perators
nd
atfrices
Volume 11, Number 3 (2017), 891-899 "doi:10.7153/0am-11-63

ON DECOMPOSITION OF OPERATORS
HAVING Iz AS A SPECTRAL SET

SOURAV PAL

(Communicated by H. Bercovict)

Abstract. The symmetrized polydisc of dimension three is the set
D3 ={(z+2+z.02+ns+su.202023) |z <1,i=1,23} CC.

A triple of commuting operators for which I'3 is a spectral set is called a I'3 -contraction. We
show that every I'z -contraction admits a decomposition into a I'3 -unitary and a completely non-
unitary I'; -contraction. This decomposition parallels the canonical decomposition of a contrac-
tion into a unitary and a completely non-unitary contraction. We also find new characterizations
for the set I'; and I'; -contractions.

1. Introduction

One of the most wonderful discoveries in one variable operator theory is the canon-
ical decomposition of a contraction which ascertains that every contraction operator
(i.e, an operator with norm not greater than 1) admits a unique decomposition into two
orthogonal parts of which one is a unitary and the other is a completely non-unitary
contraction. More precisely, for an operator 7 with norm not greater than one acting
on a Hilbert space .77, there exist unique reducing subspaces .71,.7% of T such that
H =0 ® I, T\ is aunitary and T, is a completely non-unitary contraction
(see Theorem 3.2 in Ch-1I, [8] for details). A contraction on a Hilbert space is said to
be completely non-unitary if there is no reducing subspace on which the operator acts
like a unitary. Following von Neumann’s famous notion of spectral set for an operator
(which we define below), a contraction is better understood as an operator having the
closed unit disk D of the complex plane as a spectral set. Indeed, in 1951 von Neumann
proved the following theorem whose impact has been extraordinary.
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THEOREM 1.1. (von Neumann, [14]) An operator T acting on a Hilbert space is
a contraction if and only if the closed unit disk I is a spectral set for T .

Since an operator having I as a spectral set admits a canonical decomposition,
it is naturally asked whether we can decompose operators having a particular domain
in C" as a spectral set. In [2], Agler and Young answered this question by showing an
explicit decomposition of a pair of commuting operators having the closed symmetrized
bidisc

Nn={(z1+2n,2122) : lz| < 1,i=1,2}
as a spectral set (Theorem 2.8, [2]). In this article, we provide an analogous decompo-
sition for operators having the closed symmetrized tridisc

O3 ={(z1+2+u,2122 + 23+ 32,028) © |z <1,i=1,2,3}

as a spectral set. The reason behind considering the symmetrized polydisc of dimension
3 in particular is that there are substantial variations in operator theory if we move from
two to three dimensional symmetrized polydisc, e.g., rational dilation succeeds on the
symmetrized bidisc [1, 5, 1 1] but fails on the symmetrized tridisc, [12]. This article can
be considered as a sequel of [12].

A compact subset X of C” is said to be a spectral set for a commuting n-tuple of
bounded operators T = (T1,...,T,) defined on a Hilbert space # if the Taylor joint
spectrum o7 (T) of T is a subset of X and

IADN< ([ fllex = sup{lf(z1s-- 20l = (215000020) € X

for all rational functions f in Z(X). Here %2 (X) denotes the algebra of all ratio-
nal functions on X, that is, all quotients p/g of holomorphic polynomials p,q in n-
variables for which ¢ has no zeros in X .

For n > 2, the symmetrization map in n-complex variables z = (z1,...,2,) is the
following proper holomorphic map

7ta(2) = (51(2)s- -, 50-1(2), p(2))
where .
5i(z) = D - and p(z) =[]z
l<k1<k2...<ki<n—l i=1

The closed symmetrized n-disk (or simply closed symmetrized polydisc) is the image
of the closed unit n-disc D" under the symmetrization map 7,, thatis, I, :=m, (W)
Similarly the open symmetrized polydisc G, is defined as the image of the open unit
polydisc D" under 7, . The set I’ is polynomially convex but not convex (see [10, 7]).
So in particular the closed and open symmetrized tridisc are the sets

D= {(z1+ 22+ 23,2120+ 2223 + 2321, 212023) © |z < 1,i=1,2,3} € C?
Gy={(zn+u+n.02+nB+n20,2122) |z <1,i=1,2,3} CT;.
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We obtain from the literature (see [10, 7]) the fact that the distinguished boundary
of the symmetrized polydisc is the symmetrization of the distinguished boundary of the
n-dimensional polydisc, which is n-torus T". Hence the distinguished boundary for
T3 is the set

bIs = {(z1 + 22+ 23,2120 + 2223 + 2321, 212223) © || = 1,i =1,2,3}.

