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SPECTRUM OF (n,k)–QUASIPARANORMAL OPERATORS
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(Communicated by H. Radjavi)

Abstract. In this work, some spectral properties of (n,k) -quasiparanormal operators are consid-
ered. Let T be a (n,k) -quasiparanormal operator, M a nontrivial closed invariant subspace

of T and T =
(

T11 T12
0 T22

)
on M ⊕M⊥ . (i) Isolated spectral points and poles. Every nonzero

isolated spectral point of T is a pole of order one. (ii) Point spectrum and finite ascent. If λ �= 0
and M = ker(T −λ) �= {0} , then ker(T22−λ) = {0} . Thus ker(T −λ) = ker(T −λ)2 . In par-
ticular, if λ is nonzero isolated spectral point, then T22 −λ is invertible. (iii) Riesz idempotent.
The Riesz idempotent Eλ (T ) associated with a nonzero isolated spectral point λ is self-adjoint
under some assumptions. (iv) Approximate point spectrum and orthogonal eigen-spaces. T has
the spectral property (II-1). Meanwhile some examples are given: (i) There exists an operator
T such that T is (n+1) -paranormal, T is not n -paranormal, T−1 is not normaloid and T ∗ is
not m -paranormal for every positive integer m . (ii) There exists an operator T such that T is
(n,1) -quasiparanormal, T is not n -paranormal, M = kerT �= {0} and kerT22 �= {0} .

1. Introduction

In this paper, an operator T means a bounded linear operator on a complex Hilbert
space H . Let M be a nontrivial closed invariant subspace of an operator T and

T =
(

T11 T12

0 T22

)
on M ⊕M⊥ . It is well known that paranormal operators have many

interesting properties (see [3, 11]), for example:

(i) Isolated spectral points and poles. If T is invertible, then T−1 is also paranormal
(Thus T−1 is normaloid, that is, ‖T−1‖ = r(T−1)). In particular, every isolated
spectral point of T is a pole of order one;

(ii) Point spectrum. If M = ker(T −λ ) �= {0} , then ker(T22−λ ) = {0} ;

(iii) Riesz idempotent. The Riesz idempotent Eλ (T ) associated with a nonzero iso-
lated spectral point is self-adjoint;

(iv) Orthogonal eigen-spaces. Two different eigen-spaces are orthogonal to each
other.
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The preceding properties are important to other properties of operators, such as
Weyl type theorems (see [2, 1, 11, 9, 16]).

In this paper, we will consider the following nonnormal operators related to class
A and paranormal operators. Let n be a positive integer and k a nonnegative integer.

(1) T belongs to k -quasiclass A(n) (we denote this class by k -QA(n)) if

T ∗k |T 1+n| 2
1+n T k � T ∗k |T |2Tk

where T ∗ and |T | mean the adjoint and polar factor (T ∗T )
1
2 of T respectively.

The class k -QA(1) is equal to k -QA and 0-quasiclass A(n) means class A(n)
[13]. It is well-known that, for each n , class A(n) includes every p -hyponormal
operators [5, 4].

(2) T is called (n,k)-quasiparanormal (we denote this class by (n,k)-QP) if

‖T 1+n(Tkx)‖ 1
1+n ‖Tkx‖ n

1+n � ‖T (Tkx)‖
for x∈H [14]. A (n,0)-quasiparanormal operator means a n -paranormal oper-
ator [13], the class of n -paranormal operators includes all class A(n) operators,
and every n -paranormal operator is normaloid [6, Theorem 1]. A k -QA(n) op-
erator is (n,k)-quasiparanormal [7, Theorem 2.2].

Recently, the properties (i)–(iv) of paranormal operators are extended to n -para-
normal or (n,k)-quasiparanormal operators.

Let ρ(T ) , p0(T ) , σ(T ) , σp(T ) , σa(T ) , r(T ) and iso σ(T ) mean the resolvent
set, the set of poles of the resolvent function, spectrum, point spectrum, approximate
point spectrum, spectral radius and the set of all isolated points of the spectrum of an
operator T respectively.

An operator T is called isoloid if iso σ(T ) ⊂ σp(T ) , and polaroid if iso σ(T ) ⊂
p0(T ) .

THEOREM 1.1. ([10]) Let T be n-paranormal.

(1) If T is invertible, then

‖T−1‖ � r(T−1)
n(n+1)

2 r(T )
(n−1)(n+2)

2 .

(2) If σ(T ) ⊆ ∂D := {z| |z| = 1} , then T is unitary.

