(∞, C)-ISOMETRIC OPERATORS

Muneo Chō, Eungil Ko and Ji Eun Lee

(Communicated by J. W. Helton)

Abstract

In this paper we study properties of (∞, C)-isometric operators. In particular, we prove that if T is an (∞, C)-isometry and Q is a quasinilpotent operator, then $T+Q$ is an (∞, C)-isometry under suitable conditions. Moreover, we show that the class of (∞, C)-isometric operators is norm closed. Finally, we investigate properties of products and tensor products of (∞, C)-isometric operators.

1. Introduction

Agler and Stankus [1] studied the theory of m-isometric operators which are connected to Topelitz operators, classical function theory, ordinary differential equations, distributions, classical conjugate point theory, Fejer-Riesz factorization, stochastic processes, and other topics. Recently, the authors [3] have introduced (m, C)-isometric operators and studied properties of such operators. So it is natural to consider and study the classes, named (∞, C)-isometric operators, which contains every finite-isometric operators with conjugation C.

Let $\mathscr{L}(\mathscr{H})$ be the algebra of bounded linear operators on a separable complex Hilbert space \mathscr{H}. Let \mathbb{N} be the set of natural numbers and \mathbb{C} be the set of complex numbers. In 1990s, Agler and Stankus [1] intensively studied the following operator; for a fixed $m \in \mathbb{N}$, an operator $T \in \mathscr{L}(\mathscr{H})$ is said to be an m-isometric operator if it satisfies an identity;

$$
\begin{equation*}
\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} T^{* m-j} T^{m-j}=0 \tag{1}
\end{equation*}
$$

A conjugation on \mathscr{H} is an antilinear operator $C: \mathscr{H} \rightarrow \mathscr{H}$ with $C^{2}=I$ which satisfies $\langle C x, C y\rangle=\langle y, x\rangle$ for all $x, y \in \mathscr{H}$. Moreover, since $\|C x\|^{2}=\langle C x, C x\rangle=\langle x, x\rangle=\|x\|^{2}$ for all $x \in \mathscr{H}$, it follows that $\|C\|=1$. For a conjugation C, there is an orthonormal basis $\left\{e_{n}\right\}_{n=0}^{\infty}$ for \mathscr{H} such that $C e_{n}=e_{n}$ for all n. Recall that if C is a conjugation on \mathscr{H} and $T \in \mathscr{L}(\mathscr{H})$, then, since $C^{2}=I,(C T C)^{k}=C T^{k} C$ and $(C T C)^{*}=C T^{*} C$ for every $k \in \mathbb{N}$ (see [8] or [9] for more details).

[^0]Using the identity (1) and a conjugation C, we define (m, C)-isometric operators as follows; an operator $T \in \mathscr{L}(\mathscr{H})$ is said to be an (m, C)-isometric operator if there exists some conjugation C such that

$$
\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} T^{* m-j} C T^{m-j} C=0
$$

for some $m \in \mathbb{N}$. Put $\Lambda_{m}(T):=\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} T^{* m-j} C T^{m-j} C$. Then T is an $(m, C)-$ isometric operator if and only if $\Lambda_{m}(T)=0$. Note that

$$
\begin{equation*}
T^{*} \Lambda_{m}(T)(C T C)-\Lambda_{m}(T)=\Lambda_{m+1}(T) \tag{2}
\end{equation*}
$$

Hence, if $\Lambda_{m}(T)=0$, then $\Lambda_{n}(T)=0$ for all $n \geqslant m$. Moreover, it is obvious that T is an (m, C)-isometry if and only if $C T C$ is an (m, C)-isometry (see [3]). We now introduce the concept of (∞, C)-isometric operators. An operator $T \in \mathscr{L}(\mathscr{H})$ is called an (∞, C)-isometric operator with conjugation C if

$$
\limsup _{m \rightarrow \infty}\left\|\Lambda_{m}(T)\right\|^{\frac{1}{m}}=0
$$

An operator $T \in \mathscr{L}(\mathscr{H})$ is called a finite-isometric operator with conjugation C if T is an (m, C)-isometry for some $m \geqslant 1$. The class of (∞, C)-isometric operators is a large class which contains finite-isometric operators with conjugation C.

In this paper we study properties of (∞, C)-isometric operators. In particular, we show that if T is an (∞, C)-isometry and Q is a quasinilpotent operator, then $T+Q$ is an (∞, C)-isometry where $T Q=Q T$ and $T^{*} C Q C=C Q C T^{*}$. Moreover, we verify that the class of (∞, C)-isometric operators is norm closed. Finally, we examine properties of products and tensor products of (∞, C)-isometric operators.

2. (∞, C)-isometric operators

In this section, we give properties of (∞, C)-isometric operators. It is known from [8] that if C is a conjugation on a Hilbert space \mathscr{H}, then there exists an orthonormal basis $\left\{e_{n}\right\}$ of \mathscr{H} such that

$$
C\left(\sum_{n=1}^{\infty} a_{n} e_{n}\right)=\sum_{n=1}^{\infty} \overline{a_{n}} e_{n}
$$

whenever $\sum\left|a_{n}\right|^{2}<\infty$ and, specifically

$$
C\left(e_{n}\right)=e_{n}
$$

for all $n \in \mathbb{N}$. This means that every conjugation is unitarily equivalent to the canonical conjugation on an l^{2}-space with the appropriate dimension (see [8]). We refer to such a basis as a C-real orthonormal basis for \mathscr{H}. We start with the following example.

EXAMPLE 2.1. Let C_{n} be the conjugation on \mathbb{C}^{n} defined by

$$
C_{n}\left(z_{1}, z_{2}, \cdots, z_{n}\right):=\left(\overline{z_{1}}, \overline{z_{2}}, \cdots, \overline{z_{n}}\right)
$$

Assume that $T=\oplus_{n=1}^{\infty} T_{n}$ where T_{n} is an $n \times n$ matrix;

$$
T_{n}=I_{n}+N_{n}\left(\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ddots & 0 \\
0 & 0 & 0 & \cdots & 1
\end{array}\right)+\left(\begin{array}{ccccc}
0 & \frac{1}{n} & 0 & \cdots & 0 \\
0 & 0 & \frac{1}{n} & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ddots & \frac{1}{n} \\
0 & 0 & 0 & \cdots & 0
\end{array}\right) .
$$

Since N_{n} is nilpotent of order n, it obvious that T_{n} is a $\left(2 n-1, C_{n}\right)$-isometric operator. Hence T is an (∞, \mathscr{C})-isometric operator with a conjugation $\mathscr{C}=\oplus_{n=1}^{\infty} C_{n}$. Indeed, if $R_{n}=T_{1} \oplus \cdots \oplus T_{n} \oplus I \oplus I \oplus \cdots$, then R_{n} is a $\left(2 n-1, C_{n}\right)$-isometric operator and $R_{n} R_{k}=R_{k} R_{n}$ for all $n, k \geqslant 1$. Thus $R_{n} \rightarrow T$ in the operator norm. Hence T is an (∞, \mathscr{C})-isometric operator with a conjugation $\mathscr{C}=\oplus_{n=1}^{\infty} C_{n}$ from Theorem 2.7(ii).

