AN OBSERVATION ABOUT NORMALOID OPERATORS

Jor-Ting Chan and Kong Chan

(Communicated by E. Poon)

Abstract

Let H be a complex Hilbert space and $B(H)$ the Banach space of all bounded linear operators on H. For any $A \in B(H)$, let $w(A)$ denote the numerical radius of A. Then A is normaloid if $w(A)=\|A\|$. In this note, we show that A is normaloid if there is a sequence of unit vectors $\left(x_{n}\right)$ such that $\lim _{n \rightarrow \infty}\left\|A x_{n}\right\|=\|A\|$ and $\lim _{n \rightarrow \infty}\left|\left\langle A x_{n}, x_{n}\right\rangle\right|=w(A)$ simultaneously. The result is then used to study the Davis-Wielandt radius.

1. Introduction

Let H be a complex Hilbert space and $B(H)$ the Banach space of all bounded linear operators on H. When $\operatorname{dim} H=n<\infty, B(H)$ will be identified with M_{n}, the space of all $n \times n$ complex matrices. For any operator $A \in B(H)$, the numerical range and numerical radius of A are defined respectively by

$$
W(A)=\{\langle A x, x\rangle: x \text { is a unit vector in } H\} \quad \text { and } \quad w(A)=\sup \{|\lambda|: \lambda \in W(A)\} .
$$

It is well-known that $w(\cdot)$ is a norm on $B(H)$ which satisfies

$$
\frac{1}{2}\|A\| \leqslant w(A) \leqslant\|A\| \quad \text { for all } A \in B(H)
$$

See, for example, [5, Problem 218]. When $w(A)=\|A\|, A$ is called normaloid. All normal operators are normaloid, but not all normaloid operators are normal. It is an interesting topic to characterize normaloid operators. When H is finite dimensional, a characterization was given by Goldberg and Zwas in [4], which states that a matrix $A \in M_{n}$ is normaloid if and only if there exists an integer $1 \leqslant k \leqslant n$ and a unitary matrix U such that

$$
A=U\left(\begin{array}{ll}
\Lambda & 0 \\
0 & B
\end{array}\right) U^{*}
$$

where $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ with $\left|\lambda_{1}\right|=\cdots=\left|\lambda_{k}\right|=\|A\|$ and $B \in M_{n-k}$ is such that $\|B\|<\|A\|$. When H is infinite dimensional, characterizations of normaloid operator A can be found in [1], [9] and [10].

2. Normaloid operators

Our main result is the following observation about normaloid operators.
THEOREM 1. An operator $A \in B(H)$ is normaloid if and only if there is a sequence of unit vectors $\left(x_{n}\right)$ in H such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|A x_{n}\right\|=\|A\| \quad \text { and } \quad \lim _{n \rightarrow \infty}\left|\left\langle A x_{n}, x_{n}\right\rangle\right|=w(A) \tag{*}
\end{equation*}
$$

Proof. The necessity is clear. If A is normaloid, then every sequence of unit vectors $\left(x_{n}\right)$ such that $\lim _{n \rightarrow \infty}\left|\left\langle A x_{n}, x_{n}\right\rangle\right|=w(A)=\|A\|$ satisfies $\lim _{n \rightarrow \infty}\left\|A x_{n}\right\|=\|A\|$. This follows from

$$
\|A\| \geqslant\left\|A x_{n}\right\| \geqslant\left|\left\langle A x_{n}, x_{n}\right\rangle\right| \geqslant w(A)-\varepsilon=\|A\|-\varepsilon
$$

for all $\varepsilon>0$ and n large enough.
To prove the sufficiency, assume without loss of generality that $1=\|A\| \geqslant w(A)>$ 0 and that $\left(x_{n}\right)$ is a sequence of unit vectors satisfying $(*)$. For each n, let y_{n} be a unit vector in H such that $\left\langle x_{n}, y_{n}\right\rangle=0$ and $A x_{n}=a_{n} x_{n}+c_{n} y_{n}$. Then from the hypothesis, we have

$$
\lim _{n \rightarrow \infty}\left|a_{n}\right|=w(A) \quad \text { and } \quad \lim _{n \rightarrow \infty}\left(\left|a_{n}\right|^{2}+\left|c_{n}\right|^{2}\right)=\|A\|^{2}=1
$$

Our aim is to show that $\lim _{n \rightarrow \infty} c_{n}=0$ so that $w(A)=1=\|A\|$.
Consider the compression of A onto span $\left\{x_{n}, y_{n}\right\}$, realized as the 2×2 matrix

$$
A_{n}=\left(\begin{array}{l}
\left\langle A x_{n}, x_{n}\right\rangle\left\langle A y_{n}, x_{n}\right\rangle \\
\left\langle A x_{n}, y_{n}\right\rangle \\
\left\langle A y_{n}, y_{n}\right\rangle
\end{array}\right)=\binom{a_{n} b_{n}}{c_{n} d_{n}}
$$