(3) If σ(T ) = {λ} , then T = λ .

(4) If λ ∈ iso σ(T ) , then the Riesz idempotent Eλ (T ) satisfies
R(Eλ (T )) = ker(T −λ ) .

THEOREM 1.2. ([13, 10]) Let T be n-paranormal, λ ∈σp(T ) and T =
(

T11 T12

0 T22

)
on ker(T −λ )⊕ (ker(T −λ ))⊥ .
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(1) If λ �= 0 , then

T12
(
λ n−1T22 + · · ·+Tn

22

)
= nλ nT12, (1.1)

∥∥T 1+n
22 x

∥∥ 2
1+n · ‖x‖ 2n

1+n �
∥∥T12x

∥∥2 +
∥∥T22x

∥∥2
. (1.2)

In particular, T22 is also n-paranormal.

(2) ker(T22−λ ) = {0} .

(3) If λ ∈ iso σ(T ) , then λ ∈ ρ(T22) .

Let Fn,λ (z) denote the polynomial Fn,λ (z) := −nλ n + λ n−1z+ · · ·+ zn .

THEOREM 1.3. ([14, 10]) Let 0 �= λ ∈ iso σ(T ) .

(1) If T is k -quasiparanormal and ker(T22)∗k = 0(= ker(T22)∗) , then Eλ (T ) =
(Eλ (T ))∗ .

(2) If T is n-paranormal and σ(T )∩{z|Fn,λ (z)= 0}= {λ} , then Eλ (T )= (Eλ (T ))∗ .

An operator T is said to have the single valued extension property at λ0 ∈ C

(abbreviated SVEP at λ0 ), if for every open disc D of λ0 , the only analytic function
f : D −→ H which satisfies the equation (λ I − T ) f (λ ) = 0 for all λ ∈ D is the
function f ≡ 0. An operator T is said to have SVEP if T has SVEP at every point
λ ∈ C .

Uchiyama-Tanahashi [12] introduced the spectral properties (I)–(II) which imply
SVEP (single valued extension property).

(I) For each λ ∈ σa(T ) and sequence of bounded vectors {xn} , if
limn→0 ‖(T −λ )xn‖ = 0, then limn→0 ‖(T −λ )∗xn‖ = 0.

(I-1) For each 0 �= λ ∈ σa(T ) and sequence of bounded vectors {xn} , if
limn→0 ‖(T −λ )xn‖ = 0, then limn→0 ‖(T −λ )∗xn‖ = 0.

(II) For λ ,μ ∈ σa(T ) (λ �= μ) and sequences of bounded vectors {xn} and {yn} , if
limn→0 ‖(T −λ )xn‖ = limn→0 ‖(T − μ)yn‖ = 0, then limn→0〈xn,yn〉 = 0 where
〈·, ·〉 means the inner product.

It is known that (I)⇒(I-1)⇒(II).

THEOREM 1.4. ([12, 10]) If T is n-paranormal, then T satisfies the spectral
property (II) . In particular, any two different eigen-spaces are orthogonal to each
other.
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This work will further consider the spectral properties of (n,k)-quasiparanormal
operators.

In Section 2, it is to discuss the isolated spectral points and poles. Theorem 1.1
is extended to (n,k)-quasiparanormal operators. In particular, we show an operator T
such that T is (n+1)-paranormal, T is not n -paranormal, T−1 is not normaloid and
T ∗ is not m-paranormal for every positive integer m .

Section 3 is devoted to point spectrum and finite ascent. Among others, we give
an operator T such that T is (n,1)-quasiparanormal, T is not n -paranormal, M =
kerT �= {0} and kerT22 �= {0} . This implies that the case λ = 0 of Theorem 1.2 does
not holds for (n,k)-quasiparanormal operators.

In Section 4, the Riesz idempotent Eλ (T ) is considered and Theorem 1.3 is gen-
eralized.

Section 5 is devoted to approximate point spectrum and orthogonal eigenspaces.
The spectral properties (II-1)–(III-1) are introduced, and it is shown that (n,k)-quasi-
paranormal operators satisfy (II-1).

2. Isolated spectral points and poles

Let [R(T )] be the closure of range R(T ) of an operator T , M a nontrivial closed

invariant subspace of T , PM the (orthogonal) projection on M , and T =
(

T11 T12

0 T22

)
on M ⊕M⊥ .

THEOREM 2.1. Let T ∈ (n,k)-QP.

(1) If T is invertible, then

‖T−1‖ � r(T−1)
n(n+1)

2 r(T )
(n−1)(n+2)

2 .