We next examine properties of (∞, C)-isometric operators.
THEOREM 2.2. Let $T \in \mathscr{L}(\mathscr{H})$ be an (∞, C)-isometric operator where C is a conjugation on \mathscr{H}. Then the following statements hold;
(a) If $(T-\alpha) x=0$ and $(T-\beta) y=0$ with $\alpha \beta \neq 1$, then $\langle C x, y\rangle=0$. In particular, if x or y is nonzero vectors in $\operatorname{ker} T$, then $\langle C x, y\rangle=0$.
(b) If $(T-\alpha) x=0$ and $(T-\beta) C x=0$ where x is nonzero, then $\alpha \beta=1$.
(c) If $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are sequences of unit vectors such that $\lim _{n \rightarrow \infty}(T-\alpha) x_{n}=0$ and $\lim _{n \rightarrow \infty}(T-\beta) y_{n}=0$ with $\alpha \beta \neq 1$, then a sequence $\left\{\left\langle C x_{n}, y_{n}\right\rangle\right\}$ has a subsequence $\left\{\left\langle C x_{n_{l}}, y_{n_{l}}\right\rangle\right\}$ which converges to 0 .
(d) If $\left\{x_{n}\right\}$ is a sequence of unit vectors such that $\lim _{n \rightarrow \infty}(T-\alpha) x_{n}=0$ and $\lim _{n \rightarrow \infty}(T-\beta) C x_{n}=0$, then $\alpha \beta=1$.

Proof. (a) Let $\alpha, \beta \in \mathbb{C}$ be distinct eigenvalues of T with $\alpha \beta \neq 0,1$ and let x, y be the unit eigenvectors such that $T x=\alpha x$ and $T y=\beta y$. Then it follows that $C T C(C x)=$ $\bar{\alpha} C x$ and so

$$
\begin{align*}
\left\langle\Lambda_{m}(T) C x, y\right\rangle & =\left\langle\left(\sum_{j=0}^{m}(-1)^{m-j}\binom{m}{j} T^{* m-j} C T^{m-j} C\right) C x, y\right\rangle \\
& =\left\langle\left(\sum_{j=0}^{m}(-1)^{m-j}\binom{m}{j} T^{* m-j} \bar{\alpha}^{m-j}\right) C x, y\right\rangle \\
& =\sum_{j=0}^{m}(-1)^{m-j}\binom{m}{j} \bar{\alpha}^{m-j}\left\langle T^{* m-j} C x, y\right\rangle \\
& =\sum_{j=0}^{m}(-1)^{m-j}\binom{m}{j} \bar{\alpha}^{m-j}\left\langle C x, T^{m-j} y\right\rangle \\
& =\left\langle(\overline{\alpha \beta}-1)^{m} C x, y\right\rangle=(\overline{\alpha \beta}-1)^{m}\langle C x, y\rangle . \tag{3}
\end{align*}
$$

Moreover, since $\|C\|=1$, it follows from (3) that

$$
\begin{equation*}
\left|(\overline{\alpha \beta}-1)\left\|\left.\langle C x, y\rangle\right|^{\frac{1}{m}}=\left|\left\langle\Lambda_{m}(T) C x, y\right\rangle\right|^{\frac{1}{m}} \leqslant\right\| \Lambda_{m}(T) C x\left\|^{\frac{1}{m}}\right\| y\left\|^{\frac{1}{m}} \leqslant\right\| \Lambda_{m}(T) \|^{\frac{1}{m}}\right. \tag{4}
\end{equation*}
$$

Since T is an (∞, C)-isometric operator, it follows from (4) that

$$
\begin{equation*}
|(\overline{\alpha \beta}-1)| \lim _{m \rightarrow \infty}|\langle C x, y\rangle|^{\frac{1}{m}} \leqslant \limsup _{m \rightarrow \infty}\left\|\Lambda_{m}(T)\right\|^{\frac{1}{m}}=0 \tag{5}
\end{equation*}
$$

This implies that $\lim _{m \rightarrow \infty}|\langle C x, y\rangle|^{\frac{1}{m}}=0$ is due to the fact that $\alpha \beta \neq 1$.
Since $\lim _{m \rightarrow \infty}|\langle C x, y\rangle|^{\frac{1}{m}}=1$ if $\langle C x, y\rangle \neq 0$, we conclude that $\langle C x, y\rangle=0$.
On the other hand, if $\alpha=0$ or $\beta=0$ or $\alpha=\beta$, then we know $\langle C x, y\rangle=0$ from (5).
(b) Assume that $\alpha \beta \neq 1$. Set $y=C x$. Then it is a nonzero and (a) implies that $\|x\|^{2}=\langle C x, C x\rangle=0$, which is a contradiction. Hence $\alpha \beta=1$.
(c) Suppose that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are sequences of unit vectors such that

$$
\lim _{n \rightarrow \infty}(T-\alpha) x_{n}=0 \text { and } \lim _{n \rightarrow \infty}(T-\beta) y_{n}=0
$$

Then $\lim _{n \rightarrow \infty}(C T C-\bar{\alpha}) C x_{n}=0$ and $\lim _{n \rightarrow \infty}\left(T^{k}-\beta^{k}\right) y_{n}=0$. Thus we have $\lim _{n \rightarrow \infty}\left(C T^{k} C-\bar{\alpha}^{k}\right) C x_{n}=0$ for every $k \in \mathbb{N}$. Since $\left\{\left\langle C x_{n}, y_{n}\right\rangle\right\}_{n=1}^{\infty}$ is bounded, $\left\{\left\langle C x_{n}, y_{n}\right\rangle\right\}_{n=1}^{\infty}$ has a convergent subsequence $\left\{\left\langle C x_{n_{l}}, y_{n_{l}}\right\rangle\right\}$. If $\lim _{l \rightarrow \infty}\left\langle C x_{n_{l}}, y_{n_{l}}\right\rangle=\mu$, then it suffices to show that $\mu=0$. Note that for each fix $m \geqslant 1$, the following relations hold;

$$
\begin{align*}
\left|(\overline{\alpha \beta}-1)^{m} \mu\right| & =\lim _{l \rightarrow \infty}\left|(\overline{\alpha \beta}-1)^{m}\left\langle C x_{n_{l}}, y_{n_{l}}\right\rangle\right| \\
& =\left|\sum_{j=0}^{m}(-1)^{m-j}\binom{m}{j} \overline{\alpha \beta}^{m-j} \lim _{l \rightarrow \infty}\left\langle C x_{n_{l}}, y_{n_{l}}\right\rangle\right| \\
& =\left|\sum_{j=0}^{m}(-1)^{m-j}\binom{m}{j} \lim _{l \rightarrow \infty}\left\langle\left(C T^{m-j} C\right) C x_{n_{l}}, T^{m-j} y_{n_{l}}\right\rangle\right| \\
& =\left|\lim _{l \rightarrow \infty}\left\langle\left(\sum_{j=0}^{m}(-1)^{m-j}\binom{m}{j} T^{* m-j} C T^{m-j} C\right) C x_{n_{l}}, y_{n_{l}}\right\rangle\right| \\
& =\lim _{l \rightarrow \infty}\left|\left\langle\Lambda_{m}(T) C x_{n_{l}}, y_{n_{l}}\right\rangle\right| \leqslant\left\|\Lambda_{m}(T)\right\| . \tag{6}
\end{align*}
$$

