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ON DECOMPOSITION OF OPERATORS

HAVING Γ3 AS A SPECTRAL SET

SOURAV PAL

(Communicated by H. Bercovici)

Abstract. The symmetrized polydisc of dimension three is the set

Γ3 = {(z1 + z2 + z3,z1z2 + z2z3 + z3z1,z1z2z3) : |zi| � 1 , i = 1,2,3} ⊆ C
3 .

A triple of commuting operators for which Γ3 is a spectral set is called a Γ3 -contraction. We
show that every Γ3 -contraction admits a decomposition into a Γ3 -unitary and a completely non-
unitary Γ3 -contraction. This decomposition parallels the canonical decomposition of a contrac-
tion into a unitary and a completely non-unitary contraction. We also find new characterizations
for the set Γ3 and Γ3 -contractions.

1. Introduction

One of the most wonderful discoveries in one variable operator theory is the canon-
ical decomposition of a contraction which ascertains that every contraction operator
(i.e, an operator with norm not greater than 1) admits a unique decomposition into two
orthogonal parts of which one is a unitary and the other is a completely non-unitary
contraction. More precisely, for an operator T with norm not greater than one acting
on a Hilbert space H , there exist unique reducing subspaces H1,H2 of T such that
H = H1 ⊕H2 , T |H1 is a unitary and T |H2 is a completely non-unitary contraction
(see Theorem 3.2 in Ch-I, [8] for details). A contraction on a Hilbert space is said to
be completely non-unitary if there is no reducing subspace on which the operator acts
like a unitary. Following von Neumann’s famous notion of spectral set for an operator
(which we define below), a contraction is better understood as an operator having the
closed unit disk D of the complex plane as a spectral set. Indeed, in 1951 von Neumann
proved the following theorem whose impact has been extraordinary.
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THEOREM 1.1. (von Neumann, [14]) An operator T acting on a Hilbert space is
a contraction if and only if the closed unit disk D is a spectral set for T .

Since an operator having D as a spectral set admits a canonical decomposition,
it is naturally asked whether we can decompose operators having a particular domain
in Cn as a spectral set. In [2], Agler and Young answered this question by showing an
explicit decomposition of a pair of commuting operators having the closed symmetrized
bidisc

Γ2 = {(z1 + z2,z1z2) : |zi| � 1, i = 1,2}
as a spectral set (Theorem 2.8, [2]). In this article, we provide an analogous decompo-
sition for operators having the closed symmetrized tridisc

Γ3 = {(z1 + z2 + z3,z1z2 + z2z3 + z3z1,z1z2z3) : |zi| � 1 , i = 1,2,3}
as a spectral set. The reason behind considering the symmetrized polydisc of dimension
3 in particular is that there are substantial variations in operator theory if we move from
two to three dimensional symmetrized polydisc, e.g., rational dilation succeeds on the
symmetrized bidisc [1, 5, 11] but fails on the symmetrized tridisc, [12]. This article can
be considered as a sequel of [12].

A compact subset X of Cn is said to be a spectral set for a commuting n -tuple of
bounded operators T = (T1, . . . ,Tn) defined on a Hilbert space H if the Taylor joint
spectrum σT (T ) of T is a subset of X and

‖ f (T )‖ � ‖ f‖∞,X = sup{| f (z1, . . . ,zn)| : (z1, . . . ,zn) ∈ X} ,

for all rational functions f in R(X) . Here R(X) denotes the algebra of all ratio-
nal functions on X , that is, all quotients p/q of holomorphic polynomials p,q in n -
variables for which q has no zeros in X .

For n � 2, the symmetrization map in n -complex variables z = (z1, . . . ,zn) is the
following proper holomorphic map

πn(z) = (s1(z), . . . ,sn−1(z), p(z))

where

si(z) = ∑
1�k1�k2...�ki�n−1

zk1 . . . zki and p(z) =
n

∏
i=1

zi .

The closed symmetrized n -disk (or simply closed symmetrized polydisc) is the image
of the closed unit n -disc Dn under the symmetrization map πn , that is, Γn := πn(Dn) .
Similarly the open symmetrized polydisc Gn is defined as the image of the open unit
polydisc Dn under πn . The set Γn is polynomially convex but not convex (see [10, 7]).
So in particular the closed and open symmetrized tridisc are the sets

Γ3 = {(z1 + z2 + z3,z1z2 + z2z3 + z3z1,z1z2z3) : |zi| � 1, i = 1,2,3} ⊆ C
3

G3 = {(z1 + z2 + z3,z1z2 + z2z3 + z3z1,z1z2z3) : |zi| < 1, i = 1,2,3} ⊆ Γ3.
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We obtain from the literature (see [10, 7]) the fact that the distinguished boundary
of the symmetrized polydisc is the symmetrization of the distinguished boundary of the
n -dimensional polydisc, which is n -torus Tn . Hence the distinguished boundary for
Γ3 is the set

bΓ3 = {(z1 + z2 + z3,z1z2 + z2z3 + z3z1,z1z2z3) : |zi| = 1, i = 1,2,3}.