(2) If σ(T ) ⊆ ∂D := {z| |z| = 1} , then T is unitary.

(3) If σ(T ) = {λ} , then T = λ if λ �= 0 and T 1+k = 0 if λ = 0 .

(4) If λ ∈ iso σ(T ) , then R(Eλ (T )) = ker(T −λ ) with λ �= 0 , and
R(E0(T )) = ker(T 1+k) .

A part of an operator T is its restriction to a closed invariant subspace. Let C be
a class of operators, C is called a hereditary class if each part of T ∈ C belongs to C .

LEMMA 2.2. Let C be a hereditary class, then the following assertion (1) im-
plies (2) .

(1) If T ∈ C and σ(T ) = {λ} , then T = λ if λ �= 0 and T 1+k = 0 if λ = 0 .

(2) If T ∈ C and λ ∈ iso σ(T ) , then R(Eλ (T )) = ker(T −λ ) when λ �= 0 , and
R(E0(T )) = ker(T 1+k) .
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Lemma 2.2 implies that, if T belongs to a hereditary class and satisfies (1) of
Lemma 2.2, then T is polaroid and isoloid.

Proof. Let T ∈ C and λ ∈ iso σ(T ) , then T |Eλ (T )H ∈ C and σ(T |Eλ (T )H ) =
{λ} . By (1), (T |E0(T)H )1+k = 0, and T |Eλ (T)H = λ when λ �= 0 . That is, E0(T )H =
kerT 1+k , and Eλ (T )H = ker(T −λ ) when λ �= 0. �

Proof of Theorem 2.1. (1) If T is invertible, then T is n -paranormal and the
result holds by Theorem 1.1 directly. Here, we give a simplified proof.

By definition, S := T−1 satisfies

‖T 1+n(Skx)‖ 1
1+n ‖Skx‖ n

1+n � ‖T (Skx)‖
for nonnegative integer k and x ∈ H . So

‖Skx‖
‖Sn+kx‖ � ‖Sn+kx‖n

‖Sn+k+1x‖n ,

l

∏
k=0

‖Skx‖
‖Sn+kx‖ �

l

∏
k=0

‖Sn+kx‖n

‖Sn+k+1x‖n .

(2.1)

Hence

‖x‖· · ·‖Slx‖
‖Snx‖· · ·‖Sn+lx‖ � ‖Snx‖n

‖Sn+l+1x‖n . (2.2)

It is easy to check that (2.2) is equivalent to

‖x‖· · ·‖Sn−1x‖
‖Sl+1x‖· · ·‖Sn+lx‖ � ‖Snx‖n

‖Sn+l+1x‖n . (2.3)

Then, since ‖T‖ = r(T ) ,

‖S Sn−1x
‖Sn−1x‖‖ � ‖x‖

‖Snx‖ · · ·
‖Sn−2x‖
‖Snx‖

‖Sn+l+1x‖n

‖Sl+1x‖· · ·‖Sn+lx‖

= ‖Tn Snx
‖Snx‖‖· · ·‖T

2 Snx
‖Snx‖‖

‖Sn+l+1x‖n

‖Sl+1x‖· · ·‖Sn+lx‖

� ‖Tn‖· · ·‖T 2‖ ‖Sn+l+1x‖n

‖Sl+1x‖· · ·‖Sn+lx‖

= r(T )
(n−1)(n+2)

2
‖Sn+l+1x‖n

‖Sl+1x‖· · ·‖Sn+lx‖ .

(2.4)

Thus

‖S‖� d(n)
‖Sn+l+1x‖n

‖Sl+1x‖· · ·‖Sn+lx‖ (2.5)
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where d(n) = r(T )
(n−1)(n+2)

2 . For sufficiently large m ,

‖S‖m+1 � d(n)m+1
m

∏
l=0

‖Sn+l+1x‖n

‖Sl+1x‖· · ·‖Sn+lx‖

= d(n)m+1 ‖Sn+1x‖n · · · ‖Sn+m+1x‖n

‖Sx‖· · ·‖Sn−1x‖n−1‖Snx‖n · · · ‖Sm+1x‖n‖Sm+2x‖n−1 · · ·‖Sn+mx‖

= d(n)m+1 ‖Sm+2x‖‖Sm+3x‖2 · · · ‖Sn+m+1x‖n

‖Sx‖· · ·‖Sn−1x‖n−1‖Snx‖n

� d(n)m+1 ‖Sm+2‖‖Sm+3‖2 · · · ‖Sn+m+1‖n‖x‖ n(n+1)
2

‖Sx‖· · ·‖Sn−1x‖n−1‖Snx‖n .