Since T is an (∞, C)-isometric operator, it follows from (6) that

$$
|(\overline{\alpha \beta}-1)| \lim _{m \rightarrow \infty}|\mu|^{\frac{1}{m}}=\limsup _{m \rightarrow \infty}\left|(\overline{\alpha \beta}-1)^{m} \mu\right|^{\frac{1}{m}} \leqslant \limsup _{m \rightarrow \infty}\left\|\Lambda_{m}(T)\right\|^{\frac{1}{m}}=0 .
$$

Since $\alpha \beta \neq 1$, it follows that $\mu=0$. Hence $\lim _{l \rightarrow \infty}\left\langle C x_{n_{l}}, y_{n_{l}}\right\rangle=0$.
(d) Assume that $\alpha \beta \neq 1$. Set $y_{n}=C x_{n}$ and $y_{n_{l}}=C x_{n_{l}}$ in (c). Then $\left\{\left\langle C x_{n}, C x_{n}\right\rangle\right\}=$ $\{1\}$ has a subsequence $\left\{\left\langle C x_{n_{l}}, C x_{n_{l}}\right\rangle\right\}=\{1\}$ which converges to 0 by (c). This is a contradiction. Hence $\alpha \beta=1$.

Recall that a vector $x \in \mathscr{H}$ is said to be isotropic if $\langle x, C x\rangle=0$ (see [7, Page 16]).

THEOREM 2.3. Let $T \in \mathscr{L}(\mathscr{H})$. Then the following assertions hold:
(i) If T is complex symmetric with a conjugation C, then

$$
\limsup _{m \rightarrow \infty}\left\|\Lambda_{m}(T)\right\|^{\frac{1}{m}} \leqslant r\left(T^{2}-I\right)
$$

where $r(A)$ denotes the spectral radius of A. In particular, if $r\left(T^{2}-I\right)=0$, then T is an (∞, C)-isometric operator.
(ii) If T is an (∞, C)-isometric operator and $x \in \operatorname{ker}(T-\lambda)$, then $\lambda=1$ or x is isotropic.
(iii) If T is a strict contraction, i.e., $\|T\|<1$, then T is not an (∞, C)-isometric operator.

Proof. (i) Since $T=C T^{*} C$, it follows that

$$
\begin{equation*}
\Lambda_{m}(T)=\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} T^{* m-j} C T^{m-j} C=C\left(\sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\left(T^{2}\right)^{m-j}\right) C \tag{7}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\left\|\Lambda_{m}(T)\right\|=\left\|C\left(\sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\left(T^{2}\right)^{m-j}\right) C\right\| \leqslant\left\|\left(T^{2}-I\right)^{m}\right\| \tag{8}
\end{equation*}
$$

and hence $\left\|\Lambda_{m}(T)\right\|^{\frac{1}{m}} \leqslant\left\|\left(T^{2}-I\right)^{m}\right\|^{\frac{1}{m}}$. Thus we obtain that

$$
\limsup _{m \rightarrow \infty}\left\|\Lambda_{m}(T)\right\|^{\frac{1}{m}} \leqslant \limsup _{m \rightarrow \infty}\left\|\left(T^{2}-I\right)^{m}\right\|^{\frac{1}{m}}=r\left(T^{2}-I\right)
$$

In particular, if $r\left(T^{2}-I\right)=0$, then T is an (∞, C)-isometric operator.
(ii) Let $x \in \operatorname{ker}(T-\lambda)$. Then $(T-\lambda) x=0$. Therefore, $\left(C T^{k} C-\bar{\lambda}^{k}\right) C x=0$ and so $\left(T^{k}-\lambda^{k}\right) x=0$ for every $k \in \mathbb{N}$. Then it holds that

$$
\begin{aligned}
\left\langle\Lambda_{m}(T) C x, x\right\rangle & =\left\langle\left(\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} T^{* m-j} C T^{m-j} C\right) C x, x\right\rangle \\
& =\left\langle\sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\left(C T^{m-j} C\right) C x, T^{m-j} x\right\rangle \\
& =\sum_{j=0}^{m}(-1)^{j}\binom{m}{j}\left\langle\left(C T^{m-j} C\right) C x, T^{m-j} x\right\rangle \\
& =\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} \bar{\lambda}^{2(m-j)}\langle C x, x\rangle=\left(\bar{\lambda}^{2}-1\right)^{m}\langle C x, x\rangle .
\end{aligned}
$$

This gives that

$$
\begin{aligned}
\left|\bar{\lambda}^{2}-1\right|^{m} \cdot|\langle C x, x\rangle| & =\left|\left\langle\Lambda_{m}(T) C x, x\right\rangle\right| \\
& \leqslant\left\|\Lambda_{m}(T)\right\|\|C x\|\|x\|=\left\|\Lambda_{m}(T)\right\|\|x\|^{2}
\end{aligned}
$$

Since T is an (∞, C)-isometric operator, it follows that $\lambda=1$ or $\langle C x, x\rangle=0$. Hence $\lambda=1$ or x is isotropic.
(iii) Assume that T is an (∞, C)-isometric operator. Then $T^{*} C T C \neq I$. Indeed, if T is a $(1, C)$-isometry, then

$$
1>\|T\|^{2}=\left\|T^{*}\right\|\|C\|\|T\|\|C\| \geqslant\left\|T^{*} C T C\right\|=\|I\|=1
$$

which is a contradiction. By the structure of $\Lambda_{m}(T),(2)$ implies that

$$
\left\|\Lambda_{m}(T)\right\| \leqslant\|T\|^{2}\left\|\Lambda_{m}(T)\right\|+\left\|\Lambda_{m+1}(T)\right\|
$$

Thus we have $\left(1-\|T\|^{2}\right)\left\|\Lambda_{m}(T)\right\| \leqslant\left\|\Lambda_{m+1}(T)\right\|$ for some $m \in \mathbb{N}$. Therefore, we get that $\left(1-\|T\|^{2}\right)^{m}\left\|\Lambda_{1}(T)\right\| \leqslant\left\|\Lambda_{m+1}(T)\right\|$ and so

$$
\begin{equation*}
\left(1-\|T\|^{2}\right)^{\frac{m}{m+1}}\left\|\Lambda_{1}(T)\right\|^{\frac{1}{m+1}} \leqslant\left\|\Lambda_{m+1}(T)\right\|^{\frac{1}{m+1}} \tag{9}
\end{equation*}
$$

Since T is an (∞, C)-isometric operator and $\Lambda_{1}(T) \neq 0$, by taking limsup as $m \rightarrow \infty$, we obtain that $1-\|T\|^{2} \leqslant 0$. Thus $\|T\| \geqslant 1$. So we have a contradiction.

