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Abstract. We perform the spectral analysis of a family of Jacobi operators J(α) depending
on a complex parameter α . If |α | �= 1 the spectrum of J(α) is discrete and formulas for
eigenvalues and eigenvectors are established in terms of elliptic integrals and Jacobian elliptic
functions. If |α |= 1 , α �= ±1 , the essential spectrum of J(α) covers the entire complex plane.
In addition, a formula for the Weyl m -function as well as the asymptotic expansions of solutions
of the difference equation corresponding to J(α) are obtained. Finally, the completeness of
eigenvectors and Rodriguez-like formulas for orthogonal polynomials, studied previously by
Carlitz, are proved.

1. Introduction

We investigate spectral properties of a one-parameter family of Jacobi operators
J(α) , α ∈ C , acting in �2(N) , with emphasis on obtaining the spectral results in the
most explicit form. The operator J(α) is determined by the semi-infinite Jacobi matrix
J (α) whose diagonal vanishes and off-diagonal sequence {wn}n∈N is given by

wn =

{
n for n odd,

αn for n even.
(1)

Thus, with respect to the standard basis of �2(N) , the matrix J (α) is of the form

J (α) =

⎛
⎜⎜⎜⎜⎜⎝

0 1
1 0 2α

2α 0 3
3 0 4α

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎠. (2)

The operator J(α) is self-adjoint if and only if α ∈ R . We focus mainly on the
non-self-adjoint case with a general α ∈ C , although we restrict ourselves to |α| � 1
in the body of the paper. For |α| > 1, the spectral analysis is in all aspects very similar
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and the main results for this case, omitting the detailed proofs, are summarized in the
last section.

We investigate the localization of essential spectrum and eigenvalues, asymptotic
properties of eigenvectors, their completeness and possible basisness. It turns out that
the operator J(α) constitutes one of not many concrete unbounded non-self-adjoint
operators whose spectral properties can be described explicitly and, in addition, whose
spectrum is entirely real for a certain (non-real) range of parameter α . Furthermore,
the Jacobi matrix J (α) belongs to the class with periodically modulated unbounded
weights, where the so-called spectral phase transition phenomena has been observed
[15, 21, 26], see also [16], however, all in the self-adjoint setting. To our best knowl-
edge, except for the classical example of a perturbed shift operator in �2(Z) and vari-
ous versions of it, see [17, Ex. IV.3.8], J(α) is the first instance of a non-self-adjoint
(unbounded) Jacobi operator with the transition property, namely with a sudden and
complete change of the spectral character when the parameter α crosses the unit circle.

The vast literature on specific families of self-adjoint Jacobi operators shows that
spectral properties are usually closely related with special functions. In our case, the
major role is played by elliptic integrals and Jacobian elliptic functions, where the pa-
rameter α enters as a (complex) modulus. Moreover, the spectral analysis of a Jacobi
operator can be reformulated to the study of specific properties of corresponding family
of orthogonal polynomials, see [2]. The family associated with J (α) does not belong
to the Askey-scheme, which can serve, see [18], as a rich source of Jacobi operators
with explicitly solvable spectral problem, however, it was studied before by Carlitz in
[7, 8] for α ∈ (0,1) .

In Section 2, we introduce the unique closed and densely defined Jacobi operator
J(α) associated with the matrix J (α) and derive some of its fundamental properties
relying on general theorems of spectral and perturbation theory for linear operators. It
is shown that the residual spectrum of J(α) is empty, the resolvent of J(α) is compact
if |α| < 1, and, on the other hand, the essential spectrum of J(α) is non-empty if
|α| = 1.

Section 3 is devoted to the self-adjoint case, i.e., for α ∈ R . We start with a
simple algebraic identity, which might be deduced from a continued fraction formula
going back to Stieltjes, and obtain a formula for the Fourier transform of the spectral
measure. This yields the spectrum of J(α) immediately. Moreover, a suitably applied
Laplace transform enables us to derive the Mittag-Leffler expansion for the Weyl m-
function.

