CHARACTERIZATION OF TRUNCATED TOEPLITZ OPERATORS BY CONJUGATIONS

Kamila Kliś-Garlicka, Bartosz Łanucha and Marek Ptak

(Communicated by S. McCullough)

Abstract

Truncated Toeplitz operators are C-symmetric with respect to the canonical conjugation given on an appropriate model space. However, by considering only one conjugation one cannot characterize truncated Toeplitz operators. It will be proved, for some classes of inner functions and the model spaces connected with them, that if an operator on a model space is C-symmetric for a certain family of conjugations in the model space, then is has to be truncated Toeplitz. A characterization of classical Toeplitz operators is also presented in terms of conjugations.

1. Introduction

Let \mathscr{H} denote a complex Hilbert space. Denote by $L(\mathscr{H})$ the algebra of all bounded linear operators on \mathscr{H}. A conjugation is an antilinear involution $C: \mathscr{H} \rightarrow \mathscr{H}$ such that $\langle C f, C g\rangle=\langle g, f\rangle$ for all $f, g \in \mathscr{H}$. An operator $A \in L(\mathscr{H})$ is called C symmetric if $C A C=A^{*}$.

Let \mathbb{D} denote the open unit disk, let $\mathbb{T}=\partial \mathbb{D}$ denote the unit circle and let m be the normalized Lebesgue measure on \mathbb{T}. Denote by L^{2} the space $L^{2}(\mathbb{T}, m)$ and by $L^{\infty}=L^{\infty}(\mathbb{T}, m)$. Recall that a classical Toeplitz operator T_{φ} with a symbol $\varphi \in L^{\infty}$ on the Hardy space H^{2} is given by the formula

$$
T_{\varphi} f=P(\varphi f) \text { for } f \in H^{2}
$$

where $P: L^{2} \rightarrow H^{2}$ is the orthogonal projection. Denote by \mathscr{T} the set of all Toeplitz operators, i.e., $\mathscr{T}=\left\{T_{\varphi}: \varphi \in L^{\infty}\right\}$.

Let θ be a nonconstant inner function. Consider the so-called model space $K_{\theta}^{2}=$ $H^{2} \ominus \theta H^{2}$ and the orthogonal projection $P_{\theta}: L^{2} \rightarrow K_{\theta}^{2}$. A truncated Toeplitz operator A_{φ}^{θ} with a symbol $\varphi \in L^{2}$ is defined as

$$
A_{\varphi}^{\theta}: D\left(A_{\varphi}^{\theta}\right) \subset K_{\theta}^{2} \rightarrow K_{\theta}^{2} ; \quad A_{\varphi}^{\theta} f=P_{\theta}(\varphi f)
$$

[^0]for $f \in D\left(A_{\varphi}^{\theta}\right)=\left\{f \in K_{\theta}^{2}: \varphi f \in L^{2}\right\}$. Denote by $\mathscr{T}(\theta)$ the set of all bounded truncated Toeplitz operators on K_{θ}^{2}.

The conjugation C_{θ} defined for $f \in L^{2}$ by the formula

$$
C_{\theta} f(z)=\theta(z) \overline{z f(z)}, \quad|z|=1
$$

is a very useful tool in investigating Toeplitz operators. In fact, all truncated Toeplitz operators are C_{θ}-symmetric [7].

Truncated Toeplitz operators have been recently strongly investigated (see for instance $[10,1,3,4,5,6,8]$). However, usually only one (canonical) conjugation was involved in analysis on these operators. In this paper we suggest to consider a family of conjugations to study Toeplitz operators. In particular, we give a characterization of the classical Toeplitz operators as well as some special cases of truncated Toeplitz operators using conjugations.

It is easy to see that if $\theta=z^{N}$, then $K_{\theta}^{2}=\mathbb{C}^{N}$. The natural conjugation $C_{N}=C_{z^{N}}$ in \mathbb{C}^{N} can be expressed as $C_{N}\left(z_{1}, \ldots, z_{N}\right)=\left(\bar{z}_{N}, \ldots, \bar{z}_{1}\right)$. Note that a matrix $\left(a_{i, j}\right)_{i, j=1, \ldots, N}$ is C_{N}-symmetric if and only if it is symmetric with respect to the second diagonal, i.e.,

$$
a_{i, j}=a_{N-j+1, N-i+1} \quad \text { for } \quad i, j=1, \ldots, N
$$

On the other hand, a finite matrix $\left(a_{i, j}\right)_{i, j=1, \ldots, N}$ is a Toeplitz matrix if and only if it has constant diagonals, that is,

$$
a_{i, j}=a_{k, l} \quad \text { if } \quad i-j=k-l
$$

Hence, as D. Sarason in [10] observed, each $N \times N$ Toeplitz matrix is C_{N}-symmetric but the reverse implication is true only if $N \leqslant 2$. However, one can notice that for a given matrix $\left(a_{i, j}\right)_{i, j=1, \ldots, N}$, if the matrix is C_{n}-symmetric for every $n \leqslant N$, i.e.,

$$
a_{i, j}=a_{n-j+1, n-i+1} \quad \text { for } \quad n \leqslant N \quad \text { and } \quad i, j=1, \ldots n
$$

then the matrix $\left(a_{i, j}\right)_{i, j=1, \ldots, N}$ has to be Toeplitz. Corollary 2.3 gives a precise proof of this fact. One can ask if a similar property can be obtained for other inner functions than $\theta=z^{N}$. Using known matrix descriptions $[5,6,8]$ we obtained the positive answer: for a Blaschke product with a single zero in Section 3, for a finite Blaschke product with distinct zeros in Section 4 (the most demanding case), for an infinite Blaschke product with uniformly separated zeros in Section 5. For a general case we put the conjecture in Section 6. However, even for the simplest singular inner function $\theta(z)=\exp \left(\frac{z+1}{z-1}\right)$ no similar description is known and to solve the conjecture probably a different approach is needed. In Section 2 we also give similar characterization of the classical Toeplitz operators on the Hardy space in terms of conjugations.

2. Characterization of Toeplitz operators by conjugations

Let α and θ be two nonconstant inner functions. We say that α divides θ ($\alpha \leqslant$ θ) if $\bar{\alpha} \theta$ is an inner function. It is easy to verify that $K_{\alpha}^{2} \subset K_{\theta}^{2}$ for every $\alpha \leqslant \theta$. It is known that truncated Toeplitz operators on K_{θ}^{2} are C_{θ}-symmetric but this property does not characterize them, i.e., there are C_{θ}-symmetric operators on K_{θ}^{2}, which are not truncated Toeplitz ([7], [10, Lemma 2.1, Corollary on p. 504]). Note however that A_{φ}^{θ} is C_{α}-symmetric for every $\alpha \leqslant \theta$. Namely:

Lemma 2.1. Let $A_{\varphi}^{\theta}: K_{\theta}^{2} \rightarrow K_{\theta}^{2}$ be a truncated Toeplitz operator. For every $\alpha \leqslant$ θ the operator $P_{\alpha} A_{\varphi \mid K_{\alpha}^{2}}^{\theta}$ is C_{α}-symmetric.

Proof. Note that $P_{\alpha} A_{\varphi \mid K_{\alpha}^{2}}^{\theta}$ belongs to $\mathscr{T}(\alpha)$. Actually, $P_{\alpha} A_{\varphi \mid K_{\alpha}^{2}}^{\theta}=A_{\varphi}^{\alpha}$, hence it is C_{α}-symmetric by [10, Lemma 2.1].

A similar argument shows that if $A \in \mathscr{T}$, then $P_{\alpha} A_{\mid K_{\alpha}^{2}}$ is C_{α}-symmetric for all inner functions α. The latter can be used to characterize all Toeplitz operators on H^{2} :

THEOREM 2.2. Let $A \in L\left(H^{2}\right)$. Then the following conditions are equivalent:
(1) $A \in \mathscr{T}$;
(2) $C_{\alpha} A_{\alpha} C_{\alpha}=A_{\alpha}^{*}$ for all nonconstant inner functions α, where $A_{\alpha}=P_{\alpha} A_{\mid K_{\alpha}^{2}}$;
(3) $C_{\alpha} A_{\alpha} C_{\alpha}=A_{\alpha}^{*}$ for all $\alpha=z^{n}$, where $A_{\alpha}=P_{\alpha} A_{\mid K_{\alpha}^{2}}$.

Proof. The proof of the implication $(1) \Rightarrow(2)$ is similar to the proof of Lemma 2.1. Since $(2) \Rightarrow(3)$ is obvious, we will prove now that $(3) \Rightarrow(1)$.