Corollary 2.4. Let $T \in \mathscr{L}(\mathscr{H})$. Then the following statements hold.
(i) The inequality

$$
\limsup _{m \rightarrow \infty}\left\|\Lambda_{m}\left(\Lambda_{k}(T)\right)\right\|^{\frac{1}{m}} \leqslant r\left(\Lambda_{k}(T)^{2}-I\right)
$$

holds for any $k \in \mathbb{N}$ where $r(A)$ denotes the spectral radius of A.
(ii) If $T^{2}=I$, then T is an (m, C)-isometric operator and if $T^{2}=I+Q$ where Q is quasinilpotent, then T is an (∞, C)-isometric operator.

Proof. (i) Since

$$
\Lambda_{k}(T)^{*}=\sum_{j=0}^{k}(-1)^{j}\binom{k}{j} C T^{* k-j} C T^{k-j}
$$

it follows that $C \Lambda_{k}(T)^{*} C=\sum_{j=0}^{k}(-1)^{j}\binom{k}{j} T^{* k-j} C T^{k-j} C=\Lambda_{k}(T)$. Therefore, $\Lambda_{k}(T)$ is a complex symmetric operator with the conjugation C for any $k \in \mathbb{N}$.

Hence $\limsup _{m \rightarrow \infty}\left\|\Lambda_{m}\left(\Lambda_{k}(T)\right)\right\|^{\frac{1}{m}} \leqslant r\left(\Lambda_{k}(T)^{2}-I\right)$ by Theorem 2.3(i)
(ii) If $T^{2}=I$, then T is complex symmetric with a conjugation C from [9]. Thus (8) implies that $\Lambda_{m}(T)=0$ and so T is an (m, C)-isometric operator. On the other hand, if $T^{2}=I+Q$ where Q is quasinilpotent, then $r\left(T^{2}-I\right)=0$ and therefore T is an (∞, C)-isometric operator.

REMARK 2.5. We observe from Theorem 2.3(iii) that if S is an isometry, then γS is not an (∞, C)-isometric operator where γ is a constant for $0<|\gamma|<1$. Moreover, if $T \in \mathscr{L}(\mathscr{H})$ and $x \in \operatorname{ker}(T-\lambda)$ where $\lambda \neq 1$ and x is not isotropic, then we know from Theorem 2.3 (ii) that T is not an (∞, C)-isometric operator.

We investigate the quasinilpotent perturbations of an (∞, C)-isometric operator and show that their class is norm closed.

LEMmA 2.6. If T and Q are in $\mathscr{L}(\mathscr{H})$ with $T Q=Q T$ and $T^{*} C Q C=C Q C T^{*}$, then, for $m \geqslant 2$,

$$
\left\|\Lambda_{m}(T+Q)\right\| \leqslant K^{m}\left(\max _{l \leqslant n \leqslant m}\left\|\Lambda_{n}(T)\right\|+\max _{l \leqslant n \leqslant m}\left\|Q^{n}\right\|\right)
$$

where $K=2\left((\|T\|+\|Q\|)^{2}+2\|T\|+1\right)$ and $l=\left[\frac{m}{3}\right]$ is the integer part of $\frac{m}{3}$.
Proof. Since

$$
\begin{aligned}
{[(a+b)(c+d)-1]^{m} } & =[(a c-1)+(a+b) d+b c]^{m} \\
& =\sum_{m_{1}+m_{2}+m_{3}=m}\binom{m}{m_{1}, m_{2}, m_{3}}(a+b)^{m_{1}} b^{m_{2}}(a c-1)^{m_{3}} c^{m_{2}} d^{m_{1}}
\end{aligned}
$$

it follows that

$$
\begin{equation*}
\Lambda_{m}(T+Q)=\sum_{m_{1}+m_{2}+m_{3}=m}\binom{m}{m_{1}, m_{2}, m_{3}}\left(T^{*}+Q^{*}\right)^{m_{1}} Q^{* m_{2}} \Lambda_{m_{3}}(T) C T^{m_{2}} C C Q^{m_{1}} C \tag{10}
\end{equation*}
$$

Assume that $l=\left[\frac{m}{3}\right]$ is the integer part of $\frac{m}{3}$. Put

$$
M_{i}=\sum_{m_{1}+m_{2}+m_{3}=m \text { and } m_{i} \geqslant l}\binom{m}{m_{1}, m_{2}, m_{3}}\left\|\left(T^{*}+Q^{*}\right)^{m_{1}} Q^{* m_{2}} \Lambda_{m_{3}}(T) C T^{m_{2}} Q^{m_{1}} C\right\|
$$

for $i=1,2,3$. Since $m_{1}+m_{2}+m_{3}=m$, it follows that $m_{j} \geqslant l$ for some $j=1,2,3$. Therefore, we get that

$$
\begin{align*}
& \left\|\Lambda_{m}(T+Q)\right\| \\
\leqslant & \sum_{m_{1}+m_{2}+m_{3}=m}\binom{m}{m_{1}, m_{2}, m_{3}}\left\|\left(T^{*}+Q^{*}\right)^{m_{1}} Q^{* m_{2}} \Lambda_{m_{3}}(T) C T^{m_{2}} Q^{m_{1}} C\right\| \\
\leqslant & M_{1}+M_{2}+M_{3} \tag{11}
\end{align*}
$$

On the other hand, since $\|C\|=1$, we get that

$$
\begin{align*}
M_{3} & =\sum_{m_{1}+m_{2}+m_{3}=m, m_{1} \geqslant l}\binom{m}{m_{1}, m_{2}, m_{3}}\left\|\left(T^{*}+Q^{*}\right)^{m_{1}} Q^{* m_{2}} \Lambda_{m_{3}}(T) C T^{m_{2}} Q^{m_{1}} C\right\| \\
* & \leqslant \sum_{m_{1}+m_{2}+m_{3}=m, m_{1} \geqslant l}\binom{m}{m_{1}, m_{2}, m_{3}}\left(\left\|T^{*}\right\|+\left\|Q^{*}\right\|\right)^{m_{1}}\left\|Q^{*}\right\|^{m_{2}}\left\|\Lambda_{m_{3}}(T)\right\|\|T\|^{m_{2}}\|Q\|^{m_{1}} \\
* & \leqslant \max _{l \leqslant n \leqslant m}\left\|\Lambda_{n}(T)\right\| \cdot \sum_{\substack{m_{1}+m_{2}+m_{3}=m, m_{1} \geqslant l}}\binom{m}{m_{1}, m_{2}, m_{3}}(\|T\|+\|Q\|)^{m_{1}}\|Q\|^{m_{2}}\|T\|^{m_{2}}\|Q\|^{m_{1}} \\
& *=\max _{l \leqslant n \leqslant m}\left\|\Lambda_{n}(T)\right\| \cdot((\|T\|+\|Q\|)\|Q\|+\|T\|\|Q\|+1)^{m} \\
& * \leqslant \max _{l \leqslant n \leqslant m}\left\|\Lambda_{n}(T)\right\| \cdot\left(\frac{K}{2}\right)^{m} . \tag{12}
\end{align*}
$$