Passing to a subsequence if necessary, we may further assume that

$$
A_{n}=\left(\begin{array}{ll}
a_{n} & b_{n} \\
c_{n} & d_{n}
\end{array}\right) \rightarrow\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=A_{0}
$$

From

$$
\lim _{n \rightarrow \infty}\left|a_{n}\right| \leqslant \lim _{n \rightarrow \infty} w\left(A_{n}\right) \leqslant w(A)=\lim _{n \rightarrow \infty}\left|a_{n}\right|,
$$

and $w\left(A_{0}\right)=\lim _{n \rightarrow \infty} w\left(A_{n}\right)$, we get $w\left(A_{0}\right)=\lim _{n \rightarrow \infty}\left|a_{n}\right|=|a|$. Similarly, $\left\|A_{0}\right\|^{2}=$ $|a|^{2}+|c|^{2}=1$.

We claim that $|b|=|c|$. For this purpose, consider the hermitian matrix

$$
H=\frac{1}{2}\left(\bar{a} A_{0}+a A_{0}^{*}\right)=\frac{1}{2}\left(\begin{array}{cc}
2|a|^{2} & \bar{a} b+a \bar{c} \\
\bar{a} c+a \bar{b} & \bar{a} d+a \bar{d}
\end{array}\right) .
$$

As the $(1,1)$-entry of H is $|a|^{2}$,

$$
|a|^{2} \leqslant w(H)=w\left(\frac{1}{2}\left(\bar{a} A_{0}+a A_{0}^{*}\right)\right) \leqslant|a|^{2}
$$

implying that $w(H)=|a|^{2}$. Since H is hermitian, $\|H\|=w(H)=|a|^{2}$. The (1, 2)entry of H must be zero. In other words, $\bar{a} c+a \bar{b}=0$, from which the claim $|b|=|c|$ follows.

We now show that $c=0$. Assume on the contrary that $c \neq 0$. Consider

$$
A_{0}^{*} A_{0}=\left(\begin{array}{cc}
|a|^{2}+|c|^{2} & \bar{a} b+\bar{c} d \\
\bar{b} a+\bar{d} c & |b|^{2}+|d|^{2}
\end{array}\right)
$$

Since $\left\|A_{0}^{*} A_{0}\right\|=\left\|A_{0}\right\|^{2}=|a|^{2}+|c|^{2}$, the $(2,1)$-entry of A_{0} is zero. In other words, $\bar{b} a+\bar{d} c=0$. Together with $|b|=|c|>0$, we get $|a|=|d|$. Hence $|b|^{2}+|d|^{2}=$ $|a|^{2}+|c|^{2}=1$ and consequently $A_{0}^{*} A_{0}=I_{2}$, the 2×2 identity matrix I_{2}. This means A_{0} is a unitary matrix. As the numerical radius of a unitary matrix is one, $|a|=w\left(A_{0}\right)=1$. It follows that $c=0$, a contradiction.

From our construction,

$$
\|A\|=\lim _{n \rightarrow \infty} \sqrt{\left|a_{n}\right|^{2}+\left|c_{n}\right|^{2}}=\lim _{n \rightarrow \infty}\left|a_{n}\right|=w(A)
$$

i.e., A is normaloid.

We remark that even if A is normaloid, not every $\left(x_{n}\right)$ such that $\lim _{n \rightarrow \infty}\left\|A x_{n}\right\|=$ $\|A\|$ satisfies $\lim _{n \rightarrow \infty}\left\langle A x_{n}, x_{n}\right\rangle=w(A)$. Let

$$
A=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & 0 \\
\frac{1}{\sqrt{2}} & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

It is not hard to see that A is normaloid with $\|A\|=w(A)=1$. However for $x=$ $\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)^{t},\|A x\|=1=\|A\|$ while $|\langle A x, x\rangle| \neq w(A)$.