Therefore

‖S‖� d(n)
‖Sm+2‖ 1

m+1 ‖Sm+3‖ 2
m+1 · · · ‖Sn+m+1‖ n

m+1 ‖x‖
n(n+1)
2(m+1)

(‖Sx‖· · ·‖Sn−1x‖n−1‖Snx‖n)
1

m+1

.

By letting m → ∞ , ‖S‖� d(n)r(S)
n(n+1)

2 follows.
(2) By (1), ‖T−1‖ � r(T−1) = 1 and ‖x‖ = ‖T−1Tx‖ � ‖T−1‖‖Tx‖ = ‖Tx‖ �

‖x‖ . So T is an invertible isometry, that is, T is unitary.
(3) If λ �= 0, then T is n -paranormal and the assertion holds by Theorem 1.1. If

λ = 0, let T =
(

T11 T12

0 T22

)
on [R(Tk)]⊕ ker(T ∗k) . By [14, Theorem 2.1], T11 is n -

paranormal, Tk
22 = 0 and σ(T11) = {0} . Hence T11 = 0 and T 1+k =

(
0 T12Tk

22
0 T 1+k

22

)
= 0.

(4) follows by (3) and Lemma 2.2. �

Theorem 1.1 and 2.1 imply that, if T is invertible, n -paranormal and σ(T )⊆ ∂D ,
then T−1 is unitary and normaloid.

Now we show an example such that T is invertible and (n+ 1)-paranormal, but
T−1 is not normaloid.

Let {en}∞
n=−∞ be a canonical orthogonal basis of l2(Z) and x = (xn)n∈Z ∈ l2(Z) .

EXAMPLE 2.3. Let n be a positive integer, k a nonnegative integer, w = (wn)n∈Z

be a bounded sequence of positive numbers, and Tx = ∑∞
n=−∞ wnxnen+1 .

(1) T ∈ k -QA(n) if and only if wn
i+k � wi+k+1 · · ·wi+k+n for each i ∈ Z .

(2) T ∈ (n,k)-QP if and only if T ∈ k -QA(n) .

(3) If a > 1 and wi =

⎧⎪⎪⎨
⎪⎪⎩

a
1

n+1 , i = −1,−2, · · ·
a, i = 0
1, i = 1, · · · ,n
an+1, i = n+1, · · ·

, then T is (n+ 1)-paranormal, but

not n -paranormal, and T−1 is not normaloid. Meanwhile, T ∗ is normaloid, but
not m-paranormal for every positive integer m .
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LEMMA 2.4. ([15]) Let a > 0 , b > 0 , c > 0 , p > 0 and r > 0 .

(1) apcr � bp+r if and only if apμ p+r−b(p+ r)μ p +cr � 0 holds for every μ > 0.

(2) If n is a positive integer, then anc� b1+n if and only if naμ1+n−b(1+n)μn+c�
0 holds for every μ > 0.

Let u = (un)n∈Z and w = (wn)n∈Z be bounded sequences of real numbers. It
is easy to check that the following lemma holds for each diagonal S (defined by
Sx = ∑∞

n=−∞ unxnen ) and weighted unilateral right shift operator T (defined by
Tx = ∑∞

n=−∞ wnxnen+1 ).

LEMMA 2.5. If Sx = ∑∞
n=−∞ unxnen and Tx = ∑∞

n=−∞ wnxnen+1 , then for positive
integer m,

T ∗m
STmx =

∞

∑
n=−∞

w2
n · · ·w2

n+m−1un+mxnen.

TmST ∗m
x =

∞

∑
n=−∞

w2
n · · ·w2

n+m−1unxn+men+m.

Proof of Example 2.3. By Lemmas 2.4–2.5, (1)–(2) hold in a similar manner to
(1) and (4) of [15, Example 4.5].

(3) By (1)–(2), T is n -paranormal if and only if wn
i � wi+1 · · ·wi+n for each i ∈

Z . Since wn
0 = an > 1 = w1 · · ·wn , T is not n -paranormal. It is easy to check that

T is (n + 1)-paranormal. So ‖T‖ = r(T ) = an+1 . By assumption, ‖T−1‖ = 1 and

r(T−1) = limm→∞ ‖T−m‖ 1
m = limm→∞ a−

m−1
n+1

1
m = a−

1
n+1 . Hence T−1 is not normaloid.