Since $\left\|\Lambda_{k}(T)\right\| \leqslant(\|T\|+1)^{k}$ for all $k \in \mathbb{N}$, it follows from a similar method of (12) that

$$
\begin{aligned}
M_{1} & \leqslant \max _{l \leqslant n \leqslant m}\left\|C Q^{n} C\right\| \cdot\left(\left(\left\|T^{*}\right\|+\left\|Q^{*}\right\|\right)+\left\|Q^{*}\right\|\|T\|+(\|T\|+1)\right)^{m} \\
& \leqslant \max _{l \leqslant n \leqslant m}\left\|Q^{n}\right\| \cdot\left(\frac{K}{2}\right)^{m}
\end{aligned}
$$

and

$$
\begin{aligned}
M_{2} & \leqslant \max _{l \leqslant n \leqslant m}\left\|Q^{* n}\right\| \cdot\left(\left(\left\|T^{*}\right\|+\left\|Q^{*}\right\|\right)\|Q\|+\|T\|+(\|T\|+1)\right)^{m} \\
& \leqslant \max _{l \leqslant n \leqslant m}\left\|Q^{n}\right\| \cdot\left(\frac{K}{2}\right)^{m} .
\end{aligned}
$$

Hence (11) implies that

$$
\begin{aligned}
\left\|\Lambda_{m}(T+Q)\right\| & \leqslant\left(\frac{K}{2}\right)^{m} \max _{l \leqslant n \leqslant m}\left\|\Lambda_{n}(T)\right\|+2\left(\frac{K}{2}\right)^{m} \max _{l \leqslant n \leqslant m}\left\|Q^{n}\right\| \\
& \leqslant K^{m}\left(\max _{l \leqslant n \leqslant m}\left\|\Lambda_{n}(T)\right\|+\max _{l \leqslant n \leqslant m}\left\|Q^{n}\right\|\right)
\end{aligned}
$$

because $m \geqslant 2$. Hence this completes the proof.

THEOREM 2.7. Let $T \in \mathscr{L}(\mathscr{H})$ and let C be a conjugation on \mathscr{H}. Then the following statements hold:
(i) If T is an (∞, C)-isometric operator and Q is a quasinilpotent operator where $T Q=Q T$ and $T^{*} C Q C=C Q C T^{*}$, then $T+Q$ is an (∞, C)-isometric operator with conjugation C.
(ii) If $\left\{T_{n}\right\}$ is a sequence of commuting (∞, C)-isometric operators with conjugation C such that $\lim _{n \rightarrow \infty}\left\|T_{n}-T\right\|=0$, then T is an (∞, C)-isometric operator.

Proof. (i) Since T is an (∞, C)-isometric operator and Q is a quasinilpotent operator, it follows that for given $0<\varepsilon<1$, there exists N such that

$$
\left\|\Lambda_{n}(T)\right\| \leqslant \varepsilon^{n} \text { and }\left\|Q^{n}\right\| \leqslant \varepsilon^{n}
$$

for all $n \geqslant N$. By Lemma 2.6, for $m \geqslant 3 N$ and $l=\left[\frac{m}{3}\right] \geqslant N$, we get that

$$
\begin{aligned}
\left\|\Lambda_{m}(T+Q)\right\|^{\frac{1}{m}} & \leqslant K\left(\max _{l \leqslant n \leqslant m}\left\|\Lambda_{n}(T)\right\|+\max _{l \leqslant n \leqslant m}\left\|Q^{n}\right\|\right)^{\frac{1}{m}} \leqslant K\left(2 \varepsilon^{n}\right)^{\frac{1}{m}} \leqslant K\left(2 \varepsilon^{l}\right)^{\frac{1}{m}} \\
& =2^{\frac{1}{m}} K \varepsilon^{\frac{l}{m}}\left(=2^{\frac{1}{m}} K \varepsilon^{\frac{1}{m}\left[\frac{m}{3}\right]}\right) \text { since } \varepsilon<1
\end{aligned}
$$

Since ε is arbitrary, $\limsup _{m \rightarrow \infty}\left\|\Lambda_{m}(T+Q)\right\|^{\frac{1}{m}}=0$. Hence $T+Q$ is an (∞, C) isometric operator.
(ii) If $T_{n} T_{k}=T_{k} T_{n}$ for all $k, n \in \mathbb{N}$, then $T T_{n}=T_{n} T$ for all $n \geqslant 1$. For a given $0<\varepsilon<1$, there exists n_{0} such that

$$
\left\|T-T_{n_{0}}\right\| \leqslant \varepsilon \text { and }\left\|\Lambda_{n}\left(T_{n_{0}}\right)\right\| \leqslant \varepsilon^{n}
$$

for all $n \geqslant n_{0}$. By Lemma 2.6, for $m \geqslant 3 n_{0}$ and $l=\left[\frac{m}{3}\right] \geqslant n_{0}$, we obtain that

$$
\begin{aligned}
\left\|\Lambda_{m}(T)\right\|^{\frac{1}{m}} & =\left\|\Lambda_{m}\left(T_{n_{0}}+T-T_{n_{0}}\right)\right\|^{\frac{1}{m}} \\
& \leqslant K\left(\max _{l \leqslant n \leqslant m}\left\|\Lambda_{n}\left(T_{n_{0}}\right)\right\|+\max _{l \leqslant n \leqslant m}\left\|T-T_{n_{0}}\right\|^{n}\right)^{\frac{1}{m}} \\
& \leqslant 2^{\frac{1}{m}} K \varepsilon^{\frac{l}{m}}=2^{\frac{1}{m}} K \varepsilon^{\frac{1}{m}\left[\frac{m}{3}\right]} .
\end{aligned}
$$

Since ε is arbitrary, it follows that $\limsup _{m \rightarrow \infty}\left\|\Lambda_{m}(T)\right\|^{\frac{1}{m}}=0$. Hence T is an (∞, C) isometric operator.