Main results are derivedwithin Section 4 where the non-self-adjoint case is treated.
If |α| < 1, we obtain expressions for eigenvalues of J(α) , integral formulas for eigen-
vectors and their asymptotic expansions for the index going to infinity. Moreover, the
set of eigenvectors is shown to be complete in �2(N) . For |α| = 1 and α �= ±1, we
prove by constructing singular sequences that the essential spectrum of J(α) coincides
with all of C . In addition, a Rodriguez-like formula for the associated orthogonal poly-
nomials is derived as well as certain generating function formulas for quantities closely
related to eigenvectors. The question whether the set of eigenvectors forms the Riesz
(or Schauder) basis remains open, nonetheless, the authors incline to the negative an-
swer. A numerical analysis of pseudospectra, supporting the opinion, is presented and
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a formula for the norm of eigenprojections, which might be useful in excluding the
basisness of eigenvectors, is established.

Finally, Section 5 contains a brief summary of corresponding results for |α| > 1
and the paper is concluded by appendices on selected properties of Jacobian elliptic
functions and numerical analysis of pseudospectra of J(α) .

2. General properties of J(α)

Recall that, within the standard construction of a linear operator associated with
matrix J (α) , one defines the couple of operators Jmin(α) and Jmax(α) , see, for exam-
ple, [4, Sec. 2]. In more detail, for x∈ �2(N) , which is to be understood as semi-infinite
column vector in the following, J (α)x is given by the formal matrix multiplication.
The minimal operator Jmin(α) is defined as the operator closure of an auxiliary operator
J0(α) ,

J0(α)x = J (α)x, Dom(J0(α)) = span{en | n ∈ N},
where en stands for the n th vector of the standard basis of �2(N) ; J0(α) can be shown
to be always closable. The maximal operator Jmax(α) is defined as

Jmax(α)x = J (α)x, Dom(Jmax(α)) =
{
x ∈ �2(N) | Jmax(α)x ∈ �2(N)

}
.

Clearly, Jmin(α) ⊂ Jmax(α) , however, Jmin(α) = Jmax(α) in our case. This equality is
guaranteed by Carleman’s sufficient condition [4, Ex. 2.7]:

∞

∑
n=1

1
|wn| = ∞,

which holds for wn given by (1) if α �= 0. In addition, one has Jmin(α)∗ = Jmax(α)
for all α ∈ C . The situation for α = 0 is somewhat special but trivial and the equality
Jmin(0) = Jmax(0) remains true as well. Thus, the subscripts min and max can be
omitted and the unique Jacobi operator determined by J (α) is denoted by J(α) .

Let us summarize these facts in the following proposition.

PROPOSITION 1. For all α ∈ C , Jacobi matrix (2) determines the unique un-
bounded Jacobi operator J(α) , for which it holds J(α)∗ = J(α) . Consequently, oper-
ator J(α) is C-self-adjoint, i.e. J(α)∗ =CJ(α)C, where C is the complex conjugation
operator on �2(N) .

In the next corollary, we summarize several general spectral properties of J(α)
that follow immediately from its C -self-adjointness, see e.g. [11, Sec. III.5, IX.1,
Thm. IX.1.6] and [6, Cor. 2.1]. Notice that there are several definitions of essential
spectra for non-self-adjoint operators, here we follow the notations of [11, Sec. IX.1].
In this paper, we work with σe2 , which can be characterized by singular sequences, see
[11, Def. IX.1.2, Thm. IX.1.3].
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COROLLARY 2. For all α ∈C , the residual part of the spectrum of J(α) is empty
and four definitions of essential spectra (see [11, Sec. IX.1]) coincide, namely

σe1(J(α)) = σe2(J(α)) = σe3(J(α)) = σe4(J(α)).

Note that operators J(α) and J(−α) are unitarily equivalent via the unitary oper-
ator U = diag(1,1,−1,−1,1,1,−1,−1, . . .) . Hence, if spectral properties of J(α) are
investigated, the range of α can be restricted to a half-plane, for example Reα � 0.

