ON DECOMPOSITION OF OPERATORS
 HAVING Γ_{3} AS A SPECTRAL SET

Sourav Pal
(Communicated by H. Bercovici)

Abstract. The symmetrized polydisc of dimension three is the set

$$
\Gamma_{3}=\left\{\left(z_{1}+z_{2}+z_{3}, z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}, z_{1} z_{2} z_{3}\right):\left|z_{i}\right| \leqslant 1, i=1,2,3\right\} \subseteq \mathbb{C}^{3}
$$

A triple of commuting operators for which Γ_{3} is a spectral set is called a Γ_{3}-contraction. We show that every Γ_{3}-contraction admits a decomposition into a Γ_{3}-unitary and a completely nonunitary Γ_{3}-contraction. This decomposition parallels the canonical decomposition of a contraction into a unitary and a completely non-unitary contraction. We also find new characterizations for the set Γ_{3} and Γ_{3}-contractions.

1. Introduction

One of the most wonderful discoveries in one variable operator theory is the canonical decomposition of a contraction which ascertains that every contraction operator (i.e, an operator with norm not greater than 1) admits a unique decomposition into two orthogonal parts of which one is a unitary and the other is a completely non-unitary contraction. More precisely, for an operator T with norm not greater than one acting on a Hilbert space \mathscr{H}, there exist unique reducing subspaces $\mathscr{H}_{1}, \mathscr{H}_{2}$ of T such that $\mathscr{H}=\mathscr{H}_{1} \oplus \mathscr{H}_{2},\left.T\right|_{\mathscr{H}_{1}}$ is a unitary and $\left.T\right|_{\mathscr{H}_{2}}$ is a completely non-unitary contraction (see Theorem 3.2 in Ch-I, [8] for details). A contraction on a Hilbert space is said to be completely non-unitary if there is no reducing subspace on which the operator acts like a unitary. Following von Neumann's famous notion of spectral set for an operator (which we define below), a contraction is better understood as an operator having the closed unit disk $\overline{\mathbb{D}}$ of the complex plane as a spectral set. Indeed, in 1951 von Neumann proved the following theorem whose impact has been extraordinary.

[^0]THEOREM 1.1. (von Neumann, [14]) An operator T acting on a Hilbert space is a contraction if and only if the closed unit disk $\overline{\mathbb{D}}$ is a spectral set for T.

Since an operator having $\overline{\mathbb{D}}$ as a spectral set admits a canonical decomposition, it is naturally asked whether we can decompose operators having a particular domain in \mathbb{C}^{n} as a spectral set. In [2], Agler and Young answered this question by showing an explicit decomposition of a pair of commuting operators having the closed symmetrized bidisc

$$
\Gamma_{2}=\left\{\left(z_{1}+z_{2}, z_{1} z_{2}\right):\left|z_{i}\right| \leqslant 1, i=1,2\right\}
$$

as a spectral set (Theorem 2.8, [2]). In this article, we provide an analogous decomposition for operators having the closed symmetrized tridisc

$$
\Gamma_{3}=\left\{\left(z_{1}+z_{2}+z_{3}, z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}, z_{1} z_{2} z_{3}\right):\left|z_{i}\right| \leqslant 1, i=1,2,3\right\}
$$

as a spectral set. The reason behind considering the symmetrized polydisc of dimension 3 in particular is that there are substantial variations in operator theory if we move from two to three dimensional symmetrized polydisc, e.g., rational dilation succeeds on the symmetrized bidisc [1, 5, 11] but fails on the symmetrized tridisc, [12]. This article can be considered as a sequel of [12].

A compact subset X of \mathbb{C}^{n} is said to be a spectral set for a commuting n-tuple of bounded operators $\underline{T}=\left(T_{1}, \ldots, T_{n}\right)$ defined on a Hilbert space \mathscr{H} if the Taylor joint spectrum $\sigma_{T}(\underline{T})$ of \underline{T} is a subset of X and

$$
\|f(\underline{T})\| \leqslant\|f\|_{\infty, X}=\sup \left\{\left|f\left(z_{1}, \ldots, z_{n}\right)\right|:\left(z_{1}, \ldots, z_{n}\right) \in X\right\}
$$

for all rational functions f in $\mathscr{R}(X)$. Here $\mathscr{R}(X)$ denotes the algebra of all rational functions on X, that is, all quotients p / q of holomorphic polynomials p, q in n variables for which q has no zeros in X.