Let us recall that a closed subspace \mathscr{M} is hyperinvariant for T if it is invariant for every operator in $\{T\}^{\prime}$ where $\{T\}^{\prime}=\{R \in \mathscr{L}(\mathscr{H}): T R=R T\}$.

Corollary 2.8. Let C be a conjugation on \mathscr{H} and Q be a nonzero quasinilpotent operator on \mathscr{H}. Then $\mu I+Q$ is an (∞, C)-isometric operator with $|\mu|=1$. Moreover, $\mu I+Q$ has a nontrivial hyperinvariant subspace.

Proof. If $T=\mu I$ for $|\mu|=1$, then T is clearly an (∞, C)-isometric operator. Hence the proof follows from Theorem 2.7. For the second statement, we know from [6, Theorem 2.18] that Q has a nontrivial hyperinvariant subspace. Hence $\mu I+Q$ has a nontrivial hyperinvariant subspace.

Corollary 2.9. Let C be the canonical conjugation on \mathscr{H} given by

$$
C\left(\sum_{n=0}^{\infty} x_{n} e_{n}\right)=\sum_{n=0}^{\infty} \overline{x_{n}} e_{n}
$$

where $\left\{e_{n}\right\}$ is an orthonormal basis of \mathscr{H} with $C e_{n}=e_{n}$. If W is the weighted shift on \mathscr{H} defined by $W e_{n}=\alpha_{n} e_{n+1}(n=0,1,2, \ldots)$ where $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ is a weight sequence which is decreasing to 0 , then $T=I+W$ is an (∞, C)-isometric operator.

Proof. For any $\varepsilon>0$, since W is a quasinilpotent operator, $\sigma(W)=\{0\}, W C=$ $C W$, and $\Lambda_{m}(T)=\Lambda_{m}(W)$, it follows from [5] that

$$
\limsup _{m \rightarrow \infty}\left\|\Lambda_{m}(T)\right\|^{\frac{1}{m}}=\limsup _{m \rightarrow \infty}\left\|\Lambda_{m}(W)\right\|^{\frac{1}{m}} \leqslant \varepsilon
$$

Since ε is arbitrary, it follows that T is an (∞, C)-isometric operator.

Example 2.10. Under the same conjugation C as in Corollary 2.9, if W is the weighted shift on \mathscr{H} defined by $W e_{n}=\frac{1}{n+1} e_{n+1}(n=0,1,2, \ldots)$, then $T=I+W$ is an (∞, C)-isometric operator from Corollary 2.9.

Finally, we study properties of products of (∞, C)-isometric operators.

Lemma 2.11. Let $T, S \in \mathscr{L}(\mathscr{H})$ satisfy $T S=S T$ and $S^{*}(C T C)=(C T C) S^{*}$. Then

$$
\begin{equation*}
\Lambda_{m}(T S)=\sum_{j=0}^{m}\binom{m}{j} T^{* j} \Lambda_{m-j}(T) C T^{j} C \Lambda_{j}(S) \tag{13}
\end{equation*}
$$

where $\Lambda_{0}(T)=I$ and $\Lambda_{0}(S)=I$.
Proof. Assume that $T S=S T$ and $S^{*}(C T C)=(C T C) S^{*}$. Since $S^{* j}\left(C T^{k} C\right)=$ $\left(C T^{k} C\right) S^{* j}$ holds for all $j, k \in \mathbb{N}$ and

$$
\begin{aligned}
(a b c d-1)^{m} & =[(a b-1)+a(c d-1) b]^{m} \\
& =\sum_{j=0}^{m}\binom{m}{j} a^{j}(a b-1)^{m-j} b^{j}(c d-1)^{j}
\end{aligned}
$$

it follows that

$$
\begin{aligned}
\Lambda_{m}(T S) & =\sum_{j=0}^{m}(-1)^{m-j}\binom{m}{j}(T S)^{* m-j} C(T S)^{m-j} C \\
& =\sum_{j=0}^{m}\binom{m}{j} T^{* j} \Lambda_{m-j}(T) C T^{j} C \Lambda_{j}(S)
\end{aligned}
$$

where $\Lambda_{0}(T)=I$ and $\Lambda_{0}(S)=I$.

THEOREM 2.12. Let T and S be (∞, C)-isometric operators with conjugation C. Assume that $T S=S T$ and $S^{*}(C T C)=(C T C) S^{*}$. Then $T S$ is an (∞, C)-isometric operator.

Proof. Assume that T and S are (∞, C)-isometric operators. Then for a given $0<\varepsilon<1$, there exist N_{1} and N_{2} such that

$$
\left\|\Lambda_{n_{1}}(T)\right\| \leqslant \varepsilon^{n} \text { and }\left\|\Lambda_{n_{2}}(S)\right\| \leqslant \varepsilon^{n}
$$

for $n_{1} \geqslant N_{1}$ and $n_{2} \geqslant N_{2}$. Put $N=\max \left\{N_{1}, N_{2}\right\}$. Then it suffices to show that there is a constant $K>0$ such that for $m \geqslant 2 N$,

$$
\left\|\Lambda_{m}(T S)\right\| \leqslant K^{m} \varepsilon^{\frac{m}{2}}
$$

Let $l=\left[\frac{m}{2}\right]$ denote the integer part of $\frac{m}{2}$. Then by (13), we have

$$
\begin{align*}
\Lambda_{m}(T S)= & \sum_{j=0}^{l}\binom{m}{j} T^{* j} \Lambda_{m-j}(T) C T^{j} C \Lambda_{j}(S) \\
& +\sum_{j=l+1}^{m}\binom{m}{j} T^{* j} \Lambda_{m-j}(T) C T^{j} C \Lambda_{j}(S) \tag{14}
\end{align*}
$$

If $j \leqslant l=\left[\frac{m}{2}\right]$, then $m-j \geqslant\left[\frac{m}{2}\right]=l \geqslant N$, and so $\left\|\Lambda_{m-j}(T)\right\| \leqslant \varepsilon^{m-j} \leqslant \varepsilon^{l}$. Since $\|C\|=1$, it follows that $\left\|\Lambda_{j}(S)\right\| \leqslant(\|S\|+1)^{j}$ for all $j \geqslant 1$. Thus by (14) we get that

$$
\left\|\sum_{j=0}^{l}\binom{m}{j} T^{* j} \Lambda_{m-j}(T) C T^{j} C \Lambda_{j}(S)\right\|
$$

$$
\begin{align*}
& \leqslant \sum_{j=0}^{l}\binom{m}{j}\left\|\Lambda_{m-j}(T)\right\|\left\|T^{* j}\right\|\left\|C T^{j} C\right\|\left\|\Lambda_{j}(S)\right\| \\
& \leqslant \sum_{j=0}^{l}\binom{m}{j} \varepsilon^{m-j}\|T\|^{j}\|T\|^{j} \|(\|S\|+1)^{j} \\
& \leqslant \varepsilon^{l} \sum_{j=0}^{m}\binom{m}{j}\|T\|^{2 j}(\|S\|+1)^{j}=\varepsilon^{l}\left(1+\|T\|^{2}(\|S\|+1)\right)^{m} \tag{15}
\end{align*}
$$

