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Abstract. Truncated Toeplitz operators are C -symmetric with respect to the canonical conjuga-
tion given on an appropriate model space. However, by considering only one conjugation one
cannot characterize truncated Toeplitz operators. It will be proved, for some classes of inner
functions and the model spaces connected with them, that if an operator on a model space is
C–symmetric for a certain family of conjugations in the model space, then is has to be trun-
cated Toeplitz. A characterization of classical Toeplitz operators is also presented in terms of
conjugations.

1. Introduction

Let H denote a complex Hilbert space. Denote by L(H ) the algebra of all
bounded linear operators on H . A conjugation is an antilinear involution C : H →H
such that 〈C f ,Cg〉 = 〈g, f 〉 for all f ,g ∈ H . An operator A ∈ L(H ) is called C-
symmetric if CAC = A∗ .

Let D denote the open unit disk, let T = ∂D denote the unit circle and let m be
the normalized Lebesgue measure on T . Denote by L2 the space L2(T,m) and by
L∞ = L∞(T,m) . Recall that a classical Toeplitz operator Tϕ with a symbol ϕ ∈ L∞ on
the Hardy space H2 is given by the formula

Tϕ f = P(ϕ f ) for f ∈ H2,

where P : L2 → H2 is the orthogonal projection. Denote by T the set of all Toeplitz
operators, i.e., T = {Tϕ : ϕ ∈ L∞} .

Let θ be a nonconstant inner function. Consider the so-called model space K2
θ =

H2�θH2 and the orthogonal projection Pθ : L2 → K2
θ . A truncated Toeplitz operator

Aθ
ϕ with a symbol ϕ ∈ L2 is defined as

Aθ
ϕ : D(Aθ

ϕ) ⊂ K2
θ → K2

θ ; Aθ
ϕ f = Pθ (ϕ f )
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for f ∈D(Aθ
ϕ ) = { f ∈K2

θ : ϕ f ∈ L2} . Denote by T (θ ) the set of all bounded truncated
Toeplitz operators on K2

θ .

The conjugation Cθ defined for f ∈ L2 by the formula

Cθ f (z) = θ (z)z f (z), |z| = 1,

is a very useful tool in investigating Toeplitz operators. In fact, all truncated Toeplitz
operators are Cθ -symmetric [7].

Truncated Toeplitz operators have been recently strongly investigated (see for in-
stance [10, 1, 3, 4, 5, 6, 8]). However, usually only one (canonical) conjugation was
involved in analysis on these operators. In this paper we suggest to consider a family
of conjugations to study Toeplitz operators. In particular, we give a characterization
of the classical Toeplitz operators as well as some special cases of truncated Toeplitz
operators using conjugations.

It is easy to see that if θ = zN , then K2
θ = CN . The natural conjugation CN =CzN in

CN can be expressed as CN(z1, . . . ,zN) = (zN , . . . , z1) . Note that a matrix (ai, j)i, j=1,...,N

is CN -symmetric if and only if it is symmetric with respect to the second diagonal, i.e.,

ai, j = aN− j+1,N−i+1 for i, j = 1, . . . ,N.

On the other hand, a finite matrix (ai, j)i, j=1,...,N is a Toeplitz matrix if and only if it has
constant diagonals, that is,

ai, j = ak,l if i− j = k− l.

Hence, as D. Sarason in [10] observed, each N ×N Toeplitz matrix is CN -symmetric
but the reverse implication is true only if N � 2. However, one can notice that for a
given matrix (ai, j)i, j=1,...,N , if the matrix is Cn -symmetric for every n � N , i.e.,

ai, j = an− j+1,n−i+1 for n � N and i, j = 1, . . .n,

then the matrix (ai, j)i, j=1,...,N has to be Toeplitz. Corollary 2.3 gives a precise proof of
this fact. One can ask if a similar property can be obtained for other inner functions than
θ = zN . Using known matrix descriptions [5, 6, 8] we obtained the positive answer: for
a Blaschke product with a single zero in Section 3, for a finite Blaschke product with
distinct zeros in Section 4 (the most demanding case), for an infinite Blaschke product
with uniformly separated zeros in Section 5. For a general case we put the conjecture in
Section 6. However, even for the simplest singular inner function θ (z) = exp( z+1

z−1) no
similar description is known and to solve the conjecture probably a different approach
is needed. In Section 2 we also give similar characterization of the classical Toeplitz
operators on the Hardy space in terms of conjugations.
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2. Characterization of Toeplitz operators by conjugations