For $n \geqslant 2$, the symmetrization map in n-complex variables $z=\left(z_{1}, \ldots, z_{n}\right)$ is the following proper holomorphic map

$$
\pi_{n}(z)=\left(s_{1}(z), \ldots, s_{n-1}(z), p(z)\right)
$$

where

$$
s_{i}(z)=\sum_{1 \leqslant k_{1} \leqslant k_{2} \ldots \leqslant k_{i} \leqslant n-1} z_{k_{1}} \ldots z_{k_{i}} \quad \text { and } p(z)=\prod_{i=1}^{n} z_{i}
$$

The closed symmetrized n-disk (or simply closed symmetrized polydisc) is the image of the closed unit n-disc $\overline{\mathbb{D}^{n}}$ under the symmetrization map π_{n}, that is, $\Gamma_{n}:=\pi_{n}\left(\overline{\mathbb{D}^{n}}\right)$. Similarly the open symmetrized polydisc \mathbb{G}_{n} is defined as the image of the open unit polydisc \mathbb{D}^{n} under π_{n}. The set Γ_{n} is polynomially convex but not convex (see $[10,7]$). So in particular the closed and open symmetrized tridisc are the sets

$$
\begin{aligned}
& \Gamma_{3}=\left\{\left(z_{1}+z_{2}+z_{3}, z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}, z_{1} z_{2} z_{3}\right):\left|z_{i}\right| \leqslant 1, i=1,2,3\right\} \subseteq \mathbb{C}^{3} \\
& \mathbb{G}_{3}=\left\{\left(z_{1}+z_{2}+z_{3}, z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}, z_{1} z_{2} z_{3}\right):\left|z_{i}\right|<1, i=1,2,3\right\} \subseteq \Gamma_{3} .
\end{aligned}
$$

We obtain from the literature (see $[10,7]$) the fact that the distinguished boundary of the symmetrized polydisc is the symmetrization of the distinguished boundary of the n-dimensional polydisc, which is n-torus \mathbb{T}^{n}. Hence the distinguished boundary for Γ_{3} is the set

$$
b \Gamma_{3}=\left\{\left(z_{1}+z_{2}+z_{3}, z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}, z_{1} z_{2} z_{3}\right):\left|z_{i}\right|=1, i=1,2,3\right\} .
$$

Operator theory on the symmetrized polydiscs of dimension 2 and n have been extensively studied in past two decades $[1,2,3,5,6,7,11,13]$.

Definition 1.2. A triple of commuting operators $\left(S_{1}, S_{2}, P\right)$ on a Hilbert space \mathscr{H} for which Γ_{3} is a spectral set is called a Γ_{3}-contraction. A Γ_{3}-contraction $\left(S_{1}, S_{2}, P\right)$ is said to a completely non-unitary if P is a completely non-unitary contraction.

It is evident from the definition that if $\left(S_{1}, S_{2}, P\right)$ is a Γ_{3}-contraction then S_{1}, S_{2} have norms not greater than 3 and P is a contraction. Unitaries, isometries and coisometries are important special classes of contractions. There are natural analogues of these classes for Γ_{3}-contractions.

Definition 1.3. Let S_{1}, S_{2}, P be commuting operators on a Hilbert space \mathscr{H}. We say that $\left(S_{1}, S_{2}, P\right)$ is
(i) a Γ_{3}-unitary if S_{1}, S_{2}, P are normal operators and the Taylor joint spectrum $\sigma_{T}\left(S_{1}, S_{2}, P\right)$ is contained in $b \Gamma_{3}$;
(ii) a Γ_{3}-isometry if there exists a Hilbert space \mathscr{K} containing \mathscr{H} and a Γ_{3}-unitary $\left(\tilde{S_{1}}, \tilde{S_{2}}, \tilde{P}\right)$ on \mathscr{K} such that \mathscr{H} is a common invariant subspace for $\tilde{S_{1}}, \tilde{S_{2}}, \tilde{P}$ and that $S_{i}=\left.\tilde{S}_{i}\right|_{\mathscr{H}}$ for $i=1,2$ and $\left.\tilde{P}\right|_{\mathscr{H}}=P$;
(iii) a Γ_{3}-co-isometry if $\left(S_{1}^{*}, S_{2}^{*}, P^{*}\right)$ is a Γ_{3}-isometry.