Meanwhile, T is normaloid ensures that T ∗ is also normaloid. By assumption, T ∗
is m-paranormal if and only if wm

i � wi−1 · · ·wi−m for each i ∈ Z . Since wm
0 = am >

a
m

n+1 = w−1 · · ·w−m , T ∗ is not m-paranormal. �

3. Point spectrum and finite ascent

THEOREM 3.1. Let T ∈ (n,k)-QP, 0 �= λ ∈σp(T ) and T =
(

λ T12

0 T22

)
on ker(T −

λ )⊕ (ker(T −λ ))⊥ .

(1) The following assertions hold.

T12
(
λ n−1T22 + · · ·+Tn

22

)
Tk
22 = nλ nT12T

k
22, (3.1)∥∥T 1+n

22 Tk
22x

∥∥ 2
1+n · ‖Tk

22x‖
2n

1+n �
∥∥T12T

k
22x

∥∥2 +
∥∥T22T

k
22x

∥∥2
. (3.2)

In particular, T22 is also (n,k)-quasiparanormal.

(2) ker(T22−λ ) = {0} and ker(T −λ ) = ker(T −λ )2 .

(3) If λ ∈ iso σ(T ) , then λ ∈ ρ(T22) .
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Theorem 3.1 is known (see [14, Theorem 3.1–3.2], [10, Lemma 6]). Here we give
alternate proofs of (2)–(3) of Theorem 3.1, and an example which implies that Theorem
3.1 (2) does not holds for λ = 0.

LEMMA 3.2. Let T be an operator, λ ∈ σp(T ) and T =
(

λ T12

0 T22

)
on ker(T −

λ )⊕ (ker(T −λ ))⊥ . If ker(T22−λ ) = {0} , then ker(T −λ ) = ker(T −λ )2 .

Lemma 3.2 says that the matrix representation associated with point spectrum re-
lates to finite ascent closely.

Proof. Let S := T −λ =
(

0 T12

0 T22−λ

)
and x = x1⊕x2 ∈ ker(S2) , then 0 = S2x =

S(Sx) = S(T12x2⊕ (T22−λ )x2) = T12(T22−λ )x2⊕ (T22−λ )2x2 . So (T22−λ )2x2 = 0
and x2 = 0 follows by ker(T22 −λ ) = {0} . Hence x = x1 ∈ ker(T −λ ) . �

Proof of Theorem 3.1. (2) It is sufficient to prove ker(T22 −λ ) = {0} because
of Lemma 3.2. The assertion ker(T22 − λ ) = {0} can be proved by (3.2) see ([14,
Corollary 3.2]). Here we prove ker(T22 −λ ) = {0} by using Theorem 2.1. It is easy
to check that M := ker(T − λ )⊕ ker(T22 − λ ) is an invariant subspace of T and
M ⊆ ker(T − λ )2 . By [14, Theorem 2.1], T |M ∈ (n,k)-QP , so T |M = λ follows
by σ(T |M ) = {λ} and Theorem 2.1. Hence M ⊆ ker(T − λ ) and ker(T22 − λ ) ⊆
ker(T −λ )⊕ (ker(T −λ ))⊥ = {0} .

(3) If λ ∈ iso σ(T ) , then λ ∈ ρ(T22)∪ iso σ(T22) . By (1), T22 ∈ ((n,k)-QP) .
If λ ∈ iso σ(T22) , then λ ∈ σp(T22) by (4) of Theorem 2.1. So λ ∈ ρ(T22) holds by
(2). �

LEMMA 3.3. ([14]) Let T ∈ (n,k)-QP, then kerT 1+k = kerT 2+k and ker(T −
λ ) = ker(T −λ )2 for λ �= 0 . In particular, T has SVEP.

Let σw(T ) , σuw(T ) , σbw(T ) and σubw(T ) mean the Weyl spectrum, upper semi-
Weyl spectrum, B-Weyl spectrum and upper semi-B-Weyl spectrum of an operator T
respectively (see [2]).

Denote π00(T ) := {λ ∈ iso σ(T ) : 0 < dimker(T − λ ) < ∞} , π0(T ) := {λ ∈
iso σ(T ) : 0 < dimker(T −λ )} , πa

00(T ) := {λ ∈ iso σa(T ) : 0 < dimker(T −λ ) < ∞} ,
and πa

0 (T ) := {λ ∈ iso σa(T ) : 0 < dimker(T −λ )} .
T ∈ (W ) means Weyl theorem holds for T , that is, σ(T )\σw(T ) = π00(T ).
T ∈ (aW ) means a -Weyl theorem holds for T , that is, σa(T )\σuw(T ) = πa

00(T ).
T ∈ (gW ) means generalized Weyl theorem holds for T , that is,

σ(T )\σbw(T ) = π0(T ).