Let α and θ be two nonconstant inner functions. We say that α divides θ (α �
θ ) if αθ is an inner function. It is easy to verify that K2

α ⊂ K2
θ for every α � θ . It

is known that truncated Toeplitz operators on K2
θ are Cθ -symmetric but this property

does not characterize them, i.e., there are Cθ -symmetric operators on K2
θ , which are

not truncated Toeplitz ([7], [10, Lemma 2.1, Corollary on p. 504]). Note however that
Aθ

ϕ is Cα -symmetric for every α � θ . Namely:

LEMMA 2.1. Let Aθ
ϕ : K2

θ → K2
θ be a truncated Toeplitz operator. For every α �

θ the operator PαAθ
ϕ|K2

α
is Cα -symmetric.

Proof. Note that PαAθ
ϕ|K2

α
belongs to T (α) . Actually, PαAθ

ϕ|K2
α

= Aα
ϕ , hence it is

Cα -symmetric by [10, Lemma 2.1]. �

A similar argument shows that if A ∈ T , then PαA|K2
α

is Cα -symmetric for all

inner functions α . The latter can be used to characterize all Toeplitz operators on H2 :

THEOREM 2.2. Let A ∈ L(H2) . Then the following conditions are equivalent:

(1) A ∈ T ;

(2) CαAαCα = A∗
α for all nonconstant inner functions α , where Aα = PαA|K2

α
;

(3) CαAαCα = A∗
α for all α = zn , where Aα = PαA|K2

α
.

Proof. The proof of the implication (1) ⇒ (2) is similar to the proof of Lemma
2.1. Since (2) ⇒ (3) is obvious, we will prove now that (3) ⇒ (1) .

The equivalent condition for a bounded operator on H2 to be Toeplitz is that it has
to annihilate all rank-two operators of the form

t = zm ⊗ zr − zm+1⊗ zr+1 with m,r � 0,

in the sense that tr(At) = 0 (it follows form the well known Brown–Halmos charac-
terization of Toeplitz operators given in [2]). Each such operator can be obtained from
1⊗ zk − zl ⊗ zk+l or zk ⊗1− zk+l ⊗ zl , with k, l � 0. Hence our reasoning will be held
only for such operators.

Fix k, l � 0 and let α = zn , n = k+ l +1. Since

Cαzk = zn−k−1 = zl and Cα1 = zn−1 = zk+l ,

the Cα -symmetry of Aα gives

tr(A(1⊗ zk)) = 〈A1,zk〉 = 〈Aα1,zk〉 = 〈Cαzk,CαAα1〉
= 〈Cαzk,A∗

αCα1〉 = 〈zl ,A∗
αzk+l〉 = 〈Aαzl ,zk+l〉 = tr(A(zl ⊗ zk+l)).
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Similarly,
tr(A(zk ⊗1)) = tr(A(zk+l ⊗ zl)).

Therefore all operators of the form 1⊗ zk− zl ⊗ zk+l , zk ⊗1− zk+l ⊗ zl for k, l � 0, are
annihilated by A . Hence A is Toeplitz. �

From the previous proof we can obtain

COROLLARY 2.3. Let A ∈ L(K2
zN ) , N ∈ N . Then A ∈ T (zN) if and only if for

every 1 � n � N the operator An is Czn -symmetric, i.e., CznAnCzn = A∗
n , where An =

PnA|K2
zn

and Pn : K2
zN

→ K2
zn is the orthogonal projection.

3. The case of a Blaschke product with a single zero

Let α , θ be any nonconstant inner functions. We say that a unitary operator
U : K2

θ →K2
α defines a spatial isomorphism between T (θ ) and T (α) if UT (θ )U∗ =

T (α) , that is, A ∈ T (θ ) if and only if UAU∗ ∈ T (α) . If such U exists, T (θ ) and
T (α) are said to be spatially isomorphic. The spatial isomorphism between spaces of
truncated Toeplitz operators is discussed in [6, Chapter 13.7.4].

PROPOSITION 3.1. Let α , θ be any nonconstant inner functions. Let U : K2
θ →

K2
α be such that U defines a spatial isomorphism between T (θ ) and T (α) . Then

UCθ = CαU .

Proof. It is known [6, Chapter 13.7.4] that there are three basic types of unitary
operators that define a spatial isomorphism between T (θ ) and T (α) . The requested
intertwining property for one of those basic types is proved in [10, Lemma 13.1]. The
proof for two other types is similar. Since every U : K2

θ → K2
α such that U defines a

spatial isomorphism between T (θ ) and T (α) , is a composition of at most three of
those basic types of operators, it follows that U also has this intertwining property. �

Let a ∈ D and N ∈ N . Denote ba(z) = z−a
1−az .