Similarly, if $j \geqslant l+1 \geqslant N$, then $\left\|\Lambda_{j}(S)\right\| \leqslant \varepsilon^{l}$ and hence we have

$$
\begin{equation*}
\left\|\sum_{j=l+1}^{m}\binom{m}{j} T^{* j} \Lambda_{m-j}(T) C T^{j} C \Lambda_{j}(S)\right\| \leqslant \varepsilon^{l}\left(\|T\|^{2}+(\|T\|+1)\right)^{m} \tag{16}
\end{equation*}
$$

From (15) and (16), we know that for $n \geqslant 2 N$

$$
\left\|\Lambda_{m}(T S)\right\| \leqslant \varepsilon^{\left[\frac{m}{2}\right]}\left(\left(1+\|T\|^{2}(\|S\|+1)\right)^{m}+\left(\|T\|^{2}+(\|T\|+1)\right)^{m}\right)
$$

Thus $\limsup \sup _{m \rightarrow \infty}\left\|\Lambda_{m}(T S)\right\|^{\frac{1}{m}}=0$. Hence $T S$ is an (∞, C)-isometric operator.
We illustrate the following example by Theorem 2.12.
Example 2.13. Let $C: \mathscr{H} \rightarrow \mathscr{H}$ be the conjugation given by

$$
C\left(\sum_{n=1}^{\infty} x_{n} e_{n}\right)=\sum_{n=1}^{\infty} \overline{x_{n}} e_{n}
$$

where $\left\{x_{n}\right\}$ is a sequence in \mathbb{C} with $\sum_{n=1}^{\infty}\left|x_{n}\right|^{2}<\infty$. Suppose that $A, B \in \mathscr{L}(\mathscr{H})$ are the weighted shifts given by $A e_{n}=\alpha_{n} e_{n+1}$ and $B e_{n}=\beta_{n} e_{n+1}$ with $\beta_{n}=\frac{1}{n}$ for all $n \geqslant 1$. If $\left|\alpha_{n}\right|^{2}=1, \frac{\alpha_{n-1}}{\alpha_{n}}=\frac{n-1}{n}$, and $\frac{\alpha_{n+1}}{\alpha_{n}}=\frac{n}{n+1}$ for $n \geqslant 2$, then A is a $(1, C)$-isometry and it is easy to compute

$$
A C B^{*} C e_{n}=A C B^{*} e_{n}=A C\left(\overline{\beta_{n-1}} e_{n-1}\right)=A \beta_{n-1} e_{n-1}=\alpha_{n-1} \beta_{n-1} e_{n}
$$

and

$$
C B^{*} C A e_{n}=C B^{*} C\left(\alpha_{n} e_{n+1}\right)=C B^{*}\left(\overline{\alpha_{n}} e_{n+1}\right)=C\left(\overline{\alpha_{n} \beta_{n}} e_{n}\right)=\alpha_{n} \beta_{n} e_{n}
$$

Moreover, $A B e_{n}=A \beta_{n} e_{n+1}=\beta_{n} \alpha_{n+1} e_{n+1}$ and $B A e_{n}=B \alpha_{n} e_{n}=\alpha_{n} \beta_{n+1} e_{n+1}$. Therefore, A and $B+I$ are (∞, C)-isometric operators. Hence $A(I+B)$ is an (∞, C) isometric operator from Theorem 2.12.

Corollary 2.14. Let T and S be (∞, C)-isometric operators with conjugation C. Suppose that $T^{*}(C T C)=(C T C) T^{*}$. Then the following arguments hold.
(i) If $T S=S T$ and $S^{*}(C T C)=(C T C) S^{*}$, then $T^{k} S^{j}$ and $S^{j} T^{k}$ are (∞, C)-isometric operators for any $k, j \in \mathbb{N}$.
(ii) T^{n} is an (∞, C)-isometric operator for any $n \in \mathbb{N}$.

Proof. (i) By Theorem 2.12, TS is an (∞, C)-isometric operator. It suffices to show that $T^{k} S$ is an (∞, C)-isometric operator. Since $T S=S T, S^{*}(C T C)=(C T C) S^{*}$, and $T^{*}(C T C)=(C T C) T^{*}$, it follows that $T^{k-1}(T S)=(T S) T^{k-1}$ and

$$
(T S)^{*} C T^{k-1} C=S^{*} T^{*}(C T C)^{k-1}=(C T C)^{k-1} S^{*} T^{*}=C T^{k-1} C(T S)^{*}
$$

By Theorem 2.12, $T^{k-1} T S=T^{k} S$ is an (∞, C)-isometric operator. Similarly, $T^{k} S^{j}$ is an (∞, C)-isometric operator. Also, we can show that $S^{j} T^{k}$ is an (∞, C)-isometric operator by a similar method.
(ii) If $n=2$, then it is clear. Assume that the above statement holds for $n=k$. Put $S=T^{k}$. Then $T S=T^{k+1}$ is an (∞, C)-isometric operator from Theorem 2.12.

Let us recall that $\mathscr{H}_{1} \otimes \mathscr{H}_{2}$ denotes the completion (endowed with a sensible uniform cross-norm) of the algebraic tensor product $\mathscr{H}_{1} \otimes \mathscr{H}_{2}$ of \mathscr{H}_{1} and \mathscr{H}_{2} where \mathscr{H}_{1} and \mathscr{H}_{2} are separable complex Hilbert spaces. For operators $T \in \mathscr{L}\left(\mathscr{H}_{1}\right)$ and $S \in \mathscr{L}\left(\mathscr{H}_{2}\right)$, we define the tensor product operator $T \otimes S$ on $\mathscr{L}\left(\mathscr{H}_{1} \otimes \mathscr{H}_{2}\right)$ by

$$
(T \otimes S)\left(\sum_{j=1}^{n} \alpha_{j} x_{j} \otimes y_{j}\right)=\sum_{j=1}^{n} \alpha_{j} T x_{j} \otimes S y_{j}
$$

Then it is well known that $T \otimes S \in \mathscr{L}\left(\mathscr{H}_{1} \otimes \mathscr{H}_{2}\right)$.
The definition of $T \otimes S$ is extended from these finite linear combinations of simple tensors to the whole space.

Since $T \otimes S=(T \otimes I)(I \otimes S)=(I \otimes S)(T \otimes I)$ and $T \otimes I=\oplus_{n=1}^{\infty} T$, it is clear that an operator T is an (m, C)-isometric operator with conjugation C if and only if $T \otimes I$ and $I \otimes T$ are (m, C)-isometric operators with conjugation C. If C and D are conjugations on \mathscr{H}, we define $C \otimes D$ on $\mathscr{H} \otimes \mathscr{H}$ by

$$
(C \otimes D)\left(\sum_{j=1}^{n} \alpha_{j} x_{j} \otimes y_{j}\right)=\sum_{j=1}^{n} \overline{\alpha_{j}} C x_{j} \otimes D y_{j}
$$

Then $C \otimes D$ is a conjugation on $\mathscr{H} \otimes \mathscr{H}$ (see [4]).