Theorem 1 can be stated in terms of the maximal numerical range of the operator A. The notion was introduced by Stampfli in [11] and defined by

$$
W_{0}(A)=\left\{\lambda:\left\langle A x_{n}, x_{n}\right\rangle \rightarrow \lambda \text { for unit vectors }\left(x_{n}\right) \text { such that }\left\|A x_{n}\right\| \rightarrow\|A\|\right\}
$$

Call $w_{0}(A)=\sup \left\{|\lambda|: \lambda \in W_{0}(A)\right\}$ the maximal numerical radius of A. It is not hard to see that $W_{0}(A) \subseteq W(A)^{-}$, the closure of A, and therefore $w_{0}(A) \leqslant w(A)$. Some other properties of $w_{0}(\cdot)$ were given in [12]. We have

Corollary 1. An operator $A \in B(H)$ is normaloid if and only if $w_{0}(A)=w(A)$.
Proof. Suppose A is normaloid. Take a sequence $\left(x_{n}\right)$ of unit vectors such that $\lim _{n \rightarrow \infty}\left|\left\langle A x_{n}, x_{n}\right\rangle\right|=w(A)=\|A\|$. Then $\lim _{n \rightarrow \infty}\left\|A x_{n}\right\|=\|A\|$. Any accumulation point of $\left(\left\langle A x_{n}, x_{n}\right\rangle\right)$ belongs to $W_{0}(A)$ and has modulus $w(A)$. Since $w_{0}(A) \leqslant w(A)$, we must have $w_{0}(A)=w(A)$.

Now suppose that $w_{0}(A)=w(A)$. By definition of $w_{0}(A)$,

$$
w(A)=w_{0}(A)=\lim _{n \rightarrow \infty}\left|\left\langle A x_{n}, x_{n}\right\rangle\right|
$$

for a sequence of unit vectors $\left(x_{n}\right)$ such that $\left\|A x_{n}\right\| \rightarrow\|A\|$. Therefore A is normaloid, by Theorem 1 .

3. The Davis-Wielandt radius

For any $A \in B(H)$, its Davis-Wielandt shell is the set

$$
D W(A)=\{(\langle A x, x\rangle,\langle A x, A x\rangle): x \in H \text { and }\|x\|=1\} .
$$

It was introduced by Davis in [3] and has been studied extensively as a generalization of the numerical range. See, for example, [6], [7] and [8]. As in the case of the numerical range, we define the Davis-Wielandt radius of A by

$$
\begin{aligned}
r_{D W}(A) & =\sup \left\{\sqrt{|\langle A x, x\rangle|^{2}+\left|\left\langle A^{*} A x, x\right\rangle\right|^{2}}: x \in H \text { and }\|x\|=1\right\} \\
& =\sup \left\{\sqrt{|\langle A x, x\rangle|^{2}+\|A x\|^{4}}: x \in H \text { and }\|x\|=1\right\} .
\end{aligned}
$$

It is easy to see that $r_{D W}(\cdot)$ is not positive homogeneous and therefore cannot be a norm on $B(H)$. In spite of this, it has many interesting properties. A description of $r_{D W}(\cdot)$-distance preservers was given in [2]. Here, we are interested in the following inequalities, which will be stated without proof.

Proposition 1. For every $A \in B(H),\|A\|^{2} \leqslant r_{D W}(A) \leqslant \sqrt{(w(A))^{2}+\|A\|^{4}}$.
Both inequalities in Proposition 1 can be attained by a nonzero A. Clearly,

$$
r_{D W}(I)=\sqrt{(w(I))^{2}+\|I\|^{4}}
$$

For the other inequality, consider $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$. It is easy to see that $\|A\|=1$. To compute $r_{D W}(A)$, write any unit vector in \mathbb{C}^{2} as $(\lambda \cos \theta, \mu \sin \theta)^{t}$, where λ and μ are complex units. Then

$$
\begin{aligned}
r_{D W}(A)^{2} & =\max \left\{|\langle A y, y\rangle|^{2}+\|A y\|^{4}: y \in H \text { and }\|y\|=1\right\} \\
& =\max \left\{\cos ^{2} \theta \sin ^{2} \theta+\sin ^{4} \theta: \theta \in \mathbb{R}\right\} \\
& =\max \left\{\sin ^{2} \theta: \theta \in \mathbb{R}\right\} .
\end{aligned}
$$

Therefore $r_{D W}(A)=1=\|A\|^{2}$.
One may wonder if $\left(x_{n}\right)$ is a sequence of unit vectors such that

$$
\lim _{n \rightarrow \infty} \sqrt{\left|\left\langle A x_{n}, x_{n}\right\rangle\right|^{2}+\left\|A x_{n}\right\|^{4}}=r_{D W}(A)
$$

would it be also true that $\lim _{n \rightarrow \infty}\left\|A x_{n}\right\|=\|A\|$? The following example shows that this is not the case. Let

$$
A=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & r
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \oplus(r)
$$

where $r \in(0,1)$. Then $\|A\|=1$, which is attained only at unit multiples of $x_{1}=$ $\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)^{t}$. To compute $r_{D W}(A)$, we have by [8, Theorem 2.1 (e)],

$$
r_{D W}(A)=\max \left\{r_{D W}\left(\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right), r_{D W}((r))\right\}=\max \left\{1, \sqrt{r^{2}+r^{4}}\right\} .
$$

Clearly, we can choose r large enough so that $r_{D W}(\cdot)$ is attained at $x_{2}=\left(\begin{array}{lll}0 & 0 & 1\end{array}\right)^{t}$, which is not a multiple of x_{1}.