Next, J(α) has a compact resolvent if |α| < 1, but it is not the case if |α| = 1.

PROPOSITION 3. The following statements hold true.

i) If |α| < 1 , then 0 ∈ ρ(J(α)) and J(α)−1 is a Hilbert-Schmidt operator.

ii) If |α| = 1 , then 0 ∈ σe2(J(α)) .

Proof. The verification of the statement (i) is trivial for α = 0. Further we assume
α �= 0.

Denote by {un}n�1 and {vn}n�1 the two solutions of the second-order difference
equation

wn−1yn−1 +wnyn+1 = 0, n � 2, (3)

determined by the initial values u1 = 1, u2 = 0 and v1 = 0, v2 = 1. A straightforward
computation leads to formulas

u2n = 0, u2n+1 = (−1)nα−n (2n−1)!!
(2n)!!

= (−1)nα−n 1
4n

(
2n
n

)
, (4)

v2n+1 = 0, v2n+2 = (−1)nαn (2n)!!
(2n+1)!!

= (−1)nαn 4n

n+1
1(2n+1
n

) , n ∈ N.

Clearly, the matrix R with elements

Rj,k =

{
u jvk, 1 � j � k,

ukv j, 1 � k � j,

is the formal inverse to J(α) . Substituting the explicit expressions for u and v into the
last formula, we get (where (−1)!! = 0!! = 1 by convention)

R2m+1,2n+2 = (−1)m+nαn−m (2m−1)!!
(2m)!!

(2n)!!
(2n+1)!!

, 0 � m � n,

R2m+2,2n+1 = (−1)m+nαm−n (2n−1)!!
(2n)!!

(2m)!!
(2m+1)!!

, 0 � n � m;

all other entries vanish.
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Proof of the statement (i): If |α| < 1, then matrix R represents a bounded, even a
Hilbert-Schmidt operator on �2(N) , thus this operator coincides with J(α)−1 . Indeed,
for the Hilbert-Schmidt norm of R , one has

‖R‖2
2 = 2 ∑

m,n�0

|R2m+1,2n+2m+2|2 = 2 ∑
m,n�0

|α|2n
[
(2m−1)!!

(2m)!!
(2n+2m)!!

(2n+2m+1)!!

]2

and the expression in the squared brackets can be rewritten as

4n

2m+2n+1

(
2m
m

)/(
2m+2n
m+n

)
.

The well-known bound for the central binomial coefficient

4n

2
√

n
�
(

2n
n

)
� 4n

√
3n+1

, n ∈ N, (5)

and further elementary estimates show that ‖R‖2 < ∞ .
Proof of the statement (ii): If |α| = 1, we construct a singular sequence for J(α) ,

see [11, Def. IX.1.2, Thm. IX.1.3]. For a ∈ (0,1) , we define sequences u(a) with
entries

un(a) = anun, n ∈ N, (6)

where un are as in (4). It follows from (5) that u(a) ∈ �2(N) for all a ∈ (0,1) and
moreover

‖u(a)‖2 =
∞

∑
n=0

a4n+2
(

1
4n

(
2n
n

))2

� a2

4

∞

∑
n=1

a4n

n
= −a2

4
ln
(
1−a4) . (7)

On the other hand, since u is the solution of the difference equation (3), we get

(J (α)u(a))2n−1 = 0,

(J (α)u(a))2n = w2n−1a
2n−1u2n−1 +w2na

2n+1u2n+1

= −w2na
2n−1(1−a2)u2n+1, n ∈ N.

Hence u(a) ∈ DomJ(α) for all a ∈ (0,1) , and, using (5) again, we obtain

‖J(α)u(a)‖2 =
4(1−a2)2

a2

∞

∑
n=1

n2a4n
(

1
4n

(
2n
n

))2

� 2(1−a2)2

a2

∞

∑
n=1

na4n =
2a2

(1+a2)2 .