COROLLARY 2.15. If T is an (∞, C)-isometric operator and S is an (∞, D) isometric operator, then $T \otimes S$ is an $(\infty, C \otimes D)$-isometric operator.

Proof. It is clear that $T \otimes I$ is (∞, C)-isometric operator and $I \otimes S$ is an (∞, D) isometric operator, respectively. Since $C \otimes D$ is a conjugation on $\mathscr{H} \otimes \mathscr{H}$ by [4] and $(T \otimes I, I \otimes S)$ is a commuting pair and satisfies

$$
(I \otimes S)^{*}((C \otimes D)(T \otimes I)(C \otimes D))=((C \otimes D)(T \otimes I)(C \otimes D))(I \otimes S)^{*}
$$

it follows from Theorem 2.12 that $(T \otimes I)(I \otimes S)=T \otimes S$ is an $(\infty, C \otimes D)$-isometric operator.

Proposition 2.16. If $T \in \mathscr{L}(\mathscr{H})$ satisfies $T^{*} C T C=C T C T^{*}$, then the following statements hold.
(i) T is an (∞, C)-isometric operator if and only if T^{*} is an (∞, C)-isometric operator.
(ii) If T is an invertible and (∞, C)-isometric operator, then T^{-1} is an (∞, C) isometric operator.

Proof. (i) Suppose that T is an (∞, C)-isometric operator and $T^{*} C T C=C T C T^{*}$. Since $\Lambda_{m}\left(T^{*}\right)=\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} T^{m-j} C T^{* m-j} C$, it follows that

$$
\begin{aligned}
C \Lambda_{m}\left(T^{*}\right) C & =\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} C T^{m-j} C T^{* m-j} \\
& =\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} T^{* m-j} C T^{m-j} C=\Lambda_{m}(T),
\end{aligned}
$$

and $\Lambda_{m}\left(T^{*}\right)=C \Lambda_{m}(T) C$. Therefore, we have

$$
\begin{aligned}
\limsup _{m \rightarrow \infty}\left\|\Lambda_{m}\left(T^{*}\right)\right\|^{\frac{1}{m}} & =\limsup _{m \rightarrow \infty}\left\|C \Lambda_{m}(T) C\right\|^{\frac{1}{m}} \\
& =\limsup _{m \rightarrow \infty}\left\|\Lambda_{m}(T)\right\|^{\frac{1}{m}}=0
\end{aligned}
$$

Hence T^{*} is an (∞, C)-isometric operator. The converse implication holds by a similar method.
(ii) Note for any $a, b \in \mathbb{C}$,

$$
a^{m}\left(a^{-1} b^{-1}-1\right)^{m} b^{m}=(1-a b)^{m}=\sum_{j=0}^{m}(-1)^{j}\binom{m}{j} a^{m-j} b^{m-j}
$$

Take $a=T^{*}$ and $b=C T C$. Then we get $\Lambda_{m}(T)=(-1)^{m}\left(T^{*}\right)^{m} \Lambda_{m}\left(T^{-1}\right)(C T C)^{m}$ and so $(-1)^{m}\left(T^{*}\right)^{-m} \Lambda_{m}(T)=\Lambda_{m}\left(T^{-1}\right)(C T C)^{m}$. Therefore,

$$
(-1)^{m}\left(T^{*}\right)^{-m} \Lambda_{m}(T) C T^{-m} C=\Lambda_{m}\left(T^{-1}\right)
$$

Hence

$$
\limsup _{m \rightarrow \infty}\left\|\Lambda_{m}\left(T^{-1}\right)\right\|^{\frac{1}{m}} \leqslant \limsup _{m \rightarrow \infty}\left\|T^{*-1}\right\|\left\|\Lambda_{m}(T)\right\|^{\frac{1}{m}}\left\|T^{-1}\right\|=0
$$

So T^{-1} is an (∞, C)-isometric operator.

Corollary 2.17. Under the same hypothesis as in Proposition 2.16, if T is an invertible and (∞, C)-isometric operator, then T^{-n} and T^{*-n} are (∞, C)-isometric operators for any $n \in \mathbb{N}$.

Proof. The proof follows from Proposition 2.16 and Corollary 2.14.

Acknowledgement. The authors wish to thank the referees for their invaluable comments on the original draft.

REFERENCES

[1] J. Agler and M. Stankus, m-isometric transformations of Hilbert space I, Int. Eq. Op. Th. 21 (1995), 383-429.
[2] M. Chō, S. Ota, K. TANAhashi, and M. Uchiyama, Spectral properties of m-isometric operators, Functional Anal. Appl. Com. 4:2 (2012), 33-39.
[3] M. Chō, E. Ko, And J. Lee, On (m, C)-isometric operators, Comp. Anal. Oper. Th. 10 (2016), 1679-1694.
[4] M. ChŌ, J. Lee and H. Motoyoshi, On [m,C]-isometric operators, Filomat, 31, 7 (2017), 20732080.
[5] M. Chō, C. Gu and W. Y. Lee, Elementary properties of ∞-isometries on a Hilbert space, Linear Alg. Appl. 511 (2016), 378-402.
[6] R. Eskandari and F. Mirzapour, Hyperinvariant subspaces and quaisnilpotent operators, Bull. Iranian Math. Soc. 41 (2015), 805-813.
[7] S. R. Garcia, E. Prodan, and M. Putinar, Mathematical and physical aspects of complex symmetric operators, J. Phys. A: Math. Theory 47 (2014) 1-51.
[8] S. R. Garcia and M. Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358 (2006), 1285-1315.
[9] S. R. Garcia, Conjugation and Clark operators, Contemp. Math., 393 (2006), 67-112.
(Received October 10, 2016)

Muneo Chō
Department of Mathematics
Kanagawa University Hiratsuka 259-1293, Japan
e-mail: chiyom01@kanagawa-u.ac.jp
Eungil Ko
Department of Mathematics
Ewha Womans University
Seoul 120-750, Korea
e-mail: eiko@ewha.ac.kr
Ji Eun Lee
Department of Mathematics and Statistics
Sejong University
Seoul 143-747, Korea
e-mail: jieun7@ewhain.net,
jieunlee7@sejong.ac.kr

[^0]: Mathematics subject classification (2010): Primary 47A11, Secondary 47B25.
 Keywords and phrases: (∞, C)-isometric operator, m-isometric operator, quasinilpotent operator.
 This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2009-0093827). The third author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2016R1A2B4007035) and this research is partially supported by Grant-in-Aid Scientific Research No. 15K04910.