PROPOSITION 3.2. Let A ∈ L(K2
bN
a
) . Then A ∈ T (bN

a ) if and only if for every

1 � n � N the operator An is Cbn
a
-symmetric, i.e., Cbn

a
AnCbn

a
= A∗

n , where An = PnA|K2
bn
a

and Pn : K2
bN
a
→ K2

bn
a

is the orthogonal projection.

Proof. The operator Uba given by

Uba f (z) =

√
1−|a|2
1− az

f ◦ ba(z)

defines a spatial isomorphism between Cn = K2
zn and K2

bn
a

for each n = 1, . . . ,N (see
[6, chapter 13.7.4(i)]). By Proposition 3.1, Uba intertwines the conjugations Czn and
Cbn

a
. Application of Corollary 2.3 finishes the proof. �
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4. The case of a finite Blaschke product with distinct zeros

Let B be a finite Blaschke product of degree N with distinct zeros a1, . . . ,aN ,

B(z) = eiγ
N

∏
j=1

z−a j

1− a jz
, (4.1)

where γ ∈ R . As usual, for w ∈ D by

kB
w(z) =

1−B(w)B(z)
1−wz

we denote the reproducing kernel for K2
B , that is,

f (w) = 〈 f ,kB
w〉

for f ∈ K2
B . Note that for j = 1, . . . ,N we have

k j(z) := kB
a j

(z) =
1

1− a jz
. (4.2)

As it was observed in [5], the model space K2
B is N -dimensional and the functions

k1, . . . ,kN form a (non–orthonormal) basis for K2
B .

A simple computation gives the following.

LEMMA 4.1. ([5], p. 5)

(1) (CBk j)(z) = B(z)
z−a j

for j = 1, . . . ,N .

(2) 〈CBk j,ki〉 =
{

0 for i �= j,
B′(a j) for i = j.

(3) 〈k j,ki〉 = 1
1−a jai

.

LEMMA 4.2. Let B be a finite Blaschke product of degree N with distinct zeros
a1, . . . ,aN . Let CB be the conjugation in K2

B given by CB f (z) = B(z)z f (z) for f ∈ K2
B .

Assume that an operator A ∈ L(K2
B) has a matrix representation (bi, j)i, j=1,...,N with

respect to the basis {k1, . . . ,kN} . Then the following are equivalent:

(1) A is CB -symmetric;

(2) 〈Aki,CBk j〉 = 〈Ak j,CBki〉 for all i, j = 1, . . . ,N ;

(3) B′(a j)b j,i = B′(ai)bi, j for all i, j = 1, . . . ,N .
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Proof. The implication (1) ⇒ (2) follows from

〈Aki,CBk j〉 = 〈C2
Bk j,CBAki〉 = 〈k j,A

∗CBki〉 = 〈Ak j,CBki〉.

The reverse implication can be proved similarly.
To prove that (2) ⇔ (3) note that Aki = ∑N

m=1 bm,ikm . Hence, by Lemma 4.1(2),

〈Aki,CBk j〉 =
N

∑
m=1

bm,i〈km,CBk j〉 = B′(a j)b j,i.

Analogously,
〈Akj,CBki〉 = B′(ai)bi, j. �

Let 1 � n � N . Denote by Bn the finite Blaschke product with n distinct zeros
a1, . . . ,an ,

Bn(z) =
n

∏
j=1

z−a j

1− a jz
, (4.3)

and by Cn = CBn the conjugation in K2
Bn

given by

(Cn f )(z) = Bn(z)z f (z), |z| = 1.

THEOREM 4.3. Let B be a finite Blaschke product of degree N with distinct zeros
a1, . . . ,aN . Denote by Bn the Blaschke product of degree n with zeros a1, . . . ,an and
by Pn the orthogonal projection from K2

B onto K2
Bn

for n = 1, . . . ,N . Let A ∈ L(K2
B) .

The following conditions are equivalent:

(1) A ∈ T (B);

(2) for every Blaschke product Bσ dividing B the operator Aσ = PBσ A|K2
Bσ

is CBσ -

symmetric;

(3) for every n = 1, . . . ,N the operator An = PnA|K2
Bn

is Cn -symmetric.

To give the proof of Theorem 4.3 we need two technical lemmas. Firstly, let us
observe by (4.2) that kBn

a j
= kB

a j
= k j for 1 � n � N , j = 1, . . . ,n . Hence {k1, . . . ,kn} is

a basis for K2
Bn

⊂ K2
B .