(8)

By putting (6), (7) and (8) together, we receive

∀k ∈ N, lim
a→1−

〈ek,u(a)〉
‖u(a)‖ = 0 and lim

a→1−
‖J(α)u(a)‖
‖u(a)‖ = 0,

thus 0 ∈ σe2(J(α)) . �
For |α| < 1, the operator J(α) can be viewed as a perturbation of J(0) with the

relative bound smaller than 1. For later purposes we formulate the following lemma.
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LEMMA 4. Let α ∈ C , |α| < 1 . Then

(i) for every ε > 0 , there exists C(ε) > 0 such that, for all u ∈ Dom(J(0)) ,

‖(J(α)− J(0))u‖� (1+ ε)|α|‖J(0)u‖+C(ε)‖u‖, (9)

(ii) for every r ∈ (0,1) , there exists a non-empty open set Zr ⊂ C with Zr ∩R =
/0 such that, for all z ∈ Zr and all α ∈ Br(0) , (J(α)− z)−1 exists and it is a
holomorphic bounded-operator-valued function of α on Br(0) .

Proof. Let α �= 0 and denote by M the operator 1
α (J(α)− J(0)) ; notice that M

is independent of α . For every u ∈ Dom(J(0)) ,

‖αMu‖2 =
∞

∑
n=1

(|w2nu2n+1|2 + |w2nu2n|2
)

� |α|2
∞

∑
n=1

n2|un|2. (10)

On the other hand, for every u ∈ Dom(J(0)) ,

‖J(0)u‖2 =
∞

∑
n=1

(|w2n−1u2n|2 + |w2n−1u2n−1|2
)

=
∞

∑
n=1

(
(2n)2|u2n|2

(
1− 1

2n

)2

+(2n−1)2|u2n−1|2
)

,

hence for every δ > 0, there exists C̃(δ ) > 0 such that

‖J(0)u‖2 � (1− δ )
∞

∑
n=1

n2|un|2− C̃(δ )‖u‖2. (11)

By putting (10), (11) together and using Young inequality, we obtain the statement (i).
Proof of the statement (ii): Notice that J(0) = J(0)∗ , thus ‖(J(0)− z)−1‖ � 1

| Im z|
and ‖J(0)(J(0)− z)−1‖ � |z|

| Im z| for z /∈ R . Further, for any z /∈ R and u ∈ �2(N) , we
have from (9) that

‖αM(J(0)− z)−1u‖ � (1+ ε)|α|‖J(0)(J(0)− z)−1u‖+C(ε)‖(J(0)− z)−1u‖

�
(

(1+ ε)|α||z|
| Imz| +

C(ε)
| Imz|

)
‖u‖, (12)

where ε > 0 is arbitrary. If r < 1, then we can clearly select ε > 0 such that (1+ε)r <
1. Therefore there exists a non-empty open set Zr ⊂ C with Zr ∩R = /0 such that, for
all α ∈ Br(0) and all z ∈ Zr ,

‖αM(J(0)− z)−1‖ < 1.

Hence we have the standard representation of resolvent of J(α) based on Neumann
series

(J(α)− z)−1 = (J(0)− z)−1(I + αM(J(0)− z)−1))−1

= (J(0)− z)−1
∞

∑
n=0

(−α)n(M(J(0)− z)−1))n,
(13)

from which the analyticity in α follows. �
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3. The self-adjoint case

In this section, we analyze the spectral properties of J(α) for 0 � α � 1. Some
of the following results may be deduced from the properties of orthogonal polynomials
studied in [7, § 7]. Here we provide an independent brief derivation based exclusively
on techniques developed for spectral analysis of Jacobi operators, see [28].

3.1. Preliminaries

Let us start by the amazing formula

∫ ∞

0
e−u cn(zu,α)du =

1

1+
z2w2

1

1+
z2w2

2

1+
z2w2

3

1+ . . .