The equivalent condition for a bounded operator on H^{2} to be Toeplitz is that it has to annihilate all rank-two operators of the form

$$
t=z^{m} \otimes z^{r}-z^{m+1} \otimes z^{r+1} \quad \text { with } \quad m, r \geqslant 0
$$

in the sense that $\operatorname{tr}(A t)=0$ (it follows form the well known Brown-Halmos characterization of Toeplitz operators given in [2]). Each such operator can be obtained from $1 \otimes z^{k}-z^{l} \otimes z^{k+l}$ or $z^{k} \otimes 1-z^{k+l} \otimes z^{l}$, with $k, l \geqslant 0$. Hence our reasoning will be held only for such operators.

Fix $k, l \geqslant 0$ and let $\alpha=z^{n}, n=k+l+1$. Since

$$
C_{\alpha} z^{k}=z^{n-k-1}=z^{l} \quad \text { and } \quad C_{\alpha} 1=z^{n-1}=z^{k+l}
$$

the C_{α}-symmetry of A_{α} gives

$$
\begin{aligned}
\operatorname{tr}\left(A\left(1 \otimes z^{k}\right)\right) & =\left\langle A 1, z^{k}\right\rangle=\left\langle A_{\alpha} 1, z^{k}\right\rangle=\left\langle C_{\alpha} z^{k}, C_{\alpha} A_{\alpha} 1\right\rangle \\
& =\left\langle C_{\alpha} z^{k}, A_{\alpha}^{*} C_{\alpha} 1\right\rangle=\left\langle z^{l}, A_{\alpha}^{*} z^{k+l}\right\rangle=\left\langle A_{\alpha} z^{l}, z^{k+l}\right\rangle=\operatorname{tr}\left(A\left(z^{l} \otimes z^{k+l}\right)\right)
\end{aligned}
$$

Similarly,

$$
\operatorname{tr}\left(A\left(z^{k} \otimes 1\right)\right)=\operatorname{tr}\left(A\left(z^{k+l} \otimes z^{l}\right)\right)
$$

Therefore all operators of the form $1 \otimes z^{k}-z^{l} \otimes z^{k+l}, z^{k} \otimes 1-z^{k+l} \otimes z^{l}$ for $k, l \geqslant 0$, are annihilated by A. Hence A is Toeplitz.

From the previous proof we can obtain
Corollary 2.3. Let $A \in L\left(K_{z^{N}}^{2}\right), N \in \mathbb{N}$. Then $A \in \mathscr{T}\left(z^{N}\right)$ if and only if for every $1 \leqslant n \leqslant N$ the operator A_{n} is $C_{z^{n}}$-symmetric, i.e., $C_{z^{n}} A_{n} C_{z^{n}}=A_{n}^{*}$, where $A_{n}=$ $P_{n} A_{\mid K_{z^{n}}^{2}}$ and $P_{n}: K_{z^{N}}^{2} \rightarrow K_{z^{n}}^{2}$ is the orthogonal projection.

3. The case of a Blaschke product with a single zero

Let α, θ be any nonconstant inner functions. We say that a unitary operator $U: K_{\theta}^{2} \rightarrow K_{\alpha}^{2}$ defines a spatial isomorphism between $\mathscr{T}(\theta)$ and $\mathscr{T}(\alpha)$ if $U \mathscr{T}(\theta) U^{*}=$ $\mathscr{T}(\alpha)$, that is, $A \in \mathscr{T}(\theta)$ if and only if $U A U^{*} \in \mathscr{T}(\alpha)$. If such U exists, $\mathscr{T}(\theta)$ and $\mathscr{T}(\alpha)$ are said to be spatially isomorphic. The spatial isomorphism between spaces of truncated Toeplitz operators is discussed in [6, Chapter 13.7.4].

Proposition 3.1. Let α, θ be any nonconstant inner functions. Let $U: K_{\theta}^{2} \rightarrow$ K_{α}^{2} be such that U defines a spatial isomorphism between $\mathscr{T}(\theta)$ and $\mathscr{T}(\alpha)$. Then $U C_{\theta}=C_{\alpha} U$.

Proof. It is known [6, Chapter 13.7.4] that there are three basic types of unitary operators that define a spatial isomorphism between $\mathscr{T}(\theta)$ and $\mathscr{T}(\alpha)$. The requested intertwining property for one of those basic types is proved in [10, Lemma 13.1]. The proof for two other types is similar. Since every $U: K_{\theta}^{2} \rightarrow K_{\alpha}^{2}$ such that U defines a spatial isomorphism between $\mathscr{T}(\theta)$ and $\mathscr{T}(\alpha)$, is a composition of at most three of those basic types of operators, it follows that U also has this intertwining property.

Let $a \in \mathbb{D}$ and $N \in \mathbb{N}$. Denote $b_{a}(z)=\frac{z-a}{1-\bar{a} z}$.
Proposition 3.2. Let $A \in L\left(K_{b_{a}^{N}}^{2}\right)$. Then $A \in \mathscr{T}\left(b_{a}^{N}\right)$ if and only if for every $1 \leqslant n \leqslant N$ the operator A_{n} is $C_{b_{a}^{n} \text {-symmetric, i.e., } C_{b_{a}^{n}} A_{n} C_{b_{a}^{n}}=A_{n}^{*} \text {, where } A_{n}=P_{n} A_{\mid K_{b}^{n}}^{2}}$ and $P_{n}: K_{b_{a}^{N}}^{2} \rightarrow K_{b_{a}^{n}}^{2}$ is the orthogonal projection.

Proof. The operator $U_{b_{a}}$ given by

$$
U_{b_{a}} f(z)=\frac{\sqrt{1-|a|^{2}}}{1-\bar{a} z} f \circ b_{a}(z)
$$

defines a spatial isomorphism between $\mathbb{C}^{n}=K_{z^{n}}^{2}$ and $K_{b_{a}^{n}}^{2}$ for each $n=1, \ldots, N$ (see [6, chapter 13.7.4(i)]). By Proposition 3.1, $U_{b_{a}}$ intertwines the conjugations $C_{z^{n}}$ and $C_{b_{a}^{n}}$. Application of Corollary 2.3 finishes the proof.

4. The case of a finite Blaschke product with distinct zeros

Let B be a finite Blaschke product of degree N with distinct zeros a_{1}, \ldots, a_{N},

$$
\begin{equation*}
B(z)=e^{i \gamma} \prod_{j=1}^{N} \frac{z-a_{j}}{1-\bar{a}_{j} z} \tag{4.1}
\end{equation*}
$$

where $\gamma \in \mathbb{R}$. As usual, for $w \in \mathbb{D}$ by

$$
k_{w}^{B}(z)=\frac{1-\overline{B(w)} B(z)}{1-\bar{w} z}
$$

we denote the reproducing kernel for K_{B}^{2}, that is,

$$
f(w)=\left\langle f, k_{w}^{B}\right\rangle
$$

for $f \in K_{B}^{2}$. Note that for $j=1, \ldots, N$ we have

$$
\begin{equation*}
k_{j}(z):=k_{a_{j}}^{B}(z)=\frac{1}{1-\bar{a}_{j} z} . \tag{4.2}
\end{equation*}
$$

As it was observed in [5], the model space K_{B}^{2} is N-dimensional and the functions k_{1}, \ldots, k_{N} form a (non-orthonormal) basis for K_{B}^{2}.

A simple computation gives the following.

LEMMA 4.1. ([5], p. 5)
(1) $\left(C_{B} k_{j}\right)(z)=\frac{B(z)}{z-a_{j}}$ for $j=1, \ldots, N$.
(2) $\left\langle C_{B} k_{j}, k_{i}\right\rangle=\left\{\begin{array}{cl}0 & \text { for } i \neq j, \\ B^{\prime}\left(a_{j}\right) & \text { for } i=j .\end{array}\right.$
(3) $\left\langle k_{j}, k_{i}\right\rangle=\frac{1}{1-\bar{a}_{j} a_{i}}$.