Operator theory on the symmetrized polydiscs of dimension 2 and n have been
extensively studied in past two decades [1, 2, 3, 5,6, 7, 11, 13].

DEFINITION 1.2. A triple of commuting operators (S1,S>,P) on a Hilbert space
A for which T3 is a spectral set is called a I's -contraction. A T3-contraction (51,5, P)
is said to a completely non-unitary if P is a completely non-unitary contraction.

It is evident from the definition that if (S1,S,,P) is a I's-contraction then S;,S>
have norms not greater than 3 and P is a contraction. Unitaries, isometries and co-
isometries are important special classes of contractions. There are natural analogues of
these classes for I'; -contractions.

DEFINITION 1.3. Let S;,S,,P be commuting operators on a Hilbert space J¢ .
We say that (S1,S5,,P) is

(1) a T'3-unitary if S;,S8,,P are normal operators and the Taylor joint spectrum
o7 (81,52, P) is contained in bI'z ;

(ii) a I'3-isometry if there exists a Hilbert space .#~ containing .7 and a '3 -unitary
(S1,52,P) on ¢ such that 77 is a common invariant subspace for S1,S,,P and
that S; = S;|» for i=1,2 and P|,» = P;

(iii) a I's-co-isometry if (S7,S5,P*) is a I's-isometry.

Moreover, a I'3-isometry (S;,S2,P) is said to be pure if P is a pure contraction,
that is, P* — 0O strongly as n — eo.

The main result of this article is the following explicit orthogonal decomposition
of a I's-contraction which parallels the one-variable canonical decomposition.

THEOREM 1.4. Let (S1,52,P) be a T'3-contraction on a Hilbert space . Let
JA be the maximal subspace of 7& which reduces P and on which P is unitary. Let
6 = H © . Then J4,6 reduce S1,82; (Silx,525:Plw) is a Ts-unitary
and (S1|4,82.2,P| ) is a completely non-unitary T's-contraction. The subspaces
JA or Jt may equal to the trivial subspace {0}.

En route we find few characterizations for the set I'; and also for the I'; -contractions
which we accumulate in section 2.
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2. Background material

In this section we recall some results from literature about the geometry and oper-
ator theory on the set I'3. Also we obtain few new results in the same direction which
we accumulate here. We begin with a few characterizations of the set I'z.

THEOREM 2.1. Let (sy,52,p) € C3. Then the following are equivalent:
1. (s1,2,p) €T3
2. (wsy,w’sy,03p) €T3 forall weT ;
3. |p| <1 and there exists (c1,c2) € Ty such that
s1=c1+cpandsy =cy+cip,
where 1y is the closed symmetrized bidisc defined as

Iy ={(z1+22,2122) : 21,22 € D}

Proof. (1)< (3) has been established in [9] (see Theorem 3.7 in [9] for a proof).
We prove here (1)< (2). Let (s1,s2,p) € I's. Then by (1)< (3), |p| < 1 and there
exist (c1,¢2) € T such that

si=c1+cp, sa=ca+Cp.

Since (c1,¢) € Iy, there are complex numbers u;,u, of modulus not greater than 1
such that ¢; = u; +uy and ¢, = ujuy . For @ € T if we choose d| = wc; and dy = ©%cy
we see that

dy = ou; + ouy and dr, = (wul)(wug),

which means that (d;,d») € T',. Now
ws1 = 0(ci +c2p) = we + 02 (0’ p) =di +dy (0’ p)
w*s) = 0% (2 +¢1p) = 0y + ey (0°p) = dr +dy (07 p).