(14)

which goes back to Stieltjes, see [27]. This identity is to be understood as the equality
between two elements of the ring of formal power series in the indeterminate z . The
formal power series for the formal Laplace transform on the LHS of (14) equals

∞

∑
n=0

(−1)nC2n
(
α2)z2n,

as one deduces with the aid of (47). On the other hand, the coefficients of the power
series associated with the Stieltjes continued fraction on the RHS of (14) is known to be
expressible in terms of the first diagonal element of an integer power of the Jacobi ma-
trix J (α) . This can be deduced, for example, from the Stieltjes’ Expansion Theorem
[31, Thm. 53.1]; see also [12] for more details. Namely, the RHS of (14) equals

∞

∑
n=0

(−1)n (J (α)2n)
1,1 z2n.

In addition, since the diagonal of J (α) vanishes, one has
(
J (α)2n+1

)
1,1 = 0 for all

n ∈ N0 .
Consequently, formula (14) yields identities

〈e1,J(α)2n+1e1〉 = 0, 〈e1,J(α)2ne1〉 = C2n
(
α2) , n ∈ N0, α ∈ C. (15)

3.2. Spectrum in the case 0 � α � 1

According to equalities (47) and (15), function cn(z,α) can be written as

cn(z,α) =
∞

∑
n=0

(−1)n

(2n)!
z2n〈e1,J(α)2ne1〉.
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Define μ(·) := 〈e1,EJ(·)e1〉 where EJ stands for the spectral measure of the self-adjoint
operator J(α) . Then, by the Spectral theorem, we have

cn(z,α) =
∞

∑
n=0

(−1)n

(2n)!
z2n

∫
R

x2ndμ(x).

Since the power series of cn(z,α) converges absolutely for |z|< π/2, Fubini’s theorem
justifies the interchange of the sum and the integral and, with the help of (15), we get∫

R

eixzdμ(x) = cn(z,α), (16)

which is true in the circle |z| < π/2. Nevertheless, since∫
R

ea|x|dμ(x) < ∞

for all 0 < a < π/2, the LHS of (16) is a function analytic in the strip | Imz|< π/2 and
formula (16) remains true for all z ∈ C , | Imz| < π/2. One can show that the largest
strip where (16) holds is in fact | Imz| < K′(α) ; here K′(α) is the conjugate elliptic
integral, see Appendix A.

The LHS of (16) is nothing but the Fourier transform of μ , i.e., F [μ ](z) =
cn(z,α) , where the measure μ is identified with the corresponding tempered distri-
bution. Consequently, by the inverse Fourier transform to the function cn(z,α) , we
recover the spectral measure μ .

Recall that, in the distributional sense, one has

F−1 [cos(ax)](t) =
1
2

(δ (t −a)+ δ (t +a)) , a,t ∈ R.

Hence, taking into account the expansion (50), one computes

μ(t) =
π

αK(α)

∞

∑
n=0

qn+1/2

1+q2n+1

[
δ
(

t−(2n+1)π
2K(α)

)
+δ

(
t+

(2n+1)π
2K(α)

)]
,

valid for all t ∈ R , α ∈ (0,1) and where K(α) is the complete elliptic integral of
the first kind and q is the nome, see Appendix A. The measure μ coincides with the
measure of orthogonality of polynomials studied by Carlitz and the above formula is in
agreement with results of [7, § 7]. Since the support of the measure μ coincide with
the spectrum of J(α) , we get

σ (J(α)) =
π

2K(α)
(2Z+1), α ∈ [0,1);

the special case α = 0, for which K(0) = π/2, can be verified directly.
If α = 1, then cn(z,1) = 1/cosh(z) . Recall that

F−1
[

1
cosh(x)

]
(t) =

1
2cosh(πt/2)

, t ∈ R.



SPECTRAL ANALYSIS OF NON-SELF-ADJOINT JACOBI OPERATOR 909

Thus, starting at the formula (16), one concludes that the measure μ is absolutely
continuous and its density equals

dμ
dt

=
1

2cosh(πt/2)
, t ∈ R. (17)

We summarize the obtained results in the following proposition.