Operator theory on the symmetrized polydiscs of dimension 2 and n have been
extensively studied in past two decades [1, 2, 3, 5, 6, 7, 11, 13].

DEFINITION 1.2. A triple of commuting operators (S1,S2,P) on a Hilbert space
H for which Γ3 is a spectral set is called a Γ3 -contraction . A Γ3 -contraction (S1,S2,P)
is said to a completely non-unitary if P is a completely non-unitary contraction.

It is evident from the definition that if (S1,S2,P) is a Γ3 -contraction then S1,S2

have norms not greater than 3 and P is a contraction. Unitaries, isometries and co-
isometries are important special classes of contractions. There are natural analogues of
these classes for Γ3 -contractions.

DEFINITION 1.3. Let S1,S2,P be commuting operators on a Hilbert space H .
We say that (S1,S2,P) is

(i) a Γ3 -unitary if S1,S2,P are normal operators and the Taylor joint spectrum
σT (S1,S2,P) is contained in bΓ3 ;

(ii) a Γ3 -isometry if there exists a Hilbert space K containing H and a Γ3 -unitary
(S̃1, S̃2, P̃) on K such that H is a common invariant subspace for S̃1, S̃2, P̃ and
that Si = S̃i|H for i = 1,2 and P̃|H = P ;

(iii) a Γ3 -co-isometry if (S∗1,S
∗
2,P

∗) is a Γ3 -isometry.

Moreover, a Γ3 -isometry (S1,S2,P) is said to be pure if P is a pure contraction,
that is, P∗ → 0 strongly as n → ∞ .

The main result of this article is the following explicit orthogonal decomposition
of a Γ3 -contraction which parallels the one-variable canonical decomposition.

THEOREM 1.4. Let (S1,S2,P) be a Γ3 -contraction on a Hilbert space H . Let
H1 be the maximal subspace of H which reduces P and on which P is unitary. Let
H2 = H �H1 . Then H1,H2 reduce S1,S2 ; (S1|H1 ,S2|H1 ,P|H1) is a Γ3 -unitary
and (S1|H2 ,S2|H2 ,P|H2) is a completely non-unitary Γ3 -contraction. The subspaces
H1 or H2 may equal to the trivial subspace {0} .

En route we find few characterizations for the set Γ3 and also for the Γ3 -contractions
which we accumulate in section 2.
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2. Background material

In this section we recall some results from literature about the geometry and oper-
ator theory on the set Γ3 . Also we obtain few new results in the same direction which
we accumulate here. We begin with a few characterizations of the set Γ3 .

THEOREM 2.1. Let (s1,s2, p) ∈ C3 . Then the following are equivalent:

1. (s1,s2, p) ∈ Γ3 ;

2. (ωs1,ω2s2,ω3p) ∈ Γ3 for all ω ∈ T ;

3. |p| � 1 and there exists (c1,c2) ∈ Γ2 such that

s1 = c1 + c2p and s2 = c2 + c1p,

where Γ2 is the closed symmetrized bidisc defined as

Γ2 = {(z1 + z2,z1z2) : z1,z2 ∈ D}.

Proof. (1)⇔ (3) has been established in [9] (see Theorem 3.7 in [9] for a proof).
We prove here (1)⇔ (2) . Let (s1,s2, p) ∈ Γ3 . Then by (1)⇔ (3) , |p| � 1 and there
exist (c1,c2) ∈ Γ2 such that

s1 = c1 + c2p, s2 = c2 + c1p .

Since (c1,c2) ∈ Γ2 , there are complex numbers u1,u2 of modulus not greater than 1
such that c1 = u1 +u2 and c2 = u1u2 . For ω ∈T if we choose d1 = ωc1 and d2 = ω2c2

we see that
d1 = ωu1 + ωu2 and d2 = (ωu1)(ωu2) ,

which means that (d1,d2) ∈ Γ2 . Now

ωs1 = ω(c1 + c2p) = ωc1 + ω2c2(ω3p) = d1 +d2(ω3p) ,

ω2s2 = ω2(c2 + c1p) = ω2c2 + ωc1(ω3p) = d2 +d1(ω3p).

Therefore, by part (1)⇔ (3) , (ωs1,ω2s2,ω3p) ∈ Γ3 . The other side of the proof is
trivial. �

In a similar fashion, we have the following characterizations for Γ3 -contractions.