Lemma 4.2. Let B be a finite Blaschke product of degree N with distinct zeros a_{1}, \ldots, a_{N}. Let C_{B} be the conjugation in K_{B}^{2} given by $C_{B} f(z)=B(z) \overline{z f(z)}$ for $f \in K_{B}^{2}$. Assume that an operator $A \in L\left(K_{B}^{2}\right)$ has a matrix representation $\left(b_{i, j}\right)_{i, j=1, \ldots, N}$ with respect to the basis $\left\{k_{1}, \ldots, k_{N}\right\}$. Then the following are equivalent:
(1) A is C_{B}-symmetric;
(2) $\left\langle A k_{i}, C_{B} k_{j}\right\rangle=\left\langle A k_{j}, C_{B} k_{i}\right\rangle$ for all $i, j=1, \ldots, N$;
(3) $\overline{B^{\prime}\left(a_{j}\right)} b_{j, i}=\overline{B^{\prime}\left(a_{i}\right)} b_{i, j}$ for all $i, j=1, \ldots, N$.

Proof. The implication (1) \Rightarrow (2) follows from

$$
\left\langle A k_{i}, C_{B} k_{j}\right\rangle=\left\langle C_{B}^{2} k_{j}, C_{B} A k_{i}\right\rangle=\left\langle k_{j}, A^{*} C_{B} k_{i}\right\rangle=\left\langle A k_{j}, C_{B} k_{i}\right\rangle .
$$

The reverse implication can be proved similarly.
To prove that $(2) \Leftrightarrow(3)$ note that $A k_{i}=\sum_{m=1}^{N} b_{m, i} k_{m}$. Hence, by Lemma 4.1(2),

$$
\left\langle A k_{i}, C_{B} k_{j}\right\rangle=\sum_{m=1}^{N} b_{m, i}\left\langle k_{m}, C_{B} k_{j}\right\rangle=\overline{B^{\prime}\left(a_{j}\right)} b_{j, i}
$$

Analogously,

$$
\left\langle A k_{j}, C_{B} k_{i}\right\rangle=\overline{B^{\prime}\left(a_{i}\right)} b_{i, j} .
$$

Let $1 \leqslant n \leqslant N$. Denote by B_{n} the finite Blaschke product with n distinct zeros a_{1}, \ldots, a_{n},

$$
\begin{equation*}
B_{n}(z)=\prod_{j=1}^{n} \frac{z-a_{j}}{1-\bar{a}_{j} z}, \tag{4.3}
\end{equation*}
$$

and by $C_{n}=C_{B_{n}}$ the conjugation in $K_{B_{n}}^{2}$ given by

$$
\left(C_{n} f\right)(z)=B_{n}(z) \overline{z f(z)}, \quad|z|=1
$$

THEOREM 4.3. Let B be a finite Blaschke product of degree N with distinct zeros a_{1}, \ldots, a_{N}. Denote by B_{n} the Blaschke product of degree n with zeros a_{1}, \ldots, a_{n} and by P_{n} the orthogonal projection from K_{B}^{2} onto $K_{B_{n}}^{2}$ for $n=1, \ldots, N$. Let $A \in L\left(K_{B}^{2}\right)$. The following conditions are equivalent:
(1) $A \in \mathscr{T}(B)$;
(2) for every Blaschke product B_{σ} dividing B the operator $A_{\sigma}=P_{B_{\sigma}} A_{\mid K_{B_{\sigma}}^{2}}$ is $C_{B_{\sigma}}$ symmetric;
(3) for every $n=1, \ldots, N$ the operator $A_{n}=P_{n} A_{\mid K_{B_{n}}^{2}}$ is C_{n}-symmetric.

To give the proof of Theorem 4.3 we need two technical lemmas. Firstly, let us observe by (4.2) that $k_{a_{j}}^{B_{n}}=k_{a_{j}}^{B}=k_{j}$ for $1 \leqslant n \leqslant N, j=1, \ldots, n$. Hence $\left\{k_{1}, \ldots, k_{n}\right\}$ is a basis for $K_{B_{n}}^{2} \subset K_{B}^{2}$.

Lemma 4.4. For $1 \leqslant m, n \leqslant N$ the following holds:
(1) $\left\langle C_{n} k_{j}, k_{m}\right\rangle=\left\{\begin{array}{cll}0 & \text { for } & m \leqslant n, m \neq j, \\ B_{n}^{\prime}\left(a_{j}\right) & \text { for } & m \leqslant n, m=j, \\ \frac{B_{n}\left(a_{m}\right)}{a_{m}-a_{j}} & \text { for } & m>n,\end{array} \quad\right.$ for $j=1, \ldots, n$;
(2) $P_{n} k_{m}=\sum_{j=1}^{n} \frac{\overline{B_{n}\left(a_{m}\right)}}{B_{n}^{\prime}\left(a_{j}\right)\left(\overline{a_{m}}-\bar{a}_{j}\right)} k_{j}$ for $n<m$;
(3) $\frac{B_{n-1}\left(a_{n}\right)}{B_{n}^{\prime}\left(a_{n}\right)}=1-\left|a_{n}\right|^{2}$ for $n>1$;
(4) $\frac{B_{n-1}^{\prime}\left(a_{j}\right)}{B_{n}^{\prime}\left(a_{j}\right)}=\frac{1-\bar{a}_{n} a_{j}}{a_{j}-a_{n}}$ for $n>1, j=1, \ldots, n-1$.

Proof. To show (1) note that $C_{n} k_{j} \in K_{B_{n}}^{2} \subset K_{B}^{2}$ for $1 \leqslant n \leqslant N, j=1, \ldots, n$, and that

$$
\left(C_{n} k_{j}\right)(z)=\frac{B_{n}(z)}{z-a_{j}}
$$

by Lemma 4.1(1). If $m>n$, then the reproducing property of k_{m} yields

$$
\left\langle C_{n} k_{j}, k_{m}\right\rangle=\left(C_{n} k_{j}\right)\left(a_{m}\right)=\frac{B_{n}\left(a_{m}\right)}{a_{m}-a_{j}} .
$$

On the other hand, if $m \leqslant n$, then it follows from Lemma 4.1(2) that

$$
\left\langle C_{n} k_{j}, k_{m}\right\rangle=\left\{\begin{array}{ccc}
0 & \text { for } \quad m \neq j \\
B_{n}^{\prime}\left(a_{j}\right) & \text { for } \quad m=j
\end{array}\right.
$$

To show (2) assume that $m>n$ and $P_{n} k_{m}=\sum_{l=1}^{n} d_{l} k_{l}$. Then, by part (1), for $j=$ $1, \ldots, n$,

$$
\frac{B_{n}\left(a_{m}\right)}{a_{m}-a_{j}}=\left\langle C_{n} k_{j}, k_{m}\right\rangle=\left\langle C_{n} k_{j}, P_{n} k_{m}\right\rangle=\sum_{l=1}^{n} \bar{d}_{l}\left\langle C_{n} k_{j}, k_{l}\right\rangle=B_{n}^{\prime}\left(a_{j}\right) \bar{d}_{j}
$$

Hence

$$
d_{j}=\frac{\overline{B_{n}\left(a_{m}\right)}}{\overline{B_{n}^{\prime}\left(a_{j}\right)}\left(\bar{a}_{m}-\bar{a}_{j}\right)},
$$

which proves (2). The statements (3) and (4) follow directly from

$$
B_{n}^{\prime}(z)=B_{n-1}^{\prime}(z) \frac{z-a_{n}}{1-\bar{a}_{n} z}+B_{n-1}(z) \frac{1-\left|a_{n}\right|^{2}}{\left(1-\bar{a}_{n} z\right)^{2}}
$$

Lemma 4.5. Let $A \in L\left(K_{B_{n}}^{2}\right)$ have a matrix representation $\left(b_{i, j}^{(n)}\right)_{i, j=1, \ldots, n}$ with respect to the basis $\left\{k_{1}, \ldots, k_{n}\right\}$. Then $A_{n-1}=P_{n-1} A_{\mid K_{B_{n-1}}^{2}}$ has a matrix representation $\left(b_{i, j}^{(n-1)}\right)_{i, j=1, \ldots, n-1}$,

$$
b_{i, j}^{(n-1)}=b_{i, j}^{(n)}+\frac{\overline{B_{n-1}\left(a_{n}\right)} b_{n, j}^{(n)}}{\overline{B_{n-1}^{\prime}\left(a_{i}\right)}\left(\bar{a}_{n}-\bar{a}_{i}\right)},
$$

with respect to the basis $\left\{k_{1}, \ldots, k_{n-1}\right\}$.
Proof. Note that by Lemma 4.4(2),

$$
P_{n-1} k_{n}=\sum_{m=1}^{n-1} \frac{\overline{B_{n-1}\left(a_{n}\right)}}{\overline{B_{n-1}^{\prime}\left(a_{m}\right)}\left(\bar{a}_{n}-\bar{a}_{m}\right)} k_{m} .
$$