Therefore, by part (1)< (3), (@s;,®*s>,®3p) € T'3. The other side of the proof is
trivial. [

In a similar fashion, we have the following characterizations for I'; -contractions.

THEOREM 2.2. Let (S1,S82,P) be a triple of commuting operators acting on a
Hilbert space 7. Then the following are equivalent:

1. (81,52,P) is a T's-contraction;

2. for all holomorphic polynomials f in three variables

17(S1,82, P)| < [ lleo.rs = sup{|f(s1,52,P)] = (s1,82,p) € T3};
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3. (0Sy,w?S>,w3P) is a T's-contraction for any @ € T.

Proof. (1) = (2) follows from definition of spectral set and (2) = (1) just re-
quires polynomial convexity of the set I';. We prove here (1) = (3) because (3) = (1)
is obvious. Let f(s;,s2,p) be a holomorphic polynomial in the co-ordinates of I's and
for w € T let fi(s1,52,p) = f(wsy, @*s2,@3p). It is evident from part (1) = (2) that

sup{[f(s1,52,p)| : (s1,52,p) € T3} =sup{|fi(s1,52,p)| : (s1,52,p) €T3}
Therefore,

£ (@S1,0°S2,@P)|| = [| fi(S1,S2, P)|
< N filleers
= Hf||°°,1"3'
Therefore, by (1) = (2), (®S;,®>S,, @*P) is a T3 -contraction. [J

In [12], two operator pencils @, @, were introduced which played pivotal role
in determining the classes of I';-contractions for which rational dilation failed or suc-
ceeded. Here we recall the definition of @, @, for any three commuting operators
S1,8,,P with ||S;|| <3 and P being a contraction.

®(S1,82,P) =9(I — P*P) + (5181 — 5552) — 6 Re (S1 — S5P),
®5(S1,82,P) = 9(I — P*P) + (S35, — §1S1) — 6 Re (S5 — S P).

The following result whose proof could be found in [12] (Proposition 4.4, [12]) is
useful for this paper.

PROPOSITION 2.3. Let (S1,52,P) be a T'3-contraction. Then for i = 1,2,
®;(aS1, 0S5, 0°P) = 0 forall o € D.

Here is a set of characterizations for the I'3 -unitaries and for a proof of this result
see Theorem 5.2 in [12] or, Theorem 4.2 in [7].

THEOREM 2.4. Let (S1,S2,P) be a commuting triple of bounded operators. Then
the following are equivalent.

1. (81,52,P) is a T's-unitary,

2. P is aunitary and (S1,S,,P) is a T3 -contraction,

2 1
3. (§S17 §S2> is a I'y-contraction, P is a unitary and Sy = S;P.
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3. Proof of Theorem 1.4

First we consider the case when P is a completely non-unitary contraction. Then
obviously ] = {0} and if P is a unitary then ¢ = . and so % = {0}. In such
cases the theorem is trivial. So let us suppose that P is neither a unitary nor a completely
non unitary contraction. With respect to the decomposition J¢ = J4 @ 4, let

S111 S112 S211 S212 PO
S = , Sy = and P =
! [5121 5122] : [5221 5222] [0 Pz]

so that Py is a unitary and P, is completely non-unitary. Since P, is completely non-
unitary it follows that if 4 € 7 and

1P2R]| = [kl = 1P R]l, n=1,2,...

then h=0.
By the commutativity of S| and P we obtain
S111PL = PiS111 S112P = PiS112, (3.1
S121PL = PS121 S122P = PS122. (3.2)

Also the commutativity of S, and P gives

So11P = P1S211 S212P = P1S212, (3.3)
S$201P = P25y S$200P> = P2S222. 3.4

By Proposition 2.3, we have for all o, € T,
@ (0S1, Sy, 0 P) = 9(I — P*P) + (S}S1 — $352) — 6 Re o(S; — S5P) >0,
D2 (BS1,B°S2,B°P) = 9(I — P*P) + (S35, — S1S1) — 6 Re B*(S2 — SP) > 0.
Adding ®; and @, we get
3(I— P*P) —Re 0(S; — S3P) —Re B%(S2 — S{P) >0
that is

