii) = (iv) shows that we can choose
Z:=H®H? = H?, and there is an L(H®)-valued measure Gg with the indicated prop-
erties such that

E()=PH>®H*1)Gs()J(H® — H} @ H;1).
Pre- and postmultiplying with two suitable operators, we obtain

E()

P(H* 1)E()J(H — H;1)
(H3;1)P(H* ® H*;1)Gg(-)J(H> — H> @ H3;1)J(H — H>;1)
(H%1)Go(-)J(H — H%1). O

P
P

For the basics on equivalent scalar products we refer to [4]. From Theorem 1 we
obtain the following

THEOREM 2. Let T € L(H), and apply the notation of Theorem 1. Let H* :=
Hy®Hy, where H =H, =H, and T := S7'(|T|®0)S € L(H?). Then there is a scalar
product (,) in H? that is equivalent to the original scalar product {,) in H*> == H®H,
with respect to which the operator T  is self-adjoint. In the relation

T=PTJ

the operators J| : Hl — H2, P, : H> — H; have the meanings as before, and are linear
and bounded (also) with respect to the new norm in H>. In other words: T is the clas-
sical (1,1)-compression of the operator T € L(H?), which is self-adjoint with respect
to the new scalar product (,), and the operators Ji,P| correspond to the direct sum
decomposition H*> := Hy © Hy, which need not be orthogonal in the scalar product (,).

Proof. Since S: H?> — H? is a bijection, in its polar decomposition S = U(S)|S]|
the operator U (S) is a unitary, and |S| is a strictly positive operator in H?. Further,
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T =|S|7'U(S)*(|T|®0)U(S)|S|, and the middle operator V := U (S)*(|T| ©0)U(S) is
self-adjoint in the scalar product (,) in H?. Define the new scalar product (,) in H>
with the notation B := || by

(h,k) := (Bh,Bk)  (h,k € H?).

This induces the B-norm ||z = (Bh, Bh)'/? in H?, which is equivalent to the old norm
and, together with the original Hilbert space X := [H?,(,)], we also consider the new
Z:=[H?,(,)]. Any operator W € L(X) clearly lies in L(Z), and conversely. Further,
the adjoints W* € L(X) and W € L(Z) are connected as follows. For any x,y € H?
we have

(BW3B~'Bx,By) = (BWpx, By) = (Wpx,y) = (x,Wy) = (Bx,BWy) = (Bx,BWB ' By).
It implies BWzB~! = [BWB~!]*, hence
Wz =B 2W*B%.
Since T = B~V B, we obtain that
Ty =B *T*B>*=B *BVB 'B>*=B 'VB=T,

i.e., T is self-adjoint in the new scalar product (,).

It is clear that the direct sum decomposition H> := H; & H, need not be orthogonal
in the new scalar product (,). Further, the definitions of the operators Ji,P; remain
formally the same, e.g., Jihy =h; &0 H 2. Since the old and the new norms in H2
are equivalent, the operators Ji, P, remain bounded also with respect to the new norms
inH?>. O
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