LEMMA 4.4. For 1 � m,n � N the following holds:

(1) 〈Cnk j,km〉 =

⎧⎪⎨
⎪⎩

0 for m � n,m �= j,
B′

n(a j) for m � n,m = j,
Bn(am)
am−a j

for m > n,
for j = 1, . . . ,n;

(2) Pnkm =
n
∑
j=1

Bn(am)
B′

n(a j)(am−a j)
k j for n < m;
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(3) Bn−1(an)
B′

n(an)
= 1−|an|2 for n > 1 ;

(4)
B′

n−1(a j)
B′

n(a j)
= 1−ana j

a j−an
for n > 1 , j = 1, . . . ,n−1 .

Proof. To show (1) note that Cnk j ∈ K2
Bn

⊂ K2
B for 1 � n � N , j = 1, . . . ,n , and

that

(Cnk j)(z) =
Bn(z)
z−a j

by Lemma 4.1(1). If m > n , then the reproducing property of km yields

〈Cnk j,km〉 = (Cnk j)(am) =
Bn(am)
am−a j

.

On the other hand, if m � n , then it follows from Lemma 4.1(2) that

〈Cnk j,km〉 =
{

0 for m �= j,
B′

n(a j) for m = j.

To show (2) assume that m > n and Pnkm =
n
∑
l=1

dlkl . Then, by part (1), for j =

1, . . . ,n ,

Bn(am)
am−a j

= 〈Cnk j,km〉 = 〈Cnk j,Pnkm〉 =
n

∑
l=1

dl〈Cnk j,kl〉 = B′
n(a j)d j.

Hence

d j =
Bn(am)

B′
n(a j)(am − a j)

,

which proves (2). The statements (3) and (4) follow directly from

B′
n(z) = B′

n−1(z)
z−an

1− anz
+Bn−1(z)

1−|an|2
(1− anz)2 . �

LEMMA 4.5. Let A ∈ L(K2
Bn

) have a matrix representation (b(n)
i, j )i, j=1,...,n with

respect to the basis {k1, . . . ,kn} . Then An−1 = Pn−1A|K2
Bn−1

has a matrix representation

(b(n−1)
i, j )i, j=1,...,n−1 ,

b(n−1)
i, j = b(n)

i, j +
Bn−1(an)b

(n)
n, j

B′
n−1(ai)(an− ai)

,

with respect to the basis {k1, . . . ,kn−1} .

Proof. Note that by Lemma 4.4(2),

Pn−1kn =
n−1

∑
m=1

Bn−1(an)
B′

n−1(am)(an− am)
km.
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Hence, for j = 1, . . . ,n−1, we have

Pn−1(Ak j) = Pn−1

(
n

∑
m=1

b(n)
m, jkm

)
= Pn−1

(
n−1

∑
m=1

b(n)
m, jkm

)
+Pn−1b

(n)
n, jkn

=
n−1

∑
m=1

(
b(n)

m, j +
Bn−1(an)b

(n)
n, j

B′
n−1(am)(an−am)

)
km.

Since

b(n−1)
i, j =

1

B′
n−1(ai)

〈Pn−1(Ak j),Cn−1ki〉, 1 � i, j � n−1,

we get

b(n−1)
i, j =

1

B′
n−1(ai)

n−1

∑
m=1

(
b(n)

m, j +
Bn−1(an)b

(n)
n, j

B′
n−1(ai)(an−am)

)
〈km,Cn−1ki〉

= b(n)
i, j +

Bn−1(an)b
(n)
n, j

B′
n−1(ai)(an−ai)

by Lemma 4.4(1). �

Proof of Theorem 4.3. Since multiplying B by a constant of modulus 1 does not
change K2

B , we can assume without any loss of generality that B is given by (4.1) with
γ = 0, that is, B = BN .

The implication (1)⇒ (2) follows from Lemma 2.1 and the implication (2)⇒ (3)
is obvious. We only need to prove the implication (3) ⇒ (1) . This will be proved by
induction. Note firstly that it is true for N = 2 by [10, p. 505].