Moreover, a Γ_{3}-isometry $\left(S_{1}, S_{2}, P\right)$ is said to be pure if P is a pure contraction, that is, $P^{*} \rightarrow 0$ strongly as $n \rightarrow \infty$.

The main result of this article is the following explicit orthogonal decomposition of a Γ_{3}-contraction which parallels the one-variable canonical decomposition.

Theorem 1.4. Let $\left(S_{1}, S_{2}, P\right)$ be a Γ_{3}-contraction on a Hilbert space \mathscr{H}. Let \mathscr{H}_{1} be the maximal subspace of \mathscr{H} which reduces P and on which P is unitary. Let $\mathscr{H}_{2}=\mathscr{H} \ominus \mathscr{H}_{1}$. Then $\mathscr{H}_{1}, \mathscr{H}_{2}$ reduce $S_{1}, S_{2} ;\left(\left.S_{1}\right|_{\mathscr{H}_{1}},\left.S_{2}\right|_{\mathscr{H}_{1}},\left.P\right|_{\mathscr{H}_{1}}\right)$ is a Γ_{3}-unitary and $\left(\left.S_{1}\right|_{\mathscr{H}_{2}},\left.S_{2}\right|_{\mathscr{H}_{2}},\left.P\right|_{\mathscr{H}_{2}}\right)$ is a completely non-unitary Γ_{3}-contraction. The subspaces \mathscr{H}_{1} or \mathscr{H}_{2} may equal to the trivial subspace $\{0\}$.

En route we find few characterizations for the set Γ_{3} and also for the Γ_{3}-contractions which we accumulate in section 2 .

2. Background material

In this section we recall some results from literature about the geometry and operator theory on the set Γ_{3}. Also we obtain few new results in the same direction which we accumulate here. We begin with a few characterizations of the set Γ_{3}.

THEOREM 2.1. Let $\left(s_{1}, s_{2}, p\right) \in \mathbb{C}^{3}$. Then the following are equivalent:

1. $\left(s_{1}, s_{2}, p\right) \in \Gamma_{3}$;
2. $\left(\omega s_{1}, \omega^{2} s_{2}, \omega^{3} p\right) \in \Gamma_{3}$ for all $\omega \in \mathbb{T}$;
3. $|p| \leqslant 1$ and there exists $\left(c_{1}, c_{2}\right) \in \Gamma_{2}$ such that

$$
s_{1}=c_{1}+\overline{c_{2}} p \text { and } s_{2}=c_{2}+\overline{c_{1}} p
$$

where Γ_{2} is the closed symmetrized bidisc defined as

$$
\Gamma_{2}=\left\{\left(z_{1}+z_{2}, z_{1} z_{2}\right): z_{1}, z_{2} \in \overline{\mathbb{D}}\right\}
$$

Proof. (1) \Leftrightarrow (3) has been established in [9] (see Theorem 3.7 in [9] for a proof). We prove here $(1) \Leftrightarrow(2)$. Let $\left(s_{1}, s_{2}, p\right) \in \Gamma_{3}$. Then by $(1) \Leftrightarrow(3),|p| \leqslant 1$ and there exist $\left(c_{1}, c_{2}\right) \in \Gamma_{2}$ such that

$$
s_{1}=c_{1}+\overline{c_{2}} p, \quad s_{2}=c_{2}+\overline{c_{1}} p
$$

Since $\left(c_{1}, c_{2}\right) \in \Gamma_{2}$, there are complex numbers u_{1}, u_{2} of modulus not greater than 1 such that $c_{1}=u_{1}+u_{2}$ and $c_{2}=u_{1} u_{2}$. For $\omega \in \mathbb{T}$ if we choose $d_{1}=\omega c_{1}$ and $d_{2}=\omega^{2} c_{2}$ we see that