T ∈ (gaW) means generalized a -Weyl theorem holds for T , that is,

σa(T )\σubw(T ) = πa
0 (T ).

T ∈ (w) means the property (w) holds for T , that is, σa(T )\σuw(T ) = π00(T ).
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T ∈ (gw) means the property (gw) holds for T , that is, σa(T )\σubw(T ) = π0(T ).
It is well-known that (gaW)⇒ (aW )⇒ (W ),(gaW )⇒ (gW )⇒ (W ) , and (gw)⇒

(w) ⇒ (W ) .
Let H(σ(T )) be the set of all functions analytic on some open neighborhood U

of σ(T ) , and f ∈ Hnc(σ(T )) means f is holomorphic and locally nonconstant on an
open set U containing σ(T ) . The following result follows by (4) of Theorem 2.1,
Lemma 3.3 and [2, Theorem 3.12 and 3.14].

COROLLARY 3.4. Let T ∈ (n,k)-QP and f ∈ Hnc(σ(T )) , then

f (T ) ∈ (gW )∩ (gaW)∩ (gw).

Let {en}∞
n=0 be a canonical orthogonal basis of l2(N) and x = (xn)n∈N ∈ l2(N) .

EXAMPLE 3.5. Let w = (wn)n∈N be a bounded sequence of nonnegative num-
bers, and Tx = ∑∞

n=0 wnxnen+1 . If w0 > 0, w1 = 0,wi = i
i+1 , i � 2, then the following

assertions hold.

(1) T ∈ (n,1)-QP , but T is not n -paranormal. If w0 > 1, then T is not normaloid.

(2) ker(T ) = (0,x1,0, · · ·) , ker(T 2) = (x0,x1,0, · · ·) and ker(T22) �= {0} .

Example 3.5 implies that, for λ = 0, Theorem 3.1 is not true.
Let u = (un)n∈N and w = (wn)n∈N be bounded sequences of real numbers.

LEMMA 3.6. ([15]) If Sx = ∑∞
n=0 unxnen and Tx = ∑∞

n=0 wnxnen+1 , then, for pos-
itive integer m,

T ∗m
STm =(w2

0 · · ·w2
m−1um)⊕ (w2

1 · · ·w2
mum+1)⊕ (w2

2 · · ·w2
m+1um+2)⊕·· · .

TmST ∗m
=

m items︷ ︸︸ ︷
0⊕·· ·⊕0⊕(w2

0 · · ·w2
m−1u0)⊕ (w2

1 · · ·w2
mu1)⊕

⊕ (w2
2 · · ·w2

m+1u2)⊕·· · .

Proof of Example 3.5. By [14, Lemma 2.2], T ∈ (n,k)-QP if and only if, for any
μ > 0,

T ∗k
T ∗1+n

T 1+nT k − (1+n)μnT ∗k
T ∗TTk +nμ1+nT ∗k

T k � 0.

By Lemma 3.6, T ∈ (n,k)-QP if and only if, for any μ > 0 and i ∈ N ,

w2
k+i · · ·w2

k+i+n− (1+n)μnw2
k+i +nμ1+n � 0.

(1) By Lemma 2.4, T ∈ (n,1)-QP if and only if, for any i ∈ N ,

w2
1+i · · ·w2

1+i+n � w2(1+n)
1+i .
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That is, wn
1+i � w1+i+1 · · ·w1+i+n for i ∈ N . So T ∈ (n,1)-QP follows by the assump-

tion that wn
1+i = ( i+1

i+2)n for i � 1.
Similarly, T is n -paranormal if and only if, for any μ > 0 and i ∈ N ,

w2
i · · ·w2

i+n− (1+n)μnw2
i +nμ1+n � 0. (3.3)

It is clear that w does not satisfy the case i = 0 of (3.3). Hence T is not n -paranormal.
If w0 > 1, then ‖T‖= w0 , r(T ) = limm→∞ ‖Tm‖ 1

m = limm→∞ supi�2{ i
i+m}

1
m = 1.

So T is not normaloid.
(2) If x ∈ ker(T ) , then 0 = Tx = (0,w0x0,w1x1, · · · ) and ker(T ) = (0,x1,0, · · ·) .