Proposition 2. Suppose $A \in B(H)$. Then $r_{D W}(A)=\sqrt{(w(A))^{2}+\|A\|^{4}}$ if and only if A is normaloid.

Proof. Suppose that $r_{D W}(A)=\sqrt{(w(A))^{2}+\|A\|^{4}}$. Take a sequence of unit vectors $\left(x_{n}\right)$ such that

$$
\lim _{n \rightarrow \infty} \sqrt{\left|\left\langle A x_{n}, x_{n}\right\rangle\right|^{2}+\left\|A x_{n}\right\|^{4}}=r_{D W}(A)=\sqrt{(w(A))^{2}+\|A\|^{4}}
$$

Then we have

$$
\lim _{n \rightarrow \infty}\left\|A x_{n}\right\|=\|A\| \quad \text { and } \quad \lim _{n \rightarrow \infty}\left|\left\langle A x_{n}, x_{n}\right\rangle\right|=w(A)
$$

By Theorem 1, A is normaloid.
Conversely, suppose A is normaloid. Take any sequence of unit vectors $\left(x_{n}\right)$ such that $\lim _{n \rightarrow \infty}\left|\left\langle A x_{n}, x_{n}\right\rangle\right|=w(A)=\|A\|$. Then $\lim _{n \rightarrow \infty}\left\|A x_{n}\right\|=\|A\|$ and

$$
\lim _{n \rightarrow \infty} \sqrt{\left|\left\langle A x_{n}, x_{n}\right\rangle\right|^{2}+\left\|A x_{n}\right\|^{4}}=\sqrt{(w(A))^{2}+\|A\|^{4}}
$$

As $r_{D W}(A) \leqslant \sqrt{(w(A))^{2}+\|A\|^{4}}$, equality follows.
Acknowledgement. The authors would like to express their sincere thanks Professor Chi-Kwong Li for his valuable advice during the preparation of the article.

REFERENCES

[1] M. Barraa and M. Boumazgour, Inner derivations and norm equality, Proc. Amer. Math. Soc. 130, (2002), 471-476.
[2] J. T. Chan and K. Chan, Two distance preservers of generalized numerical radii, Linear Multilinear Algebra 62 (2014), 674-682.
[3] C. Davis, The shell of a Hilbert-space operator, Acta Sci. Math. (Szeged) 29 (1968) 69-86.
[4] M. Goldberg and G. Zwas, On matrices having equal spectral radius and spectral norm, Linear Algebra Appl. 8 (1974), 427-434.
[5] P. R. Halmos, A Hilbert space problem book, 2nd ed., Springer-Verlag, New York, 1982.
[6] C. K. Li, Y. T. Poon, Spectrum, numerical range and Davis-Wielandt shell of a normal opearator, Glasgow Math. J. 51 (2009) 91-100.
[7] C. K. Li, Y. T. Poon, Davis-Wielandt shells of normal operators, Acta Sci. Math. (Szeged) 75 (2009), 289-297.
[8] C. K. Li, Y. T. Poon, N. S. Sze, Davis-Wielandt shells of operators, Oper. Matrices 2 (2008), 341-355.
[9] L. Z. Gevorgyan, Characterization of spectraloid and normaloid operators, Dokl. Nats. Akad. Nauk Armen. 113 (2013), 231-239.
[10] A. SEDDIK, On the injective norm of $\sum_{i=1}^{n} A_{i} \otimes B_{i}$ and characterization of normaloid operators, Oper. Matrices. 2 (2008), 67-77.
[11] J. G. StampFLI, The norm of a derivation, Pacific J. Math. 33 (1970), 737-747.
[12] L. S. Wang and H. Xue, Norm equality and maximal numerical range, (Chinese) J. Ningxia Univ. Nat. Sci. Ed. 27 (2006), 193-196.
(Received January 23, 2017)
Jor-Ting Chan Department of Mathematics The University of Hong Kong Pokfulam Road, Hong Kong e-mail: jtchan@hku.hk

Kong Chan Department of Mathematics The University of Hong Kong Pokfulam Road, Hong Kong
e-mail: chankong@edb.gov.hk