Hence, for $j=1, \ldots, n-1$, we have

$$
\begin{aligned}
P_{n-1}\left(A k_{j}\right) & =P_{n-1}\left(\sum_{m=1}^{n} b_{m, j}^{(n)} k_{m}\right)=P_{n-1}\left(\sum_{m=1}^{n-1} b_{m, j}^{(n)} k_{m}\right)+P_{n-1} b_{n, j}^{(n)} k_{n} \\
& =\sum_{m=1}^{n-1}\left(b_{m, j}^{(n)}+\frac{\frac{B_{n-1}\left(a_{n}\right)}{} b_{n, j}^{(n)}}{B_{n-1}^{\prime}\left(a_{m}\right)\left(\bar{a}_{n}-\bar{a}_{m}\right)}\right) k_{m} .
\end{aligned}
$$

Since

$$
b_{i, j}^{(n-1)}=\frac{1}{\overline{B_{n-1}^{\prime}\left(a_{i}\right)}}\left\langle P_{n-1}\left(A k_{j}\right), C_{n-1} k_{i}\right\rangle, \quad 1 \leqslant i, j \leqslant n-1,
$$

we get

$$
\begin{aligned}
b_{i, j}^{(n-1)} & =\frac{1}{\overline{B_{n-1}^{\prime}\left(a_{i}\right)}} \sum_{m=1}^{n-1}\left(b_{m, j}^{(n)}+\frac{\overline{B_{n-1}\left(a_{n}\right)} b_{n, j}^{(n)}}{\overline{B_{n-1}^{\prime}\left(a_{i}\right)\left(\bar{a}_{n}-\bar{a}_{m}\right)}}\right)\left\langle k_{m}, C_{n-1} k_{i}\right\rangle \\
& =b_{i, j}^{(n)}+\frac{\overline{B_{n-1}\left(a_{n}\right)} b_{n, j}^{(n)}}{\overline{B_{n-1}^{\prime}\left(a_{i}\right)}\left(\bar{a}_{n}-\bar{a}_{i}\right)}
\end{aligned}
$$

by Lemma 4.4(1).
Proof of Theorem 4.3. Since multiplying B by a constant of modulus 1 does not change K_{B}^{2}, we can assume without any loss of generality that B is given by (4.1) with $\gamma=0$, that is, $B=B_{N}$.

The implication $(1) \Rightarrow(2)$ follows from Lemma 2.1 and the implication $(2) \Rightarrow(3)$ is obvious. We only need to prove the implication $(3) \Rightarrow(1)$. This will be proved by induction. Note firstly that it is true for $N=2$ by [10, p. 505].

Assume now that the assertion is true for $n-1<N$, which means that $A_{n-1}=$ $P_{n-1} A_{\mid K_{B_{n-1}}^{2}}$ is Toeplitz and has a matrix representation $\left(b_{i, j}^{(n-1)}\right)_{i, j=1, \ldots, n-1}$ with respect to the basis $\left\{k_{1}, \ldots, k_{n-1}\right\}$ satisfying

$$
\begin{equation*}
b_{i, j}^{(n-1)}=\frac{\overline{B_{n-1}^{\prime}\left(a_{1}\right)}}{\overline{\bar{B}_{n-1}^{\prime}\left(a_{i}\right)}}\left(\frac{b_{1, i}^{(n-1)}\left(\bar{a}_{1}-\bar{a}_{i}\right)+b_{1, j}^{(n-1)}\left(\bar{a}_{j}-\bar{a}_{1}\right)}{\bar{a}_{j}-\bar{a}_{i}}\right) \tag{4.4}
\end{equation*}
$$

for $1 \leqslant i, j \leqslant n-1, i \neq j$, by [5, Theorem 1.4]. Assume also that $A \in L\left(K_{B_{n}}^{2}\right)$ is C_{n}-symmetric and has a matrix representation $\left(b_{i, j}^{(n)}\right)_{i, j=1, \ldots, n}$ with respect to the basis $\left\{k_{1}, \ldots, k_{n}\right\}$. We will show that A is Toeplitz, i.e., $b_{i, j}^{(n)}$ satisfies [5, Theorem 1.4]:

$$
b_{i, j}^{(n)}=\frac{\overline{B_{n}^{\prime}\left(a_{1}\right)}}{\overline{B_{n}^{\prime}\left(a_{i}\right)}}\left(\frac{b_{1, i}^{(n)}\left(\bar{a}_{1}-\bar{a}_{i}\right)+b_{1, j}^{(n)}\left(\bar{a}_{j}-\bar{a}_{1}\right)}{\bar{a}_{j}-\bar{a}_{i}}\right)
$$

for $1 \leqslant i, j \leqslant n, i \neq j$.

Since A_{n-1} is C_{n-1}-symmetric, for $i, j=1, \ldots, n-1$ we have, by Lemma 4.2 and Lemma 4.5,

$$
\begin{equation*}
b_{j, i}^{(n-1)}=\frac{\overline{B_{n-1}^{\prime}\left(a_{i}\right)}}{\overline{B_{n-1}^{\prime}\left(a_{j}\right)}} b_{i, j}^{(n-1)}=\frac{\overline{B_{n-1}^{\prime}\left(a_{i}\right)}}{\overline{B_{n-1}^{\prime}\left(a_{j}\right)}}\left(b_{i, j}^{(n)}+\frac{\overline{B_{n-1}\left(a_{n}\right)} b_{n, j}^{(n)}}{\overline{B_{n-1}^{\prime}\left(a_{i}\right)}\left(\bar{a}_{n}-\bar{a}_{i}\right)}\right) . \tag{4.5}
\end{equation*}
$$

On the other hand, by Lemma 4.5 and using the C_{n}-symmetry of A,

$$
\begin{align*}
& b_{j, i}^{(n-1)}=b_{j, i}^{(n)}+\frac{\overline{B_{n-1}\left(a_{n}\right)}}{\overline{B_{n-1}^{\prime}\left(a_{j}\right)}} \frac{b_{n, i}^{(n)}}{\overline{a_{n}-\bar{a}_{j}}} \tag{4.6}\\
&=\frac{\overline{B_{n}^{\prime}\left(a_{i}\right)}}{\overline{B_{n}^{\prime}\left(a_{j}\right)}} b_{i, j}^{(n)}+\frac{\overline{B_{n}^{\prime}\left(a_{i}\right)}}{\overline{B_{n}^{\prime}\left(a_{n}\right)}} \overline{\overline{B_{n-1}\left(a_{n}\right)}} \\
& \overline{B_{n-1}^{\prime}\left(a_{j}\right)} b_{i, n}^{(n)} \\
& \bar{a}_{n}-\bar{a}_{j}
\end{align*} .
$$

Comparing (4.5) with (4.6) and putting $i=1$ we obtain

$$
\frac{\overline{B_{n-1}\left(a_{n}\right)}}{\overline{\overline{B_{n-1}^{\prime}\left(a_{j}\right)}}} \frac{b_{n, j}^{(n)}}{\bar{a}_{n}-\bar{a}_{1}}=\frac{\overline{B_{n}^{\prime}\left(a_{1}\right)}}{\overline{B_{n}^{\prime}\left(a_{n}\right)}} \frac{\overline{B_{n-1}\left(a_{n}\right)}}{\overline{B_{n-1}^{\prime}\left(a_{j}\right)}} \frac{b_{1, n}^{(n)}}{\overline{a_{n}}-\bar{a}_{j}}+\left(\frac{\overline{\overline{B_{n}^{\prime}\left(a_{1}\right)}}}{\overline{\overline{B_{n}^{\prime}\left(a_{j}\right)}}}-\frac{\overline{B_{n-1}^{\prime}\left(a_{1}\right)}}{\overline{B_{n-1}^{\prime}\left(a_{j}\right)}}\right) b_{1, j}^{(n)}
$$

Hence

$$
\begin{equation*}
b_{n, j}^{(n)}=\frac{\overline{B_{n}^{\prime}\left(a_{1}\right)}}{\overline{B_{n}^{\prime}\left(a_{n}\right)}} \frac{b_{1, n}^{(n)}\left(\bar{a}_{n}-\bar{a}_{1}\right)}{\bar{a}_{n}-\bar{a}_{j}}+\left(\overline{\overline{B_{n}^{\prime}\left(a_{1}\right)}} \overline{\overline{B_{n-1}\left(a_{n}\right)}} \frac{\overline{B_{n-1}^{\prime}\left(a_{j}\right)}}{\overline{B_{n}^{\prime}\left(a_{j}\right)}}-\frac{\overline{B_{n-1}^{\prime}\left(a_{1}\right)}}{\overline{B_{n-1}\left(a_{n}\right)}}\right) b_{1, j}^{(n)}\left(\bar{a}_{n}-\bar{a}_{1}\right) . \tag{4.7}
\end{equation*}
$$