$$
d_{1}=\omega u_{1}+\omega u_{2} \text { and } d_{2}=\left(\omega u_{1}\right)\left(\omega u_{2}\right)
$$

which means that $\left(d_{1}, d_{2}\right) \in \Gamma_{2}$. Now

$$
\begin{aligned}
& \omega s_{1}=\omega\left(c_{1}+\overline{c_{2}} p\right)=\omega c_{1}+\overline{\omega^{2} c_{2}}\left(\omega^{3} p\right)=d_{1}+\overline{d_{2}}\left(\omega^{3} p\right) \\
& \omega^{2} s_{2}=\omega^{2}\left(c_{2}+\overline{c_{1}} p\right)=\omega^{2} c_{2}+\overline{\omega c_{1}}\left(\omega^{3} p\right)=d_{2}+\overline{d_{1}}\left(\omega^{3} p\right)
\end{aligned}
$$

Therefore, by part $(1) \Leftrightarrow(3),\left(\omega s_{1}, \omega^{2} s_{2}, \omega^{3} p\right) \in \Gamma_{3}$. The other side of the proof is trivial.

In a similar fashion, we have the following characterizations for Γ_{3}-contractions.
THEOREM 2.2. Let $\left(S_{1}, S_{2}, P\right)$ be a triple of commuting operators acting on a Hilbert space \mathscr{H}. Then the following are equivalent:

1. $\left(S_{1}, S_{2}, P\right)$ is a Γ_{3}-contraction;
2. for all holomorphic polynomials f in three variables

$$
\left\|f\left(S_{1}, S_{2}, P\right)\right\| \leqslant\|f\|_{\infty, \Gamma_{3}}=\sup \left\{\left|f\left(s_{1}, s_{2}, p\right)\right|:\left(s_{1}, s_{2}, p\right) \in \Gamma_{3}\right\}
$$

3. $\left(\omega S_{1}, \omega^{2} S_{2}, \omega^{3} P\right)$ is a Γ_{3}-contraction for any $\omega \in \mathbb{T}$.

Proof. (1) \Rightarrow (2) follows from definition of spectral set and (2) \Rightarrow (1) just requires polynomial convexity of the set Γ_{3}. We prove here $(1) \Rightarrow(3)$ because $(3) \Rightarrow(1)$ is obvious. Let $f\left(s_{1}, s_{2}, p\right)$ be a holomorphic polynomial in the co-ordinates of Γ_{3} and for $\omega \in \mathbb{T}$ let $f_{1}\left(s_{1}, s_{2}, p\right)=f\left(\omega s_{1}, \omega^{2} s_{2}, \omega^{3} p\right)$. It is evident from part $(1) \Rightarrow(2)$ that

$$
\sup \left\{\left|f\left(s_{1}, s_{2}, p\right)\right|:\left(s_{1}, s_{2}, p\right) \in \Gamma_{3}\right\}=\sup \left\{\left|f_{1}\left(s_{1}, s_{2}, p\right)\right|:\left(s_{1}, s_{2}, p\right) \in \Gamma_{3}\right\}
$$

Therefore,

$$
\begin{aligned}
\left\|f\left(\omega S_{1}, \omega^{2} S_{2}, \omega^{3} P\right)\right\| & =\left\|f_{1}\left(S_{1}, S_{2}, P\right)\right\| \\
& \leqslant\left\|f_{1}\right\|_{\infty, \Gamma_{3}} \\
& =\|f\|_{\infty, \Gamma_{3}}
\end{aligned}
$$

Therefore, by $(1) \Rightarrow(2),\left(\omega S_{1}, \omega^{2} S_{2}, \omega^{3} P\right)$ is a Γ_{3}-contraction.
In [12], two operator pencils Φ_{1}, Φ_{2} were introduced which played pivotal role in determining the classes of Γ_{3}-contractions for which rational dilation failed or succeeded. Here we recall the definition of Φ_{1}, Φ_{2} for any three commuting operators S_{1}, S_{2}, P with $\left\|S_{i}\right\| \leqslant 3$ and P being a contraction.