THEOREM 2.2. Let (S1,S2,P) be a triple of commuting operators acting on a
Hilbert space H . Then the following are equivalent:

1. (S1,S2,P) is a Γ3 -contraction ;

2. for all holomorphic polynomials f in three variables

‖ f (S1,S2,P)‖ � ‖ f‖∞,Γ3 = sup{| f (s1,s2, p)| : (s1,s2, p) ∈ Γ3} ;
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3. (ωS1,ω2S2,ω3P) is a Γ3 -contraction for any ω ∈ T .

Proof. (1) ⇒ (2) follows from definition of spectral set and (2) ⇒ (1) just re-
quires polynomial convexity of the set Γ3 . We prove here (1)⇒ (3) because (3)⇒ (1)
is obvious. Let f (s1,s2, p) be a holomorphic polynomial in the co-ordinates of Γ3 and
for ω ∈ T let f1(s1,s2, p) = f (ωs1,ω2s2,ω3p) . It is evident from part (1) ⇒ (2) that

sup{| f (s1,s2, p)| : (s1,s2, p) ∈ Γ3} = sup{| f1(s1,s2, p)| : (s1,s2, p) ∈ Γ3}.

Therefore,

‖ f (ωS1,ω2S2,ω3P)‖ = ‖ f1(S1,S2,P)‖
� ‖ f1‖∞,Γ3

= ‖ f‖∞,Γ3 .

Therefore, by (1) ⇒ (2) , (ωS1,ω2S2,ω3P) is a Γ3 -contraction. �

In [12], two operator pencils Φ1, Φ2 were introduced which played pivotal role
in determining the classes of Γ3 -contractions for which rational dilation failed or suc-
ceeded. Here we recall the definition of Φ1, Φ2 for any three commuting operators
S1,S2,P with ‖Si‖ � 3 and P being a contraction.

Φ1(S1,S2,P) = 9(I−P∗P)+ (S∗1S1−S∗2S2)−6 Re (S1−S∗2P) ,
Φ2(S1,S2,P) = 9(I−P∗P)+ (S∗2S2−S∗1S1)−6 Re (S2−S∗1P) .

The following result whose proof could be found in [12] (Proposition 4.4, [12]) is
useful for this paper.

PROPOSITION 2.3. Let (S1,S2,P) be a Γ3 -contraction. Then for i = 1,2 ,
Φi(αS1,α2S2,α3P) � 0 for all α ∈ D .

Here is a set of characterizations for the Γ3 -unitaries and for a proof of this result
see Theorem 5.2 in [12] or, Theorem 4.2 in [7].

THEOREM 2.4. Let (S1,S2,P) be a commuting triple of bounded operators. Then
the following are equivalent.

1. (S1,S2,P) is a Γ3 -unitary,

2. P is a unitary and (S1,S2,P) is a Γ3 -contraction,

3.
(2

3
S1,

1
3
S2

)
is a Γ2 -contraction, P is a unitary and S1 = S∗2P.
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3. Proof of Theorem 1.4

First we consider the case when P is a completely non-unitary contraction. Then
obviously H1 = {0} and if P is a unitary then H = H1 and so H2 = {0} . In such
cases the theorem is trivial. So let us suppose that P is neither a unitary nor a completely
non unitary contraction. With respect to the decomposition H = H1 ⊕H2 , let

S1 =
[
S111 S112

S121 S122

]
, S2 =

[
S211 S212

S221 S222

]
and P =

[
P1 0
0 P2

]

so that P1 is a unitary and P2 is completely non-unitary. Since P2 is completely non-
unitary it follows that if h ∈ H and

‖Pn
2 h‖ = ‖h‖ = ‖P∗

2
nh‖, n = 1,2, . . .

then h = 0.
By the commutativity of S1 and P we obtain

S111P1 = P1S111 S112P2 = P1S112 , (3.1)

S121P1 = P2S121 S122P2 = P2S122 . (3.2)

Also the commutativity of S2 and P gives

S211P1 = P1S211 S212P2 = P1S212 , (3.3)

S221P1 = P2S221 S222P2 = P2S222 . (3.4)

By Proposition 2.3, we have for all ω ,β ∈ T ,

Φ1(ωS1,ω2S2,ω3P) = 9(I−P∗P)+ (S∗1S1−S∗2S2)−6 Re ω(S1−S∗2P) � 0 ,

Φ2(βS1,β 2S2,β 3P) = 9(I−P∗P)+ (S∗2S2−S∗1S1)−6 Re β 2(S2−S∗1P) � 0 .