If x∈ ker(T 2) , then 0 = Tx = (0,0,w0w1x0,w1w2x1, · · · ) and ker(T 2) = (x0,x1,0, · · ·) .
Lemma 3.2 ensures that ker(T22) �= {0} . �

4. Riesz idempotent

Let

Gn,λ (z) :=
n

∑
i=1

iλ i−1zn−i = nλ n−1 +(n−1)λ n−2z+ · · ·+ zn−1.

It is easy to check that Fn,λ (z) = (z−λ )Gn,λ (z) and Gn,λ (λ ) �= 0.

THEOREM 4.1. Let T ∈ (n,k)-QP, 0 �= λ ∈ iso σ(T ) and T =
(

λ T12

0 T22

)
on

ker(T −λ )⊕ (ker(T −λ ))⊥ .

(1) If σ(T )∩{z|Gn,λ (z) = 0} = φ and ker(T22)∗k = 0(= ker(T22)∗) , then Eλ (T ) =
(Eλ (T ))∗ .

(2) If σ(T )∩{z|zkGn,λ (z) = 0} = φ , then Eλ (T ) = (Eλ (T ))∗ .

REMARK 4.2. It is obvious that Theorem 4.1 (1) implies (2). If n = 1, then
G1,λ (z) ≡ 1 and σ(T )∩ {z|G1,λ (z) = 0} = φ always holds. So the case n = 1 of
Theorem 4.1 (1) is just (1) of Theorem 1.3 ([14, Theorem 5.1]), and case n = 1 and
k = 0 of Theorem 4.1 (1) is just Uchiyama’s result [11, Theorem 3.7].

REMARK 4.3. By (3) of Theorem 3.1, the condition σ(T )∩{z|Gn,λ (z) = 0}= φ
is equivalent to σ(T )∩{z|Fn,λ (z) = 0} = {λ} . Therefore the case k = 0 of Theorem
4.1 (2) is just (2) of Theorem 1.3 ([10, Theorem 7]).

LEMMA 4.4. ([14]) Let m be a positive integer and λ ∈ iso σ(T ) .

(1) The following assertions are equivalent to each other.

(a) EH = ker(T −λ )m .

(b) kerE = (T −λ )mH .
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(2) If λ ∈ p0(T ) and the order of λ is m, the following assertions are equivalent to
each other.

(a) E is self-adjoint.

(b) ker(T −λ )m = ker(T −λ )∗m .

(c) ker(T −λ )m ⊆ ker(T −λ )∗m .

Proof of Theorem 4.1. It is sufficient to prove (1) because of Remark 4.2. By (3)
of Theorem 3.1,

(3.1) ⇐⇒T12
(
Tn
22 + λTn−1

22 + · · ·+ λ n−1T22−nλ n)Tk
22 = 0

⇐⇒T12
(
Tn
22−λ n + λ (Tn−1

22 −λ n−1)+ · · ·+ λ n−1(T22−λ )
)
Tk
22 = 0

⇐⇒T12(T22−λ )Gn,λ (T22)Tk
22 = 0

⇐⇒T12Gn,λ (T22)Tk
22 = 0.

(1) Since σ(T )∩{z|Gn,λ (z) = 0}= φ , Gn,λ (T22) is invertible and (3.1) is equiva-
lent to T12Tk

22 = 0. Hence T12 = 0 follows by ker(T22)∗k = 0(= ker(T22)∗) . By Lemma
4.4, the assertion follows. �

LEMMA 4.5. ([15]) If T ∈ k -QA(n) , then T ∈ R3 .

Lemma 4.5 implies that, if λ �= 0, then ker(T − λ ) reduces T . The following
result follows by Theorem 2.1 (4), Lemma 4.5 and Lemma 4.4.

COROLLARY 4.6. If T ∈ k -QA(n) , 0 �= λ ∈ iso σ(T ) , then

Eλ (T ) = ker(T −λ ) = ker(T −λ )∗.

5. Approximate point spectrum and orthogonal eigen-spaces

Let us introduce spectral properties (II-1)–(III-1) which imply SVEP.

(II-1) For λ ,μ ∈ σa(T ) (λ �= μ) , λ μ �= 0 and sequences of bounded vectors {xn} and
{yn} , if limn→0 ‖(T−λ )xn‖= limn→0 ‖(T −μ)yn‖= 0, then limn→0〈xn,yn〉= 0.

(III) For λ ,μ ∈ σp(T ) (λ �= μ) , ker(T −λ ) ⊥ ker(T − μ) holds.

(III-1) For λ ,μ ∈ σp(T ) (λ �= μ) and λ μ �= 0, ker(T −λ )⊥ ker(T − μ) holds.