$$
\begin{aligned}
& \Phi_{1}\left(S_{1}, S_{2}, P\right)=9\left(I-P^{*} P\right)+\left(S_{1}^{*} S_{1}-S_{2}^{*} S_{2}\right)-6 \operatorname{Re}\left(S_{1}-S_{2}^{*} P\right) \\
& \Phi_{2}\left(S_{1}, S_{2}, P\right)=9\left(I-P^{*} P\right)+\left(S_{2}^{*} S_{2}-S_{1}^{*} S_{1}\right)-6 \operatorname{Re}\left(S_{2}-S_{1}^{*} P\right)
\end{aligned}
$$

The following result whose proof could be found in [12] (Proposition 4.4, [12]) is useful for this paper.

Proposition 2.3. Let $\left(S_{1}, S_{2}, P\right)$ be a Γ_{3}-contraction. Then for $i=1,2$, $\Phi_{i}\left(\alpha S_{1}, \alpha^{2} S_{2}, \alpha^{3} P\right) \geqslant 0$ for all $\alpha \in \overline{\mathbb{D}}$.

Here is a set of characterizations for the Γ_{3}-unitaries and for a proof of this result see Theorem 5.2 in [12] or, Theorem 4.2 in [7].

THEOREM 2.4. Let $\left(S_{1}, S_{2}, P\right)$ be a commuting triple of bounded operators. Then the following are equivalent.

1. $\left(S_{1}, S_{2}, P\right)$ is a Γ_{3}-unitary,
2. P is a unitary and $\left(S_{1}, S_{2}, P\right)$ is a Γ_{3}-contraction,
3. $\left(\frac{2}{3} S_{1}, \frac{1}{3} S_{2}\right)$ is a Γ_{2}-contraction, P is a unitary and $S_{1}=S_{2}^{*} P$.

3. Proof of Theorem 1.4

First we consider the case when P is a completely non-unitary contraction. Then obviously $\mathscr{H}_{1}=\{0\}$ and if P is a unitary then $\mathscr{H}=\mathscr{H}_{1}$ and so $\mathscr{H}_{2}=\{0\}$. In such cases the theorem is trivial. So let us suppose that P is neither a unitary nor a completely non unitary contraction. With respect to the decomposition $\mathscr{H}=\mathscr{H}_{1} \oplus \mathscr{H}_{2}$, let

$$
S_{1}=\left[\begin{array}{ll}
S_{111} & S_{112} \\
S_{121} & S_{122}
\end{array}\right], S_{2}=\left[\begin{array}{ll}
S_{211} & S_{212} \\
S_{221} & S_{222}
\end{array}\right] \text { and } P=\left[\begin{array}{cc}
P_{1} & 0 \\
0 & P_{2}
\end{array}\right]
$$

so that P_{1} is a unitary and P_{2} is completely non-unitary. Since P_{2} is completely nonunitary it follows that if $h \in \mathscr{H}$ and

$$
\left\|P_{2}^{n} h\right\|=\|h\|=\left\|P_{2}^{* n} h\right\|, \quad n=1,2, \ldots
$$

then $h=0$.
By the commutativity of S_{1} and P we obtain

$$
\begin{array}{ll}
S_{111} P_{1}=P_{1} S_{111} & S_{112} P_{2}=P_{1} S_{112} \\
S_{121} P_{1}=P_{2} S_{121} & S_{122} P_{2}=P_{2} S_{122} \tag{3.2}
\end{array}
$$

Also the commutativity of S_{2} and P gives

$$
\begin{array}{ll}
S_{211} P_{1}=P_{1} S_{211} & S_{212} P_{2}=P_{1} S_{212} \\
S_{221} P_{1}=P_{2} S_{221} & S_{222} P_{2}=P_{2} S_{222}
\end{array}
$$