Assume now that the assertion is true for n− 1 < N , which means that An−1 =
Pn−1A|K2

Bn−1
is Toeplitz and has a matrix representation (b(n−1)

i, j )i, j=1,...,n−1 with respect

to the basis {k1, . . . ,kn−1} satisfying

b(n−1)
i, j =

B′
n−1(a1)

B′
n−1(ai)

⎛
⎝b(n−1)

1,i (a1− ai)+b(n−1)
1, j (a j − a1)

a j − ai

⎞
⎠ , (4.4)

for 1 � i, j � n− 1, i �= j , by [5, Theorem 1.4]. Assume also that A ∈ L(K2
Bn

) is

Cn -symmetric and has a matrix representation (b(n)
i, j )i, j=1,...,n with respect to the basis

{k1, . . . ,kn} . We will show that A is Toeplitz, i.e., b(n)
i, j satisfies [5, Theorem 1.4]:

b(n)
i, j =

B′
n(a1)

B′
n(ai)

⎛
⎝b(n)

1,i (a1 − ai)+b(n)
1, j(a j − a1)

a j − ai

⎞
⎠ ,

for 1 � i, j � n , i �= j .
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Since An−1 is Cn−1 -symmetric, for i, j = 1, . . . ,n−1 we have, by Lemma 4.2 and
Lemma 4.5,

b(n−1)
j,i =

B′
n−1(ai)

B′
n−1(a j)

b(n−1)
i, j =

B′
n−1(ai)

B′
n−1(a j)

⎛
⎝b(n)

i, j +
Bn−1(an)b

(n)
n, j

B′
n−1(ai)(an − ai)

⎞
⎠ . (4.5)

On the other hand, by Lemma 4.5 and using the Cn -symmetry of A ,

b(n−1)
j,i = b(n)

j,i +
Bn−1(an)
B′

n−1(a j)

b(n)
n,i

an − a j

=
B′

n(ai)
B′

n(a j)
b(n)

i, j +
B′

n(ai)
B′

n(an)
Bn−1(an)
B′

n−1(a j)

b(n)
i,n

an − a j
.

(4.6)

Comparing (4.5) with (4.6) and putting i = 1 we obtain

Bn−1(an)
B′

n−1(a j)

b(n)
n, j

an − a1
=

B′
n(a1)

B′
n(an)

Bn−1(an)
B′

n−1(a j)

b(n)
1,n

an− a j
+

(
B′

n(a1)
B′

n(a j)
− B′

n−1(a1)

B′
n−1(a j)

)
b(n)

1, j .

Hence

b(n)
n, j =

B′
n(a1)

B′
n(an)

b(n)
1,n(an − a1)

an− a j
+

(
B′

n(a1)
Bn−1(an)

B′
n−1(a j)

B′
n(a j)

− B′
n−1(a1)

Bn−1(an)

)
b(n)

1, j(an− a1).

(4.7)
Using Lemma 4.4 we can simplify

B′
n(a1)

Bn−1(an)

B′
n−1(a j)

B′
n(a j)

− B′
n−1(a1)

Bn−1(an)

=
B′

n(a1)
B′

n(an)
1

1−|an|2
(

1−ana j

a j − an
+

1−ana1

an− a1

)

=
B′

n(a1)
B′

n(an)

(a j − a1)
(a j − an)(an − a1)

,

which together with (4.7) gives

b(n)
n, j =

B′
n(a1)

B′
n(an)

⎛
⎝b(n)

1,n(a1− an)+b(n)
1, j(a j − a1)

a j − an

⎞
⎠ (4.8)

for 1 � j � n−1. From (4.8), the Cn -symmetry of An and Lemma 4.2 we also get

b(n)
i,n =

B′
n(an)

B′
n(ai)

b(n)
n,i =

B′
n(a1)

B′
n(ai)

⎛
⎝b(n)

1,i (a1− ai)+b(n)
1,n(an − a1)

an − ai

⎞
⎠ (4.9)
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for 1 � i � n−1. By Lemma 4.2 and Lemma 4.5, we have for i = 1, . . . ,n−1,

b(n−1)
1,i =

B′
n−1(ai)

B′
n−1(a1)

b(n−1)
i,1 =

B′
n−1(ai)

B′
n−1(a1)

⎛
⎝b(n)

i,1 +
Bn−1(an)
B′

n−1(ai)

b(n)
n,1

an − ai

⎞
⎠ .