PROPOSITION 5. We have

σ (J(α)) =

⎧⎨
⎩

π
2K(α)

(2Z+1), |α| < 1,

R, |α| = 1.

We remark that the spectral decomposition of J(1) can be derived with the aid of
the special case of Meixner-Pollaczek polynomials [18, Sec. 9.7]

Mn(x) = inn! 2F1

(
−n,

1+ ix
2

;1,2

)
, n ∈ N0, x ∈ R.

These polynomials satisfy the recurrence

Mn+1(x) = xMn(x)−n2Mn−1(x), n ∈ N,

with initial conditions M0(x) = 1 and M1(x) = x . Their orthogonality relation reads∫
R

Mm(x)Mn(x)
dx

cosh(πx/2)
= 2(n!)2δm,n, m,n ∈ N0.

Thus, if we set

φn(x) =
1

(n−1)!

(
2cosh

(πx
2

))− 1
2
Mn−1(x), n ∈ N, x ∈ R,

and ϕT
x = (φ1(x),φ2(x), . . .) , then J(1)ϕx = xϕx for all x ∈ R and∫

R

φm(x)φn(x)dx = δm,n.

Consequently, one can introduce the unitary mapping U : �2(N)→ L2(R,dx) by setting
Uen := φn , for all n ∈ N . Then, clearly

(Uψ)(x) = 〈ϕx,ψ〉�2 =
∞

∑
n=1

φn(x)ψn, U−1 f = 〈ϕx, f 〉L2 =
∫

R

f (x)ϕxdx.

Finally, for x ∈ R , one easily verifies

UJ(1)U−1φ1(x) = φ2(x) = xφ1(x),

and
UJ(1)U−1φn(x) = (n−1)φn−1(x)+nφn+1(x) = xφn(x), n � 2.

Thus, J(1) is unitarily equivalent to the multiplication operator by the independent
variable acting on L2(R,dx) . Consequently, we have again σ(J(1)) = σac(J(1)) = R .
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3.3. Weyl m-function in the case 0 < α � 1

Recall the Weyl m-function of Jacobi operator J(α) is defined as

m(z,α) = 〈e1,(J(α)− z)−1e1〉, z ∈ C, Imz �= 0. (18)

We derive an explicit formula for the m-function, in fact its Mittag-Leffler expansion.
The proof relies on the identity (16) and the well-known relation for a self-adjoint
operator A in a Hilbert space H , see e.g. [23, Eq. (VIII.9)] or [5, Chp. 5, Prob. 31.(b)],
namely, for all f ∈ H ,

(A− z)−1 f = ±i
∫ ∞

0
e±izte∓iAt fdt, Imz ≷ 0. (19)

PROPOSITION 6. Let the function m(z,α) be as in (18). If 0 < α < 1 , then we
have

m(z,α) = − π
αK(α)

∞

∑
n=−∞

qn+1/2

1+q2n+1

1

z− (2n+1)π
2K(α)

, Imz �= 0, (20)

and if α = 1 , then we have

m(z,1) = ± i
2

(
ψ
(

3
4
∓ iz

4

)
−ψ

(
1
4
∓ iz

4

))
, Imz ≷ 0, (21)

where ψ stands for the digamma function.

Proof. It follows from (18) and the self-adjointness of J(α) that m(z ,α)= m(z,α),
thus it suffices to consider z with Imz > 0. From (19) and (16), one gets

m(iz,α) = iL [cn(t,α)](z), Re z > 0, α ∈ (0,1], (22)

where L denotes the Laplace transform.
Let 0 < α < 1. Recalling (50) together with the elementary formula

L [cos(at)](z) =
z

a2 + z2 , a ∈ R, Re z > 0,

one computes

L [cn(t,α)](z) =
2πz

αK(α)

∞

∑
n=0

qn+1/2

1+q2n+1

1

z2 + (2n+1)2π2

4K(α)2

, Re z > 0, α ∈ (0,1).