By Proposition 2.3, we have for all $\omega, \beta \in \mathbb{T}$,

$$
\begin{aligned}
\Phi_{1}\left(\omega S_{1}, \omega^{2} S_{2}, \omega^{3} P\right) & =9\left(I-P^{*} P\right)+\left(S_{1}^{*} S_{1}-S_{2}^{*} S_{2}\right)-6 \operatorname{Re} \omega\left(S_{1}-S_{2}^{*} P\right) \geqslant 0 \\
\Phi_{2}\left(\beta S_{1}, \beta^{2} S_{2}, \beta^{3} P\right) & =9\left(I-P^{*} P\right)+\left(S_{2}^{*} S_{2}-S_{1}^{*} S_{1}\right)-6 \operatorname{Re} \beta^{2}\left(S_{2}-S_{1}^{*} P\right) \geqslant 0
\end{aligned}
$$

Adding Φ_{1} and Φ_{2} we get

$$
3\left(I-P^{*} P\right)-\operatorname{Re} \omega\left(S_{1}-S_{2}^{*} P\right)-\operatorname{Re} \beta^{2}\left(S_{2}-S_{1}^{*} P\right) \geqslant 0
$$

that is

$$
\begin{align*}
{\left[\begin{array}{cc}
0 & 0 \\
0 & 3\left(I-P_{2}^{*} P_{2}\right)
\end{array}\right] } & -\operatorname{Re} \omega\left[\begin{array}{ll}
S_{111}-S_{211}^{*} P_{1} & S_{112}-S_{221}^{*} P_{2} \\
S_{121}-S_{212}^{*} P_{1} & S_{122}-S_{222}^{*} P_{2}
\end{array}\right] \tag{3.5}\\
& -\operatorname{Re} \beta^{2}\left[\begin{array}{ll}
S_{211}-S_{111}^{*} P_{1} & S_{212}-S_{121}^{*} P_{2} \\
S_{221}-S_{112}^{*} P_{1} & S_{222}-S_{122}^{*} P_{2}
\end{array}\right] \geqslant 0
\end{align*}
$$

for all $\omega, \beta \in \mathbb{T}$. Since the matrix in the left hand side of (3.5) is self-adjoint, if we write (3.5) as

$$
\left[\begin{array}{rr}
R & X \tag{3.6}\\
X^{*} & Q
\end{array}\right] \geqslant 0
$$

then

$$
\left\{\begin{aligned}
\text { (i) } R, Q \geqslant & 0 \text { and } R=-\operatorname{Re} \omega\left(S_{111}-S_{211}^{*} P_{1}\right)-\operatorname{Re} \beta^{2}\left(S_{211}-S_{111}^{*} P_{1}\right) \\
\text { (ii) } X= & -\frac{1}{2}\left\{\omega\left(S_{112}-S_{221}^{*} P_{2}\right)+\bar{\omega}\left(S_{121}^{*}-P_{1}^{*} S_{212}\right)\right. \\
& \left.+\beta^{2}\left(S_{212}-S_{121}^{*} P_{2}\right)+\overline{\beta^{2}}\left(S_{221}^{*}-P_{1}^{*} S_{112}\right)\right\} \\
\text { (iii) } Q= & 3\left(I-P_{2}^{*} P_{2}\right)-\operatorname{Re} \omega\left(S_{122}-S_{222}^{*} P_{2}\right)-\operatorname{Re} \beta^{2}\left(S_{222}-S_{122}^{*} P_{2}\right)
\end{aligned}\right.
$$

Since the left hand side of (3.6) is a positive semi-definite matrix for every ω and β, if we choose $\beta^{2}=1$ and $\beta^{2}=-1$ respectively then consideration of the $(1,1)$ block reveals that

$$
\omega\left(S_{111}-S_{211}^{*} P_{1}\right)+\bar{\omega}\left(S_{111}^{*}-P_{1}^{*} S_{211}\right) \leqslant 0
$$

for all $\omega \in \mathbb{T}$. Choosing $\omega= \pm 1$ we get

$$
\begin{equation*}
\left(S_{111}-S_{211}^{*} P_{1}\right)+\left(S_{111}^{*}-P_{1}^{*} S_{211}\right)=0 \tag{3.7}
\end{equation*}
$$

and choosing $\omega= \pm i$ we get

$$
\begin{equation*}
\left(S_{111}-S_{211}^{*} P_{1}\right)-\left(S_{111}^{*}-P_{1}^{*} S_{211}\right)=0 \tag{3.8}
\end{equation*}
$$