Using Lemma 4.2 again we obtain

b(n−1)
1,i =

B′
n(a1)

B′
n(ai)

B′
n−1(ai)

B′
n−1(a1)

b(n)
1,i +

B′
n(a1)

B′
n(an)

Bn−1(an)
B′

n−1(a1)

b(n)
1,n

an − ai
. (4.10)

Now applying Lemma 4.5 to the left–hand side of (4.4), and formula (4.10) to the
right–hand side of (4.4) we can calculate for all i, j = 1, . . . ,n−1,

b(n)
i, j +

Bn−1(an)
B′

n−1(ai)

b(n)
n, j

an − ai

=
B′

n(a1)
B′

n(ai)
a1− ai

a j − ai
b(n)

1,i +
B′

n(a1)
B′

n(an)
Bn−1(an)
B′

n−1(ai)

(a1− ai)b
(n)
1,n

(an− ai)(a j − ai)
(4.11)

+
B′

n(a1)
B′

n(a j)

B′
n−1(a j)

B′
n−1(ai)

a j − a1

a j − ai
b(n)

1, j +
B′

n(a1)
B′

n(an)
Bn−1(an)
B′

n−1(ai)

a j − a1

(an − a j)(a j − ai)
b(n)

1,n.

Note that

B′
n(a1)

B′
n(a j)

B′
n−1(a j)

B′
n−1(ai)

a j − a1

a j − ai
b(n)

1, j

=
B′

n(a1)
B′

n(ai)

a j − a1

a j − ai
b(n)

1, j +
Bn−1(an)
B′

n−1(ai)
B′

n(a1)
B′

n(an)

a j − a1

(an− ai)(a j − an)
b(n)

1, j

by Lemma 4.4. Moreover,

1
a j − ai

(
a1− ai

an− ai
+

a j − a1

an− a j

)
=

an− a1

(an − ai)(an− a j)
. (4.12)

Hence, (4.11) and (4.12) give

b(n)
i, j +

Bn−1(an)
B′

n−1(ai)

b(n)
n, j

an− ai
=

B′
n(a1)

B′
n(ai)

b(n)
1,i (a1− ai)+b(n)

1, j(a j − a1)

a j − ai

+
Bn−1(an)
B′

n−1(ai)
1

an− ai

B′
n(a1)

B′
n(an)

b(n)
1,n(a1 − an)+b(n)

1, j(a j − a1)

a j − an
.

Taking into account (4.8) and (4.9), the above equation implies that

b(n)
i, j =

B′
n(a1)

B′
n(ai)

⎛
⎝b(n)

1,i (a1− ai)+b(n)
1, j(a j − a1)

a j − ai

⎞
⎠

for all 1 � i, j � n , i �= j , which completes the proof. �
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5. An infinite Blaschke product with uniformly separated zeros

Let B be an infinite Blaschke product,

B(z) = eiγ
∞

∏
j=1

a j

|a j|
a j − z

1− a jz
, γ ∈ R, (5.1)

(if a j = 0, then a j/|a j| is interpreted as −1) with uniformly separated zeros a1,a2, . . . ,
i.e.,

inf
n ∏

j �=n

∣∣∣∣ a j −an

1− a jan

∣∣∣∣� δ (5.2)

for some δ > 0. In particular, the zeros {a j}∞
j=1 are distinct. As before, Bn , n ∈ N ,

denotes the finite Blaschke product with zeros a1, . . . ,an , given by (4.3).

THEOREM 5.1. Let B be an infinite Blaschke product with uniformly separated
zeros {a j}∞

j=1 . Denote by Bn the Blaschke product of degree n with distinct zeros

{a1, . . . ,an} and by Pn the orthogonal projection form K2
B onto K2

Bn
for n ∈ N . Let

A ∈ L(K2
B) . The following conditions are equivalent:

(1) A ∈ T (B);

(2) for every Blaschke product Bσ dividing B the operator Aσ = PBσ A|K2
Bσ

is

CBσ -symmetric;

(3) for every n ∈ N the operator An = PnA|K2
Bn

is Cn -symmetric.

Again, before we give the proof some preparations are necessary. Clearly, K2
Bn

⊂
K2

B for all n∈N and kB
a j

= k j for all j ∈N . Condition (5.2) implies that the reproducing

kernels k j , j ∈ N , form a basis for K2
B (for more details see [6, Chapter 12], [7] or [9]).

In particular, every f ∈ K2
B can be written as

f =
∞

∑
j=1

〈 f ,CBk j〉
B′(a j)

k j,

where the series converges in the norm.

LEMMA 5.2. Let A ∈ L(K2
B) have a matrix representation (bi, j)∞

i, j=1 with respect

to the basis {ki : i∈N} . Then An = PnA|K2
Bn

has a matrix representation (b(n)
i, j )i, j=1,...,n ,

b(n)
i, j = bi, j +

∞

∑
m=n+1

Bn(am)bm, j

B′
n(ai)(am − ai)

,

with respect to the basis {k1, . . . ,kn} .
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Proof. Let n ∈ N and 1 � i, j � n . Since

Ank j =
n

∑
m=1

b(n)
m, jkm,

Lemma 4.4(1) gives

b(n)
i, j =

1

B′
n(ai)

〈Ank j,Cnki〉.