Using Lemma 4.4 we can simplify

$$
\begin{aligned}
\frac{\overline{B_{n}^{\prime}\left(a_{1}\right)}}{\overline{B_{n-1}\left(a_{n}\right)}} & \frac{\overline{B_{n-1}^{\prime}\left(a_{j}\right)}}{\overline{B_{n}^{\prime}\left(a_{j}\right)}}-\frac{\overline{B_{n-1}^{\prime}\left(a_{1}\right)}}{\overline{B_{n-1}\left(a_{n}\right)}} \\
& =\overline{\overline{B_{n}^{\prime}\left(a_{1}\right)}} \overline{\overline{B_{n}^{\prime}\left(a_{n}\right)}} \frac{1}{1-\left|a_{n}\right|^{2}}\left(\frac{1-a_{n} \bar{a}_{j}}{\bar{a}_{j}-\bar{a}_{n}}+\frac{1-a_{n} \bar{a}_{1}}{\bar{a}_{n}-\bar{a}_{1}}\right) \\
& =\frac{\overline{B_{n}^{\prime}\left(a_{1}\right)}}{\overline{B_{n}^{\prime}\left(a_{n}\right)}} \frac{\left(\bar{a}_{j}-\bar{a}_{1}\right)}{\left(\bar{a}_{j}-\bar{a}_{n}\right)\left(\bar{a}_{n}-\bar{a}_{1}\right)},
\end{aligned}
$$

which together with (4.7) gives

$$
\begin{equation*}
b_{n, j}^{(n)}=\frac{\overline{B_{n}^{\prime}\left(a_{1}\right)}}{\overline{B_{n}^{\prime}\left(a_{n}\right)}}\left(\frac{b_{1, n}^{(n)}\left(\bar{a}_{1}-\bar{a}_{n}\right)+b_{1, j}^{(n)}\left(\bar{a}_{j}-\bar{a}_{1}\right)}{\bar{a}_{j}-\bar{a}_{n}}\right) \tag{4.8}
\end{equation*}
$$

for $1 \leqslant j \leqslant n-1$. From (4.8), the C_{n}-symmetry of A_{n} and Lemma 4.2 we also get

$$
\begin{equation*}
b_{i, n}^{(n)}=\frac{\overline{B_{n}^{\prime}\left(a_{n}\right)}}{\overline{B_{n}^{\prime}\left(a_{i}\right)}} b_{n, i}^{(n)}=\frac{\overline{B_{n}^{\prime}\left(a_{1}\right)}}{\overline{B_{n}^{\prime}\left(a_{i}\right)}}\left(\frac{b_{1, i}^{(n)}\left(\bar{a}_{1}-\bar{a}_{i}\right)+b_{1, n}^{(n)}\left(\bar{a}_{n}-\bar{a}_{1}\right)}{\bar{a}_{n}-\bar{a}_{i}}\right) \tag{4.9}
\end{equation*}
$$

for $1 \leqslant i \leqslant n-1$. By Lemma 4.2 and Lemma 4.5, we have for $i=1, \ldots, n-1$,

$$
b_{1, i}^{(n-1)}=\frac{\overline{B_{n-1}^{\prime}\left(a_{i}\right)}}{\overline{B_{n-1}^{\prime}\left(a_{1}\right)}} b_{i, 1}^{(n-1)}=\frac{\overline{B_{n-1}^{\prime}\left(a_{i}\right)}}{\overline{B_{n-1}^{\prime}\left(a_{1}\right)}}\left(b_{i, 1}^{(n)}+\frac{\overline{B_{n-1}\left(a_{n}\right)}}{\overline{B_{n-1}^{\prime}\left(a_{i}\right)}} \frac{b_{n, 1}^{(n)}}{\bar{a}_{n}-\bar{a}_{i}}\right)
$$

Using Lemma 4.2 again we obtain

$$
\begin{equation*}
b_{1, i}^{(n-1)}=\frac{\overline{B_{n}^{\prime}\left(a_{1}\right)}}{\overline{B_{n}^{\prime}\left(a_{i}\right)}} \frac{\overline{B_{n-1}^{\prime}\left(a_{i}\right)}}{\overline{B_{n-1}^{\prime}\left(a_{1}\right)}} b_{1, i}^{(n)}+\frac{\overline{B_{n}^{\prime}\left(a_{1}\right)}}{\overline{B_{n}^{\prime}\left(a_{n}\right)}} \overline{\frac{B_{n-1}\left(a_{n}\right)}{\overline{B_{n-1}^{\prime}\left(a_{1}\right)}} \frac{b_{1, n}^{(n)}}{\bar{a}_{n}-\bar{a}_{i}} ~ . ~} \tag{4.10}
\end{equation*}
$$

Now applying Lemma 4.5 to the left-hand side of (4.4), and formula (4.10) to the right-hand side of (4.4) we can calculate for all $i, j=1, \ldots, n-1$,

$$
\begin{align*}
b_{i, j}^{(n)}+ & \overline{\overline{B_{n-1}\left(a_{n}\right)}} \overline{\overline{B_{n-1}^{\prime}\left(a_{i}\right)}} \frac{b_{n, j}^{(n)}}{\bar{a}_{n}-\bar{a}_{i}} \\
= & \frac{\overline{B_{n}^{\prime}\left(a_{1}\right)}}{\overline{B_{n}^{\prime}\left(a_{i}\right)}} \frac{\bar{a}_{1}-\bar{a}_{i}}{\bar{a}_{j}-\bar{a}_{i}} b_{1, i}^{(n)}+\frac{\overline{B_{n}^{\prime}\left(a_{1}\right)}}{\overline{B_{n}^{\prime}\left(a_{n}\right)}} \frac{\overline{B_{n-1}\left(a_{n}\right)}}{\overline{B_{n-1}^{\prime}\left(a_{i}\right)}} \frac{\left(\bar{a}_{1}-\bar{a}_{i}\right) b_{1, n}^{(n)}}{\left(\bar{a}_{n}-\bar{a}_{i}\right)\left(\bar{a}_{j}-\bar{a}_{i}\right)} \tag{4.11}\\
& +\frac{\overline{B_{n}^{\prime}\left(a_{1}\right)}}{\overline{B_{n}^{\prime}\left(a_{j}\right)}} \frac{\overline{B_{n-1}^{\prime}\left(a_{j}\right)}}{\overline{B_{n-1}^{\prime}\left(a_{i}\right)}} \frac{\bar{a}_{j}-\bar{a}_{1}}{\bar{a}_{j}-\bar{a}_{i}} b_{1, j}^{(n)}+\frac{\overline{B_{n}^{\prime}\left(a_{1}\right)}}{\overline{B_{n}^{\prime}\left(a_{n}\right)}} \frac{B_{n-1}\left(a_{n}\right)}{\overline{B_{n-1}^{\prime}\left(a_{i}\right)}} \frac{\bar{a}_{j}-\bar{a}_{1}}{\left(\bar{a}_{n}-\bar{a}_{j}\right)\left(\bar{a}_{j}-\bar{a}_{i}\right)} b_{1, n}^{(n)} .
\end{align*}
$$

Note that

$$
\begin{aligned}
& \overline{\overline{B_{n}^{\prime}\left(a_{1}\right)}} \overline{\overline{B_{n}^{\prime}\left(a_{j}\right)}} \frac{\overline{B_{n-1}^{\prime}\left(a_{j}\right)}}{\overline{B_{n-1}^{\prime}\left(a_{i}\right)}} \frac{\bar{a}_{j}-\bar{a}_{1}}{\bar{a}_{j}-\bar{a}_{i}} b_{1, j}^{(n)} \\
&=\frac{\overline{B_{n}^{\prime}\left(a_{1}\right)}}{\overline{B_{n}^{\prime}\left(a_{i}\right)}} \frac{\bar{a}_{j}-\bar{a}_{1}}{\bar{a}_{j}-\bar{a}_{i}} b_{1, j}^{(n)}+\frac{\overline{B_{n-1}\left(a_{n}\right)}}{\overline{B_{n-1}^{\prime}\left(a_{i}\right)}} \frac{\overline{B_{n}^{\prime}\left(a_{1}\right)}}{\overline{B_{n}^{\prime}\left(a_{n}\right)}} \frac{\bar{a}_{j}-\bar{a}_{1}}{\left(\bar{a}_{n}-\bar{a}_{i}\right)\left(\bar{a}_{j}-\bar{a}_{n}\right)} b_{1, j}^{(n)}
\end{aligned}
$$

by Lemma 4.4. Moreover,

$$
\begin{equation*}
\frac{1}{\bar{a}_{j}-\bar{a}_{i}}\left(\frac{\bar{a}_{1}-\bar{a}_{i}}{\bar{a}_{n}-\bar{a}_{i}}+\frac{\bar{a}_{j}-\bar{a}_{1}}{\bar{a}_{n}-\bar{a}_{j}}\right)=\frac{\bar{a}_{n}-\bar{a}_{1}}{\left(\bar{a}_{n}-\bar{a}_{i}\right)\left(\bar{a}_{n}-\bar{a}_{j}\right)} . \tag{4.12}
\end{equation*}
$$