0 0 S =8P 5112—5321})2}
« —Reow * * 3.5
[0 3(I—P2P2)} {Sm = S$512P1 S122 = 850, 52

S211 - STMPI S212 _ST21P2

— Re 2 % * > 0
P [5221 —ST1oP1 So0 — Smpj

for all ,B € T. Since the matrix in the left hand side of (3.5) is self-adjoint, if we

write (3.5) as
[ﬁﬁ>m (3.6)
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then
(i)R,Q>0and R = — Re &(S111 — $5,,P1) — Re B2(Sa11 — S7,,P1)
(i)X = —3{0(S112 = 553 P2) + @(S}y; — P{S212)
+B2(Sa12 — Siy1P2) + B?(S301 — P{S112)}
(ili) Q =3(I— PyP») — Re 0(S120 — S5,,P») — Re ﬁz(Szgz —S1P) .

Since the left hand side of (3.6) is a positive semi-definite matrix for every @ and
B, if we choose B> =1 and B> = —1 respectively then consideration of the (1,1)
block reveals that
o(S111—S311P1) + @81y — PrSain) <0

forall w € T. Choosing w = £1 we get
(St11 = 8311 P1) + (ST — PyS211) =0 (3.7)
and choosing @ = +i we get
(Sti1=S311P1) = (St — PrSan) =0. (3.8)
Therefore, from (3.7) and (3.8) we get
St =8511P1,
where Pj is unitary. Similarly, we can show that
S =S1Pr

Therefore, R = 0. Since (S1,S2,P) is a '3 -contraction, ||Sz|| < 3 and hence ||Sz1]| <
2 1
3. Also since (S1,5,,P) is a I'3-contraction, by Lemma 2.5 of [7] <§S1, §S2> isa
2 1
I, -contraction and hence <§S 111, §S2 11) is a I'; -contraction. Therefore, by part-(3)

of Theorem 2.4, (S111,S8211,P1) is a '3 -unitary.

Now we apply Proposition 1.3.2 of [4] to the positive semi-definite matrix in the

left hand side of (3.6). This Proposition states that if R,Q > 0 then [R* g] > 0 if and

only if X = R'/2KQ'/? for some contraction K .
Since R =0, we have X = 0. Therefore,

W(S112 = S5 Po) + @(STy; — Py S212) + B2 (S212 — Sia1 P2) + B (S — PiS112) =0,
for all w,B € T. Choosing % = +1 we get

O(S112— 31 P2) + @(S1 — P S212) =0,
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for all w € T. With the choices w = 1,i , this gives
S112 B S§21P2 .

Therefore, we also have
* %
S121 = Pl 8212 .

Similarly, we can prove that
Sa12 =811 P2, S5 =P Si12-
Thus, we have the following equations

S = S;zng ST21 = Pl*Sglg 3.9)
S22 =Sin P 8531 =P{Si12. (3.10)

Thus from (3.9), S121 = S85,,P1 and together with the first equation in (3.2), this implies
that

S512PF = S121Py = PaS121 = P2S5,,Py

and hence
SEIZPI :P2S§12. (311)

From equations in (3.3) and (3.11) we have that
$212P, = P1S212,  S212P3 = P{S12.
Thus

$212PoP5 = P1S212P5 = PIP{S212 = Sa12,
$212P5 Py = P{S>12P> = P{P1S212 = Sh12,

and so we have
k ok * k *
PPy 851, =S =P PS5

This shows that P, is unitary on the range of S5,, which can never happen because P> is
completely non-unitary. Therefore, we must have S3;, = 0 and so S>1» = 0. Similarly
we can prove that S115 = 0. Also from (3.9), S12; = 0 and from (3.10), S22 =0. Thus
with respect to the decomposition J7 = J4 &

S O ~[S211 0O
e [ 0 5122]’ 2= [ 0 5222].

So, 4 and % reduce S; and S,. Also (S122,5222,P), being the restriction of the
[E-contraction (S1,S>,P) to the reducing subspace %, is an I's-contraction. Since P,
is completely non-unitary, (S122,S202,P,) is a completely non-unitary I'3-contraction.
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