Therefore, from (3.7) and (3.8) we get

$$
S_{111}=S_{211}^{*} P_{1}
$$

where P_{1} is unitary. Similarly, we can show that

$$
S_{211}=S_{111}^{*} P_{1}
$$

Therefore, $R=0$. Since $\left(S_{1}, S_{2}, P\right)$ is a Γ_{3}-contraction, $\left\|S_{2}\right\| \leqslant 3$ and hence $\left\|S_{211}\right\| \leqslant$ 3. Also since $\left(S_{1}, S_{2}, P\right)$ is a Γ_{3}-contraction, by Lemma 2.5 of [7] $\left(\frac{2}{3} S_{1}, \frac{1}{3} S_{2}\right)$ is a Γ_{2}-contraction and hence $\left(\frac{2}{3} S_{111}, \frac{1}{3} S_{211}\right)$ is a Γ_{2}-contraction. Therefore, by part-(3) of Theorem 2.4, $\left(S_{111}, S_{211}, P_{1}\right)$ is a Γ_{3}-unitary.

Now we apply Proposition 1.3.2 of [4] to the positive semi-definite matrix in the left hand side of (3.6). This Proposition states that if $R, Q \geqslant 0$ then $\left[\begin{array}{cc}R & X \\ X^{*} & Q\end{array}\right] \geqslant 0$ if and only if $X=R^{1 / 2} K Q^{1 / 2}$ for some contraction K.

Since $R=0$, we have $X=0$. Therefore,

$$
\omega\left(S_{112}-S_{221}^{*} P_{2}\right)+\bar{\omega}\left(S_{121}^{*}-P_{1}^{*} S_{212}\right)+\beta^{2}\left(S_{212}-S_{121}^{*} P_{2}\right)+\overline{\beta^{2}}\left(S_{221}^{*}-P_{1}^{*} S_{112}\right)=0
$$

for all $\omega, \beta \in \mathbb{T}$. Choosing $\beta^{2}= \pm 1$ we get

$$
\omega\left(S_{112}-S_{221}^{*} P_{2}\right)+\bar{\omega}\left(S_{121}^{*}-P_{1}^{*} S_{212}\right)=0
$$

for all $\omega \in \mathbb{T}$. With the choices $\omega=1, i$, this gives

$$
S_{112}=S_{221}^{*} P_{2}
$$

Therefore, we also have

$$
S_{121}^{*}=P_{1}^{*} S_{212}
$$

Similarly, we can prove that

$$
S_{212}=S_{121}^{*} P_{2}, \quad S_{221}^{*}=P_{1}^{*} S_{112}
$$

Thus, we have the following equations

$$
\begin{array}{ll}
S_{112}=S_{221}^{*} P_{2} & S_{121}^{*}=P_{1}^{*} S_{212} \\
S_{212}=S_{121}^{*} P_{2} & S_{221}^{*}=P_{1}^{*} S_{112}
\end{array}
$$

Thus from (3.9), $S_{121}=S_{212}^{*} P_{1}$ and together with the first equation in (3.2), this implies that

$$
S_{212}^{*} P_{1}^{2}=S_{121} P_{1}=P_{2} S_{121}=P_{2} S_{212}^{*} P_{1}
$$

and hence

$$
\begin{equation*}
S_{212}^{*} P_{1}=P_{2} S_{212}^{*} \tag{3.11}
\end{equation*}
$$