Hence, (4.11) and (4.12) give

$$
\begin{aligned}
b_{i, j}^{(n)} & +\frac{\overline{B_{n-1}\left(a_{n}\right)}}{\overline{B_{n-1}^{\prime}\left(a_{i}\right)}} \frac{b_{n, j}^{(n)}}{\bar{a}_{n}-\bar{a}_{i}}=\frac{\overline{B_{n}^{\prime}\left(a_{1}\right)}}{\overline{B_{n}^{\prime}\left(a_{i}\right)}} \frac{b_{1, i}^{(n)}\left(\bar{a}_{1}-\bar{a}_{i}\right)+b_{1, j}^{(n)}\left(\bar{a}_{j}-\bar{a}_{1}\right)}{\bar{a}_{j}-\bar{a}_{i}} \\
& +\frac{\overline{B_{n-1}\left(a_{n}\right)}}{\overline{B_{n-1}^{\prime}\left(a_{i}\right)}} \frac{1}{\bar{a}_{n}-\bar{a}_{i}} \frac{\overline{B_{n}^{\prime}\left(a_{1}\right)}}{\overline{B_{n}^{\prime}\left(a_{n}\right)}} \frac{b_{1, n}^{(n)}\left(\bar{a}_{1}-\bar{a}_{n}\right)+b_{1, j}^{(n)}\left(\bar{a}_{j}-\bar{a}_{1}\right)}{\bar{a}_{j}-\bar{a}_{n}} .
\end{aligned}
$$

Taking into account (4.8) and (4.9), the above equation implies that

$$
b_{i, j}^{(n)}=\frac{\overline{B_{n}^{\prime}\left(a_{1}\right)}}{\overline{B_{n}^{\prime}\left(a_{i}\right)}}\left(\frac{b_{1, i}^{(n)}\left(\bar{a}_{1}-\bar{a}_{i}\right)+b_{1, j}^{(n)}\left(\bar{a}_{j}-\bar{a}_{1}\right)}{\bar{a}_{j}-\bar{a}_{i}}\right)
$$

for all $1 \leqslant i, j \leqslant n, i \neq j$, which completes the proof.

5. An infinite Blaschke product with uniformly separated zeros

Let B be an infinite Blaschke product,

$$
\begin{equation*}
B(z)=e^{i \gamma} \prod_{j=1}^{\infty} \frac{\bar{a}_{j}}{\left|a_{j}\right|} \frac{a_{j}-z}{1-\bar{a}_{j} z}, \quad \gamma \in \mathbb{R}, \tag{5.1}
\end{equation*}
$$

(if $a_{j}=0$, then $\bar{a}_{j} /\left|a_{j}\right|$ is interpreted as -1) with uniformly separated zeros a_{1}, a_{2}, \ldots, i.e.,

$$
\begin{equation*}
\inf _{n} \prod_{j \neq n}\left|\frac{a_{j}-a_{n}}{1-\bar{a}_{j} a_{n}}\right| \geqslant \delta \tag{5.2}
\end{equation*}
$$

for some $\delta>0$. In particular, the zeros $\left\{a_{j}\right\}_{j=1}^{\infty}$ are distinct. As before, $B_{n}, n \in \mathbb{N}$, denotes the finite Blaschke product with zeros a_{1}, \ldots, a_{n}, given by (4.3).

THEOREM 5.1. Let B be an infinite Blaschke product with uniformly separated zeros $\left\{a_{j}\right\}_{j=1}^{\infty}$. Denote by B_{n} the Blaschke product of degree n with distinct zeros $\left\{a_{1}, \ldots, a_{n}\right\}$ and by P_{n} the orthogonal projection form K_{B}^{2} onto $K_{B_{n}}^{2}$ for $n \in \mathbb{N}$. Let $A \in L\left(K_{B}^{2}\right)$. The following conditions are equivalent:
(1) $A \in \mathscr{T}(B)$;
(2) for every Blaschke product B_{σ} dividing B the operator $A_{\sigma}=P_{B_{\sigma}} A_{\mid K_{B_{\sigma}}^{2}}$ is $C_{B_{\sigma}}$-symmetric;
(3) for every $n \in \mathbb{N}$ the operator $A_{n}=P_{n} A_{\mid K_{B_{n}}^{2}}$ is C_{n}-symmetric.

Again, before we give the proof some preparations are necessary. Clearly, $K_{B_{n}}^{2} \subset$ K_{B}^{2} for all $n \in \mathbb{N}$ and $k_{a_{j}}^{B}=k_{j}$ for all $j \in \mathbb{N}$. Condition (5.2) implies that the reproducing kernels $k_{j}, j \in \mathbb{N}$, form a basis for K_{B}^{2} (for more details see [6, Chapter 12], [7] or [9]). In particular, every $f \in K_{B}^{2}$ can be written as

$$
f=\sum_{j=1}^{\infty} \frac{\left\langle f, C_{B} k_{j}\right\rangle}{\overline{B^{\prime}\left(a_{j}\right)}} k_{j}
$$

where the series converges in the norm.

LEMMA 5.2. Let $A \in L\left(K_{B}^{2}\right)$ have a matrix representation $\left(b_{i, j}\right)_{i, j=1}^{\infty}$ with respect to the basis $\left\{k_{i}: i \in \mathbb{N}\right\}$. Then $A_{n}=P_{n} A_{\mid K_{B_{n}}^{2}}$ has a matrix representation $\left(b_{i, j}^{(n)}\right)_{i, j=1, \ldots, n}$,

$$
b_{i, j}^{(n)}=b_{i, j}+\sum_{m=n+1}^{\infty} \frac{\overline{B_{n}\left(a_{m}\right)} b_{m, j}}{\overline{B_{n}^{\prime}\left(a_{i}\right)}\left(\bar{a}_{m}-\bar{a}_{i}\right)},
$$

with respect to the basis $\left\{k_{1}, \ldots, k_{n}\right\}$.

Proof. Let $n \in \mathbb{N}$ and $1 \leqslant i, j \leqslant n$. Since

$$
A_{n} k_{j}=\sum_{m=1}^{n} b_{m, j}^{(n)} k_{m}
$$

Lemma 4.4(1) gives

$$
b_{i, j}^{(n)}=\frac{1}{\overline{B_{n}^{\prime}\left(a_{i}\right)}}\left\langle A_{n} k_{j}, C_{n} k_{i}\right\rangle .
$$

Since

$$
A k_{j}=\sum_{m=1}^{\infty} b_{m, j} k_{m}
$$

and the series converges in norm, we get

$$
\begin{aligned}
b_{i, j}^{(n)} & =\frac{1}{\overline{B_{n}^{\prime}\left(a_{i}\right)}}\left\langle A k_{j}, C_{n} k_{i}\right\rangle=\frac{1}{\overline{B_{n}^{\prime}\left(a_{i}\right)}} \sum_{m=1}^{\infty} b_{m, j}\left\langle k_{m}, C_{n} k_{i}\right\rangle \\
& =b_{i, j}+\frac{1}{\overline{B_{n}^{\prime}\left(a_{i}\right)}} \sum_{m=n+1}^{\infty} \frac{\overline{B_{n}\left(a_{m}\right)}}{\bar{a}_{m}-\bar{a}_{i}} b_{m, j}
\end{aligned}
$$

by Lemma 4.4(1).