Adding Φ1 and Φ2 we get

3(I−P∗P)−Re ω(S1−S∗2P)−Re β 2(S2−S∗1P) � 0

that is
[
0 0
0 3(I−P∗

2 P2)

]
− Re ω

[
S111−S∗211P1 S112−S∗221P2

S121−S∗212P1 S122−S∗222P2

]
(3.5)

− Re β 2
[
S211−S∗111P1 S212−S∗121P2

S221−S∗112P1 S222−S∗122P2

]
� 0

for all ω ,β ∈ T . Since the matrix in the left hand side of (3.5) is self-adjoint, if we
write (3.5) as [

R X
X∗ Q

]
� 0 , (3.6)
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then
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(i) R ,Q � 0 and R = − Re ω(S111−S∗211P1)− Re β 2(S211−S∗111P1)

(ii)X = − 1
2{ω(S112−S∗221P2)+ ω(S∗121−P∗

1 S212)

+β 2(S212−S∗121P2)+ β 2(S∗221−P∗
1 S112)}

(iii) Q = 3(I−P∗
2 P2)− Re ω(S122−S∗222P2)− Re β 2(S222−S∗122P2) .

Since the left hand side of (3.6) is a positive semi-definite matrix for every ω and
β , if we choose β 2 = 1 and β 2 = −1 respectively then consideration of the (1,1)
block reveals that

ω(S111−S∗211P1)+ ω(S∗111−P∗
1 S211) � 0

for all ω ∈ T . Choosing ω = ±1 we get

(S111−S∗211P1)+ (S∗111−P∗
1 S211) = 0 (3.7)

and choosing ω = ±i we get

(S111−S∗211P1)− (S∗111−P∗
1 S211) = 0 . (3.8)

Therefore, from (3.7) and (3.8) we get

S111 = S∗211P1 ,

where P1 is unitary. Similarly, we can show that

S211 = S∗111P1 .

Therefore, R = 0. Since (S1,S2,P) is a Γ3 -contraction, ‖S2‖ � 3 and hence ‖S211‖ �
3. Also since (S1,S2,P) is a Γ3 -contraction, by Lemma 2.5 of [7]

(2
3
S1,

1
3
S2

)
is a

Γ2 -contraction and hence
(2

3
S111,

1
3
S211

)
is a Γ2 -contraction. Therefore, by part-(3)

of Theorem 2.4, (S111,S211,P1) is a Γ3 -unitary.

Now we apply Proposition 1.3.2 of [4] to the positive semi-definite matrix in the

left hand side of (3.6). This Proposition states that if R,Q � 0 then

[
R X
X∗ Q

]
� 0 if and

only if X = R1/2KQ1/2 for some contraction K .
Since R = 0, we have X = 0. Therefore,

ω(S112−S∗221P2)+ ω(S∗121−P∗
1 S212)+ β 2(S212−S∗121P2)+ β 2(S∗221−P∗

1 S112) = 0 ,

for all ω ,β ∈ T . Choosing β 2 = ±1 we get

ω(S112−S∗221P2)+ ω(S∗121−P∗
1 S212) = 0 ,
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for all ω ∈ T . With the choices ω = 1, i , this gives

S112 = S∗221P2 .

Therefore, we also have

S∗121 = P∗
1 S212 .

Similarly, we can prove that

S212 = S∗121P2 , S∗221 = P∗
1 S112 .

Thus, we have the following equations

S112 = S∗221P2 S∗121 = P∗
1 S212 (3.9)

S212 = S∗121P2 S∗221 = P∗
1 S112 . (3.10)

Thus from (3.9), S121 = S∗212P1 and together with the first equation in (3.2), this implies
that

S∗212P
2
1 = S121P1 = P2S121 = P2S

∗
212P1

and hence

S∗212P1 = P2S
∗
212 . (3.11)

From equations in (3.3) and (3.11) we have that

S212P2 = P1S212 , S212P
∗
2 = P∗

1 S212.

Thus

S212P2P
∗
2 = P1S212P

∗
2 = P1P

∗
1 S212 = S212 ,

S212P
∗
2 P2 = P∗

1 S212P2 = P∗
1 P1S212 = S212 ,

and so we have

P2P
∗
2 S∗212 = S∗212 = P∗

2 P2S
∗
212 .

This shows that P2 is unitary on the range of S∗212 which can never happen because P2 is
completely non-unitary. Therefore, we must have S∗212 = 0 and so S212 = 0. Similarly
we can prove that S112 = 0. Also from (3.9), S121 = 0 and from (3.10), S221 = 0. Thus
with respect to the decomposition H = H1 ⊕H2

S1 =
[
S111 0
0 S122

]
, S2 =

[
S211 0
0 S222

]
.

So, H1 and H2 reduce S1 and S2 . Also (S122,S222,P2) , being the restriction of the
E-contraction (S1,S2,P) to the reducing subspace H2 , is an Γ3 -contraction. Since P2

is completely non-unitary, (S122,S222,P2) is a completely non-unitary Γ3 -contraction.
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