Since

Ak j =
∞

∑
m=1

bm, jkm,

and the series converges in norm, we get

b(n)
i, j =

1

B′
n(ai)

〈Ak j,Cnki〉 =
1

B′
n(ai)

∞

∑
m=1

bm, j〈km,Cnki〉

= bi, j +
1

B′
n(ai)

∞

∑
m=n+1

Bn(am)
am − ai

bm, j

by Lemma 4.4(1). �

COROLLARY 5.3. For all i, j ∈ N ,

bi, j = lim
n→∞

b(n)
i, j .

Proof. It is known that the infinite Blaschke product B converges uniformly on
compact subsets of D . It follows that if

λn = (−1)n
n

∏
j=1

a j

|a j| , n ∈ N,

then λnBn → B and λnB′
n → B′ as n → ∞ (uniformly on compact subsets of D). In

particular,
λnB

′
n(ai) → B′(ai) as n → ∞

for each i ∈ N . Fix i, j ∈ N . Let n � max{i, j} and write

Ak j =
n

∑
m=1

bm, jkm + rn, where rn =
∞

∑
m=n+1

bm, jkm.

As in the proof of Lemma 5.2,

b(n)
i, j = bi, j + 1

B′
n(ai)

〈rn,Cnki〉 = bi, j + 1
λnB′

n(ai)
〈rn,λnCnki〉,
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where the last equality follows form the fact that λn ∈ T . Since rn tends to zero in the
norm, the sequence (λnCnki)n�i is bounded and λnB′

n(ai) → B′(ai) , we get

lim
n→∞

b(n)
i, j = bi, j + lim

n→∞

(
1

λnB′
n(ai)

〈rn,λnCnki〉
)

= bi, j. �

Proof of Theorem 5.1. As in the proof of Theorem 4.3, without loss of generality,
assume that B is given by (5.1) with γ = 0. The implication (1) ⇒ (2) follows from
Lemma 2.1 and the implication (2)⇒ (3) is obvious. We only need to prove (3)⇒ (1) .

Let A ∈ L(K2
B) and assume that An = PnA|K2

Bn
is Cn -symmetric for every n ∈ N .

By [8, Remark 2.4], to prove that A ∈ T (B) it is enough to show that

bi, j =
B′(a1)
B′(ai)

(
b1,i(a1− ai)+b1, j(a j − a1)

a j − ai

)
(5.3)

for all i �= j , where (bi, j)∞
i, j=1 is the matrix representation of A with respect to the

basis {ki : i ∈ N} . Fix i, j ∈ N , i �= j , and take an arbitrary N � max{i, j} . By (3),
PnAN|K2

Bn
= An is Cn -symmetric for all n = 1, . . . ,N . Hence Theorem 4.3 implies that

AN ∈ T (BN) . By [5, Theorem 4.1],

b(N)
i, j =

B′
N(a1)

B′
N(ai)

⎛
⎝b(N)

1,i (a1 − ai)+b(N)
1, j (a j − a1)

a j − ai

⎞
⎠ , (5.4)

where (b(N)
i, j )i, j=1,...,N is the matrix representation of the operator AN with respect to the

basis {k1, . . . ,kN} . Taking the limit in (5.4) as N tends to infinity we get (5.3) because

b(N)
i, j → bi, j and B′

N(ai) → B′(ai) by Corollary 5.3 and its proof. �

6. Conjecture

Theorems 2.2, 4.3, 5.1 and Proposition 3.2 suggest that the following conjecture
can be true:

CONJECTURE 6.1. Let θ be a nonconstant inner function, and let A ∈ L(K2
θ ) .

Then A ∈ T (θ ) if and only if for every nonconstant inner function α dividing θ the
operator Aα = PαA|K2

α
is Cα -symmetric.

The following example supports the conjecture.

EXAMPLE 6.2. Consider

B(z) = z2 w− z
1−wz

, where w �= 0.

Then the space K2
B has dimension 3 and the set {1,z, z2

‖kw‖kw} , kw(z) = (1−wz)−1 , is

an orthonormal basis for K2
B .
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We first describe the operators form T (B) in terms of their matrix representations

with respect to the basis {1,z, z2

‖kw‖kw} . Let AB
ϕ , ϕ ∈ L2 , be an operator from T (B) ,

and let MAB
ϕ

= (bi, j) be its matrix representation. By [10, Theorem 3.1] we can assume

that ϕ ∈ BH2 +BH2 , namely, that

ϕ = c−2
z2

‖kw‖ kw + c−1z+ c0 + c1z+ c2
z2

‖kw‖kw.