Corollary 5.3. For all $i, j \in \mathbb{N}$,

$$
b_{i, j}=\lim _{n \rightarrow \infty} b_{i, j}^{(n)} .
$$

Proof. It is known that the infinite Blaschke product B converges uniformly on compact subsets of \mathbb{D}. It follows that if

$$
\lambda_{n}=(-1)^{n} \prod_{j=1}^{n} \frac{\bar{a}_{j}}{\left|a_{j}\right|}, \quad n \in \mathbb{N}
$$

then $\lambda_{n} B_{n} \rightarrow B$ and $\lambda_{n} B_{n}^{\prime} \rightarrow B^{\prime}$ as $n \rightarrow \infty$ (uniformly on compact subsets of \mathbb{D}). In particular,

$$
\lambda_{n} B_{n}^{\prime}\left(a_{i}\right) \rightarrow B^{\prime}\left(a_{i}\right) \quad \text { as } \quad n \rightarrow \infty
$$

for each $i \in \mathbb{N}$. Fix $i, j \in \mathbb{N}$. Let $n \geqslant \max \{i, j\}$ and write

$$
A k_{j}=\sum_{m=1}^{n} b_{m, j} k_{m}+r_{n}, \quad \text { where } \quad r_{n}=\sum_{m=n+1}^{\infty} b_{m, j} k_{m} .
$$

As in the proof of Lemma 5.2,

$$
b_{i, j}^{(n)}=b_{i, j}+\frac{1}{B_{n}^{\prime}\left(a_{i}\right)}\left\langle r_{n}, C_{n} k_{i}\right\rangle=b_{i, j}+\frac{1}{\lambda_{n} B_{n}^{\prime}\left(a_{i}\right)}\left\langle r_{n}, \lambda_{n} C_{n} k_{i}\right\rangle,
$$

where the last equality follows form the fact that $\lambda_{n} \in \mathbb{T}$. Since r_{n} tends to zero in the norm, the sequence $\left(\lambda_{n} C_{n} k_{i}\right)_{n \geqslant i}$ is bounded and $\lambda_{n} B_{n}^{\prime}\left(a_{i}\right) \rightarrow B^{\prime}\left(a_{i}\right)$, we get

$$
\lim _{n \rightarrow \infty} b_{i, j}^{(n)}=b_{i, j}+\lim _{n \rightarrow \infty}\left(\frac{1}{\lambda_{n} B_{n}^{\prime}\left(a_{i}\right)}\left\langle r_{n}, \lambda_{n} C_{n} k_{i}\right\rangle\right)=b_{i, j}
$$

Proof of Theorem 5.1. As in the proof of Theorem 4.3, without loss of generality, assume that B is given by (5.1) with $\gamma=0$. The implication (1) $\Rightarrow(2)$ follows from Lemma 2.1 and the implication $(2) \Rightarrow(3)$ is obvious. We only need to prove $(3) \Rightarrow(1)$.

Let $A \in L\left(K_{B}^{2}\right)$ and assume that $A_{n}=P_{n} A_{\mid K_{B_{n}}^{2}}$ is C_{n}-symmetric for every $n \in \mathbb{N}$. By [8, Remark 2.4], to prove that $A \in \mathscr{T}(B)$ it is enough to show that

$$
\begin{equation*}
b_{i, j}=\frac{\overline{B^{\prime}\left(a_{1}\right)}}{\overline{B^{\prime}\left(a_{i}\right)}}\left(\frac{b_{1, i}\left(\bar{a}_{1}-\bar{a}_{i}\right)+b_{1, j}\left(\bar{a}_{j}-\bar{a}_{1}\right)}{\bar{a}_{j}-\bar{a}_{i}}\right) \tag{5.3}
\end{equation*}
$$

for all $i \neq j$, where $\left(b_{i, j}\right)_{i, j=1}^{\infty}$ is the matrix representation of A with respect to the basis $\left\{k_{i}: i \in \mathbb{N}\right\}$. Fix $i, j \in \mathbb{N}, i \neq j$, and take an arbitrary $N \geqslant \max \{i, j\}$. By (3), $P_{n} A_{N \mid K_{B_{n}}^{2}}=A_{n}$ is C_{n}-symmetric for all $n=1, \ldots, N$. Hence Theorem 4.3 implies that $A_{N} \in \mathscr{T}\left(B_{N}\right)$. By [5, Theorem 4.1],

$$
\begin{equation*}
b_{i, j}^{(N)}=\frac{\overline{B_{N}^{\prime}\left(a_{1}\right)}}{\overline{B_{N}^{\prime}\left(a_{i}\right)}}\left(\frac{b_{1, i}^{(N)}\left(\bar{a}_{1}-\bar{a}_{i}\right)+b_{1, j}^{(N)}\left(\bar{a}_{j}-\bar{a}_{1}\right)}{\bar{a}_{j}-\bar{a}_{i}}\right) \tag{5.4}
\end{equation*}
$$

where $\left(b_{i, j}^{(N)}\right)_{i, j=1, \ldots, N}$ is the matrix representation of the operator A_{N} with respect to the basis $\left\{k_{1}, \ldots, k_{N}\right\}$. Taking the limit in (5.4) as N tends to infinity we get (5.3) because $b_{i, j}^{(N)} \rightarrow b_{i, j}$ and $B_{N}^{\prime}\left(a_{i}\right) \rightarrow B^{\prime}\left(a_{i}\right)$ by Corollary 5.3 and its proof.

6. Conjecture

Theorems 2.2, 4.3, 5.1 and Proposition 3.2 suggest that the following conjecture can be true:

CONJECTURE 6.1. Let θ be a nonconstant inner function, and let $A \in L\left(K_{\theta}^{2}\right)$. Then $A \in \mathscr{T}(\theta)$ if and only if for every nonconstant inner function α dividing θ the operator $A_{\alpha}=P_{\alpha} A_{\mid K_{\alpha}^{2}}$ is C_{α}-symmetric.

The following example supports the conjecture.
Example 6.2. Consider

$$
B(z)=z^{2} \frac{w-z}{1-\bar{w} z}, \quad \text { where } \quad w \neq 0
$$

Then the space K_{B}^{2} has dimension 3 and the set $\left\{1, z, \frac{z^{2}}{\left\|k_{w}\right\|} k_{w}\right\}, k_{w}(z)=(1-\bar{w} z)^{-1}$, is an orthonormal basis for K_{B}^{2}.

We first describe the operators form $\mathscr{T}(B)$ in terms of their matrix representations with respect to the basis $\left\{1, z, \frac{z^{2}}{\left\|k_{w}\right\|} k_{w}\right\}$. Let $A_{\varphi}^{B}, \varphi \in L^{2}$, be an operator from $\mathscr{T}(B)$, and let $M_{A_{\varphi}^{B}}=\left(b_{i, j}\right)$ be its matrix representation. By [10, Theorem 3.1] we can assume that $\varphi \in \overline{B H^{2}}+B H^{2}$, namely, that

$$
\varphi=c_{-2} \frac{\bar{z}^{2}}{\left\|k_{w}\right\|} \bar{k}_{w}+c_{-1} \bar{z}+c_{0}+c_{1} z+c_{2} \frac{z^{2}}{\left\|k_{w}\right\|} k_{w} .
$$

It is now a matter of a simple computation to see that the matrix $M_{A_{\varphi}^{B}}=\left(b_{i, j}\right)$ is given by

$$
\left(\begin{array}{ccc}
c_{0} & c_{-1} & c_{-2} \\
c_{1} & c_{0} & c_{-2} \bar{w}+\frac{c_{-1}}{\left\|k_{w}\right\|} \\
c_{2} & \frac{c_{1}}{\left\|k_{w}\right\|}+c_{2} w & c_{-2} \bar{w}^{2}\left\|k_{w}\right\|+c_{-1} \bar{w}+c_{0}+c_{1} w+c_{2} w^{2}\left\|k_{w}\right\|
\end{array}\right)
$$

From this, the elements $b_{i, j}$ are described by the following system of equations

$$
\begin{align*}
b_{2,2} & =b_{1,1} \tag{6.1}\\
b_{2,3} & =\bar{w} b_{1,3}+\left\|k_{w}\right\|^{-1} b_{1,2} \tag{6.2}\\
b_{3,2} & =\left\|k_{w}\right\|^{-1} b_{2,1}+w b_{3,1} \tag{6.3}\\
b_{3,3} & =b_{1,1}+\bar{w}\left\|k_{w}\right\| b_{2,3}+w\left\|k_{w}\right\| b_{3,2} \tag{6.4}\\
& =b_{1,1}+\bar{w}^{2}\left\|k_{w}\right\| b_{1,3}+\bar{w} b_{1,2}+w b_{2,1}+w^{2}\left\|k_{w}\right\| b_{3,1}
\end{align*}
$$

Clearly, each 3×3 matrix $\left(b_{i, j}\right)$ satisfying (6.1)-(6.4) is determined by five elements (the first row and the first column) and the space \mathscr{M}_{B} of all such matrices has dimension 5. As matrices representing operators from $\mathscr{T}(B)$ have to belong to \mathscr{M}_{B} and the dimension of $\mathscr{T}(B)$ in this case is also 5 , we conclude that a linear operator A form K_{B}^{2} into K_{B}^{2} belongs to $\mathscr{T}(B)$ if and only if its matrix representation with respect to $\left\{1, z, \frac{z^{2}}{\left\|k_{w}\right\|} k_{w}\right\}$ satisfies (6.1)-(6.4).