From equations in (3.3) and (3.11) we have that

$$
S_{212} P_{2}=P_{1} S_{212}, \quad S_{212} P_{2}^{*}=P_{1}^{*} S_{212}
$$

Thus

$$
\begin{aligned}
& S_{212} P_{2} P_{2}^{*}=P_{1} S_{212} P_{2}^{*}=P_{1} P_{1}^{*} S_{212}=S_{212} \\
& S_{212} P_{2}^{*} P_{2}=P_{1}^{*} S_{212} P_{2}=P_{1}^{*} P_{1} S_{212}=S_{212}
\end{aligned}
$$

and so we have

$$
P_{2} P_{2}^{*} S_{212}^{*}=S_{212}^{*}=P_{2}^{*} P_{2} S_{212}^{*}
$$

This shows that P_{2} is unitary on the range of S_{212}^{*} which can never happen because P_{2} is completely non-unitary. Therefore, we must have $S_{212}^{*}=0$ and so $S_{212}=0$. Similarly we can prove that $S_{112}=0$. Also from (3.9), $S_{121}=0$ and from (3.10), $S_{221}=0$. Thus with respect to the decomposition $\mathscr{H}=\mathscr{H}_{1} \oplus \mathscr{H}_{2}$

$$
S_{1}=\left[\begin{array}{cc}
S_{111} & 0 \\
0 & S_{122}
\end{array}\right], \quad S_{2}=\left[\begin{array}{cc}
S_{211} & 0 \\
0 & S_{222}
\end{array}\right]
$$

So, \mathscr{H}_{1} and \mathscr{H}_{2} reduce S_{1} and S_{2}. Also $\left(S_{122}, S_{222}, P_{2}\right)$, being the restriction of the \mathbb{E}-contraction $\left(S_{1}, S_{2}, P\right)$ to the reducing subspace \mathscr{H}_{2}, is an Γ_{3}-contraction. Since P_{2} is completely non-unitary, $\left(S_{122}, S_{222}, P_{2}\right)$ is a completely non-unitary Γ_{3}-contraction.

REFERENCES

[1] J. Agler and N. J. Young, A commutant lifting theorem for a domain in \mathbb{C}^{2} and spectral interpolation, J. Funct. Anal. 161 (1999), 452-477.
[2] J. Agler and N. J. Young, A model theory for Γ-contractions, J. Operator Theory 49 (2003), 45-60.
[3] J. Agler and N. J. Young, Operators having the symmetrized bidisc as a spectral set, Proc. Edin. Math. Soc. 43 (2000), 195-210.
[4] R. Bhatia, Positive definite matrices, Princeton Series in Applied Mathematics, Princeton University Press, Princeton, NJ, 2007.
[5] T. Bhattacharyya, S. Pal and S. Shyam Roy, Dilations of Γ-contractions by solving operator equations, Adv. Math. 230 (2012), 577-606.
[6] T. Bhattacharyya and S. Pal, A functional model for pure Γ-contractions, J. Operator Thoery 71 (2014), 327-339.
[7] S. Biswas and S. Shyam Roy, Functional models for Γ_{n}-contractions and characterization of Γ_{n}-isometries, J. Func. Anal. 266 (2014), 6224-6255.
[8] H. Bercovici, C. Foias, L. Kerchy and B. Sz.-Nagy, Harmonic analysis of operators on Hilbert space, Universitext, Springer, New York, 2010.
[9] C. Costara, On the spectral Nevanlinna-Pick problem, Studia Math. 170 (2005), 23-55.
[10] A. Edigarian and W. Zwonek, Geometry of symmetrized polydisc, Archiv der Mathematik 84 (2005), 364-374.
[11] S. PaL, From Stinespring dilation to Sz.-Nagy dilation on the symmetrized bidisc and operator models, New York Jour. Math. 20 (2014), 545-564.
[12] S. PAL, Rational dilation on the symmetrized tridisc: falire, success and unknown, https://arxiv.org/abs/1610.00425.
[13] S. Pal and O. M. Shalit, Spectral sets and distinguished varieties in the symmetrized bidisc, J. Funct. Anal. 266 (2014), 5779-5800.
[14] J. von NEumann, Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes, Math. Nachr. 4 (1951), 258-281.
(Received January 13, 2017)

[^0]: Mathematics subject classification (2010): 47A13, 47A15, 47A20, 47A25, 47A45.
 Keywords and phrases: Spectral set, symmetrized tridisc, Γ_{3}-contraction, canonical decomposition.
 The author is supported by Seed Grant of IIT Bombay, CPDA and the INSPIRE Faculty Award (Award No. DST/INSPIRE/04/2014/001462) of DST, India.