It is now a matter of a simple computation to see that the matrix MAB
ϕ

= (bi, j) is given
by ⎛

⎝ c0 c−1 c−2

c1 c0 c−2w+ c−1
‖kw‖

c2
c1

‖kw‖ + c2w c−2w2‖kw‖+ c−1w+ c0 + c1w+ c2w2‖kw‖

⎞
⎠ .

From this, the elements bi, j are described by the following system of equations

b2,2 = b1,1 (6.1)

b2,3 = wb1,3 +‖kw‖−1b1,2 (6.2)

b3,2 = ‖kw‖−1b2,1 +wb3,1 (6.3)

b3,3 = b1,1 +w‖kw‖b2,3 +w‖kw‖b3,2 (6.4)

= b1,1 +w2‖kw‖b1,3 +wb1,2 +wb2,1 +w2‖kw‖b3,1.

Clearly, each 3× 3 matrix (bi, j) satisfying (6.1)–(6.4) is determined by five elements
(the first row and the first column) and the space MB of all such matrices has dimension
5. As matrices representing operators from T (B) have to belong to MB and the
dimension of T (B) in this case is also 5, we conclude that a linear operator A form
K2

B into K2
B belongs to T (B) if and only if its matrix representation with respect to

{1,z, z2
‖kw‖kw} satisfies (6.1)–(6.4).

Now let A be an operator from K2
B into K2

B such that for every Bσ � B the com-
pression Aσ = PBσ A|Bσ is CBσ -symmetric. Using the above characterization we show
that A must belong to T (B) . Let MA = (bi, j) be the matrix representation of A with

respect to the basis {1,z, z2

‖kw‖kw} . Our goal is to show that (bi, j) satisfies (6.1)–(6.4).

Let B1(z) = z2 and A1 = PB1A|B1
. Then the space K2

B1
is spanned by {1,z} ,

CB11 = z, CB1z = 1,

and the CB1 -symmetry of A1 gives (6.1).
Let B2(z) = z w−z

1−wz and A2 = PB2A|B2
. Then the space K2

B2
is spanned by {1,kw} ,

CB21 = w−z
1−wz , and CB2kw = −zkw.

Moreover, we have

CBz = w−z
1−wz = CB21, CB(z2kw) = −kw,
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and
wb1,3 +‖kw‖−1b1,2 = ‖kw‖−1〈A(wz2kw + z

)
,1〉.

Since
wz2kw + z = zkw

and A , A2 are symmetric with respect to CB and CB2 , respectively, we obtain (6.2).
Namely,

wb1,3 +‖kw‖−1b1,2 = ‖kw‖−1〈A(zkw) ,1〉 = −‖kw‖−1〈A2CB2kw,1〉
= −‖kw‖−1〈CB2A

∗
2kw,1〉 = −‖kw‖−1〈A2CB21,kw〉

= ‖kw‖−1〈ACBz,CB(z2kw)〉 = ‖kw‖−1〈CBA∗z,CB(z2kw)〉
= ‖kw‖−1〈A(z2kw),z〉 = b2,3.

Similarly we can obtain (6.3).
To get (6.4) firstly, by using CB -symmetry of A , we have

b3,3 = ‖kw‖−2〈A(z2kw),z2kw〉
= ‖kw‖−2〈ACBkw,CBkw〉
= ‖kw‖−2〈Akw,kw〉.

From this

b3,3−b1,1 = (1−|w|2)〈Akw,kw〉− 〈A1,1〉= 〈A(1−w w−z
1−wz

)
,kw〉− 〈A1,1〉

= 〈A1,kw−1〉−w〈A( w−z
1−wz

)
,kw〉 = w〈A1,zkw〉+w〈ACBz,CB(z2kw)〉

= −w〈A21,CB2kw〉+w〈A(z2kw),z〉 = −w〈A2kw,CB21〉+w‖kw‖b2,3

= w〈ACB(z2kw),CBz〉+w‖kw‖b2,3 = w〈Az,z2kw〉+w‖kw‖b2,3

= w‖kw‖b3,2 +w‖kw‖b2,3,

which completes the proof.
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ul. Podchora̧żych 2, 30-084 Kraków, Poland
e-mail: rmptak@cyfronet.pl

Operators and Matrices
www.ele-math.com
oam@ele-math.com