Now let A be an operator from K_{B}^{2} into K_{B}^{2} such that for every $B_{\sigma} \leqslant B$ the compression $A_{\sigma}=P_{B_{\sigma}} A_{\mid B_{\sigma}}$ is $C_{B_{\sigma}}$-symmetric. Using the above characterization we show that A must belong to $\mathscr{T}(B)$. Let $M_{A}=\left(b_{i, j}\right)$ be the matrix representation of A with respect to the basis $\left\{1, z, \frac{z^{2}}{\left\|k_{w}\right\|} k_{w}\right\}$. Our goal is to show that $\left(b_{i, j}\right)$ satisfies (6.1)-(6.4).

Let $B_{1}(z)=z^{2}$ and $A_{1}=P_{B_{1}} A_{\mid B_{1}}$. Then the space $K_{B_{1}}^{2}$ is spanned by $\{1, z\}$,

$$
C_{B_{1}} 1=z, \quad C_{B_{1}} z=1
$$

and the $C_{B_{1}}$-symmetry of A_{1} gives (6.1).
Let $B_{2}(z)=z \frac{w-z}{1-\overline{w z}}$ and $A_{2}=P_{B_{2}} A_{\mid B_{2}}$. Then the space $K_{B_{2}}^{2}$ is spanned by $\left\{1, k_{w}\right\}$,

$$
C_{B_{2}} 1=\frac{w-z}{1-\bar{w} z}, \quad \text { and } \quad C_{B_{2}} k_{w}=-z k_{w}
$$

Moreover, we have

$$
C_{B} z=\frac{w-z}{1-\overline{w z}}=C_{B_{2}} 1, \quad C_{B}\left(z^{2} k_{w}\right)=-k_{w}
$$

and

$$
\bar{w} b_{1,3}+\left\|k_{w}\right\|^{-1} b_{1,2}=\left\|k_{w}\right\|^{-1}\left\langle A\left(\bar{w} z^{2} k_{w}+z\right), 1\right\rangle .
$$

Since

$$
\bar{w} z^{2} k_{w}+z=z k_{w}
$$

and A, A_{2} are symmetric with respect to C_{B} and $C_{B_{2}}$, respectively, we obtain (6.2). Namely,

$$
\begin{aligned}
\bar{w} b_{1,3}+\left\|k_{w}\right\|^{-1} b_{1,2} & =\left\|k_{w}\right\|^{-1}\left\langle A\left(z k_{w}\right), 1\right\rangle=-\left\|k_{w}\right\|^{-1}\left\langle A_{2} C_{B_{2}} k_{w}, 1\right\rangle \\
& =-\left\|k_{w}\right\|^{-1}\left\langle C_{B_{2}} A_{2}^{*} k_{w}, 1\right\rangle=-\left\|k_{w}\right\|^{-1}\left\langle A_{2} C_{B_{2}} 1, k_{w}\right\rangle \\
& =\left\|k_{w}\right\|^{-1}\left\langle A C_{B} z, C_{B}\left(z^{2} k_{w}\right)\right\rangle=\left\|k_{w}\right\|^{-1}\left\langle C_{B} A^{*} z, C_{B}\left(z^{2} k_{w}\right)\right\rangle \\
& =\left\|k_{w}\right\|^{-1}\left\langle A\left(z^{2} k_{w}\right), z\right\rangle=b_{2,3} .
\end{aligned}
$$

Similarly we can obtain (6.3).
To get (6.4) firstly, by using C_{B}-symmetry of A, we have

$$
\begin{aligned}
b_{3,3} & =\left\|k_{w}\right\|^{-2}\left\langle A\left(z^{2} k_{w}\right), z^{2} k_{w}\right\rangle \\
& =\left\|k_{w}\right\|^{-2}\left\langle A C_{B} k_{w}, C_{B} k_{w}\right\rangle \\
& =\left\|k_{w}\right\|^{-2}\left\langle A k_{w}, k_{w}\right\rangle .
\end{aligned}
$$

From this

$$
\begin{aligned}
b_{3,3}-b_{1,1} & =\left(1-|w|^{2}\right)\left\langle A k_{w}, k_{w}\right\rangle-\langle A 1,1\rangle=\left\langle A\left(1-\bar{w} \frac{w-z}{1-\bar{w}}\right), k_{w}\right\rangle-\langle A 1,1\rangle \\
& =\left\langle A 1, k_{w}-1\right\rangle-\bar{w}\left\langle A\left(\frac{w-z}{1-\overline{w z}}\right), k_{w}\right\rangle=w\left\langle A 1, z k_{w}\right\rangle+\bar{w}\left\langle A C_{B} z, C_{B}\left(z^{2} k_{w}\right)\right\rangle \\
& =-w\left\langle A_{2} 1, C_{B_{2}} k_{w}\right\rangle+\bar{w}\left\langle A\left(z^{2} k_{w}\right), z\right\rangle=-w\left\langle A_{2} k_{w}, C_{B_{2}} 1\right\rangle+\bar{w}\left\|k_{w}\right\| b_{2,3} \\
& =w\left\langle A C_{B}\left(z^{2} k_{w}\right), C_{B} z\right\rangle+\bar{w}\left\|k_{w}\right\| b_{2,3}=w\left\langle A z, z^{2} k_{w}\right\rangle+\bar{w}\left\|k_{w}\right\| b_{2,3} \\
& =w\left\|k_{w}\right\| b_{3,2}+\bar{w}\left\|k_{w}\right\| b_{2,3},
\end{aligned}
$$

which completes the proof.

REFERENCES

[1] A. Baranov, I. Chalendar, E. Fricain, J. Mashreghi and D. Timotin, Bounded symbols and reproducing kernels thesis for truncated Toeplitz operators, J. Funct. Anal. 259 (2010), 26732701.
[2] A. Brown, P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1963/64), 89-102.
[3] C. Câmara, J. Jurasik, K. Kliś-Garlicka and M. Ptak, Characterizations of asymmetric truncated Toeplitz operators, Banach J. Math. Anal. (to appear).
[4] M. C. CÂmara and J. R. Partington, Spectral properties of truncated Toeplitz operators by equivalence after extension, J. Math. Anal. Appl. 433 (2016), 762-784.
[5] J. A. Cima, W. T. Ross and W. R. Wogen Truncated Toeplitz operators on finite dimensional spaces, Oper. Matrices 2 (2008), 357-369.
[6] S. R. Garcia, J. Mashreghi and W. T. Ross, Introduction to model spaces and their operators, Cambridge University Press 2016.
[7] S. R. Garcia, M. Putinar, Complex symmetric operators and applications, Trans. Amer. Math.Soc. 358 (2006), 1285-1315.
[8] B. Łanucha, Matrix representations of truncated Toeplitz operators, J. Math. Anal. Appl. 413 (2014), 430-437.
[9] N. NIKOL'SKIǏ, Treatise on the shift operator, Springer-Verlag, Berlin, 1986.
[10] D. Sarason Algebraic properties of truncated Toeplitz operators, Oper. Matrices $\mathbf{1}$ (2007), 491-526.

Bartosz Łanucha
Department of Mathematics
Maria Curie-Skłodowska University
Maria Curie-Skłodowska Square 1, 20-031 Lublin, Poland
e-mail: bartosz.lanucha@poczta.umcs.lublin.pl
Marek Ptak
Institute of Mathematics
University of Agriculture
Balicka 253c, 30-198 Krakow, Poland
and
Institute of Mathematics
Pedagogical University
ul. Podchorazżych 2, 30-084 Kraków, Poland
e-mail: rmptak@cyfronet.p1

[^0]: Mathematics subject classification (2010): Primary 47B35, Secondary 47B32, 30D20.
 Keywords and phrases: Conjugation, C-symmetric operators, model space, truncated Toeplitz operator, Blaschke product, inner function.

 The research of the first and the third authors was financed by the Ministry of Science and Higher Education of the Republic of Poland.