It is obvious that (II) ⇒(III)⇒(III-1) and (II)⇒(II-1)⇒(III-1)⇒SVEP ([14,
Lemma 3.5]). It is known that n -paranormal operators satisfy the spectral property
(II) (Theorem 1.4) and (n,k)-QP operators satisfy (III-1) ([14, Corollary 3.3]).

THEOREM 5.1. If T ∈ (n,k)-QP, then T satisfies the spectral property (II-1). In
particular, T satisfies (III-1) and has SVEP.
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It should be pointed out that Theorem 3.1 (1) also ensures that the assertion “T
satisfies (III-1)” above (see [14, Corollary 3.3]).

LEMMA 5.2. Let T =
(

T11 T12

0 T22

)
on M ⊕M⊥ . If T11 satisfies (II-1) (or (III-1))

and σ(T22) = {0} , then T satisfies (II-1) (or (III-1))

Proof. Let λ ,μ ∈ σa(T ) (λ �= μ) , λ μ �= 0, {xn} and {yn} be sequences of unit
vectors such that xn = xn1⊕xn2 , yn = yn1⊕yn2 and limn→0 ‖(T−λ )xn‖= limn→0 ‖(T −
μ)yn‖ = 0.

Since σ(T22) = {0} and λ μ �= 0,

lim
n→0

‖(T −λ )xn‖ = 0 ⇐⇒ lim
n→0

‖(T11−λ )xn1 +T12xn2‖ = 0 = lim
n→0

‖(T22−λ )xn2‖
⇐⇒ lim

n→0
‖(T11−λ )xn1 +T12xn2‖ = 0 = lim

n→0
‖xn2‖

⇐⇒ lim
n→0

‖(T11−λ )xn1‖ = 0 = lim
n→0

‖xn2‖.

Similarly,

lim
n→0

‖(T − μ)yn‖ = 0 ⇐⇒ lim
n→0

‖(T11− μ)yn1‖ = 0 = lim
n→0

‖yn2‖.

Since T11 satisfies (II-1), limn→0〈xn,yn〉= limn→0(〈xn1,yn1〉+〈xn2,yn2〉)= 0 holds. �

Proof of Theorem 5.1. Let T =
(

T11 T12

0 T22

)
on [R(Tk)]⊕ker(T ∗k) . If T ∈ (n,k)-

QP , then T11 is n -paranormal, Tk
22 = 0 and σ(T ) = σ(T11)∪{0} ([14, Theorem 2.1]).

Therefore the assertion follows by Lemma 5.2 and Theorem 1.4. �

At the end, for convenience, we provide a simplified proof of Theorem 1.4.

Proof of Theorem 1.4. Let λ ,μ ∈ σa(T ) (λ �= μ) , {xm} and {ym} be sequences
of unit vectors such that limm→0 ‖(T −λ )xm‖ = limm→0 ‖(T − μ)ym‖ = 0.

Without loss of generality, we may assume that μ = 1, |λ | � 1. Assume to the
contrary that limm→0〈xm,ym〉 �= 0, by considering subsequence and replacing a with
eiθ a , we may assume that limm→0〈xm,ym〉 = a > 0.

For ε > 0 and every complex number c such that |c| = 1,

‖T (εcxm + ym)‖1+n � ‖T 1+n(εcxm + ym)‖‖εcxm + ym‖n.

By letting m → ∞ and limm→0(〈Txm,Tym〉− 〈λxm,μym〉) = 0,

(ε2c2|λ |2 +1+2Re(εcλa))1+n

� (ε2c2|λ |2(1+n) +1+2Re(εcλ 1+na))(ε2c2 +1+2Re(εca))n
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Then

1+(1+n)2Re(εcλa)+o(ε)

� (1+2Re(εcλ 1+na)+o(ε))(1+n2Re(εca)+o(ε))

= 1+2Re(εcλ 1+na)+2Re(nεca)+o(ε).

So that Re((1+n)cλa) � Re(cλ 1+na)+Re(nca)+o(1) .
By letting ε → ∞ ,

Re(ac(n+ λ 1+n− (1+n)λ )) � 0.

Noting that c is an arbitrary complex number such that |c| = 1,

n+ λ 1+n− (1+n)λ = 0.

Since

n+ λ 1+n− (1+n)λ = n(1−λ )+ λ (λ n−1) = (1−λ )(n−λ (1+ · · ·+ λ n−1)),

we have

n = λ + · · ·+ λ n � |λ |+ · · ·+ |λ n| � n.

Therefore λ = |λ | = 1, this is a contradiction. �
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