Formula (20) now follows from (22) and the identity above.
If α = 1, then we have

L

[
1

cosh(t)

]
(z) =

1
2

(
ψ
(

z+3
4

)
−ψ

(
z+1

4

))
, Rez > −1,

see [14, Eq. 3.541(6)], and similarly, by (22), one arrives at (21). �
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REMARK 7. By the Stieltjes inversion formula, the density of the absolutely con-
tinuous part of the spectral measure μ can be recovered from the Weyl m-function as
the limit

1
π

lim
ε→0+

Imm(x+ iε),

see [28, Chp. 2]. In the case α = 1, one can compute the limit explicitly and re-prove
(17). Indeed, with the aid of formula [1, Eq. 6.3.16]

ψ(z) = −γ +
∞

∑
n=0

(
1

n+1
− 1

n+ z

)
, z �= 0,−1,−2, . . . ,

and (21), one obtains

1
π

lim
ε→0+

Imm(x+ iε,1) =
2
π

∞

∑
n=0

(−1)n 2n+1
(2n+1)2 + x2 =

1
2cosh(πx/2)

,

as expected. The last equality is the Mittag-Leffler expansion of the hyperbolic secant.

4. The non-self-adjoint case

4.1. The case |α| < 1

First we extend the formula (20) for the Weyl m-function for |α| < 1.

PROPOSITION 8. The formula (20) for the Weyl m-function of J(α) remains valid
for 0 < |α| < 1 and z ∈ ρ(J(α)) .

Proof. Let us temporarily denote the RHS of (20) by ML(z,α) . Recall first that K
and q are analytic non-constant functions on the set C\ ((−∞,−1]∪ [1,∞)) , which is
proved within the theory of elliptic functions, see [9, Chp. 7,§ 8] and also [30, Sec. 4].
Moreover, |q| < 1 for all α ∈ C \ ((−∞,−1]∪ [1,∞)) . Consequently, ML(z, ·) is a
meromorphic function on C\ ((−∞,−1]∪ [1,∞)) .

Take r ∈ (0,1) . By Lemma 4.(ii), we known that there exists a non-empty open set
Zr ⊂ C such that the function α �→ (J(α)− z)−1 is analytic on Br(0) for all z ∈ Zr .
Hence the same holds true for the m-function m(z, ·) . Since, for z ∈ Zr , the equality
m(z,α) = ML(z,α) , i.e. an equality between two meromorphic functions in α , holds
true for all α ∈ (0,1) , it has to remain valid for all α ∈ Br(0) . Hence, m(z,α) =
ML(z,α) for all α ∈ Br(0) and all z ∈ Zr .

At the same time, both functions m(·,α) and ML(·,α) are analytic in the set
ρ(J(α))∩ (C \ π

2K(α) (2Z+1)
)
. So the equality m(z,α) = ML(z,α) remains true on

this domain for z , by the analyticity argument in z .
Notice that function m(·,α) has singularities at points z ∈ π

2K(α) (2Z+1) . Thus,

since the m-function is analytic on the resolvent set, we have π
2K(α) (2Z+1)⊂σ(J(α)) .

All in all, we get the equality m(z,α) = ML(z,α) for all α ∈ Br(0) and all z ∈
ρ(J(α)) . Since r is an arbitrary number smaller than 1, the last claim can be extended
to all α with |α| < 1. �
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Recall that in the case of Jacobi operators with compact resolvent (non-self-adjoint
in general), the Weyl m-function is a meromorphic function and the set of its poles co-
incides with the spectrum of the Jacobi operator. In addition, the algebraic multiplicity
of an eigenvalue is the same as the order of the pole, see [3, Thm. 5.3, Cor. 5.5]. The
following statement follows immediately from Proposition 8 and the formula (20). The
claim holds true also for α = 0, as one readily verifies recalling that K(0) = π/2.

THEOREM 9. Let |α| < 1 , then

σ (J(α)) = σp (J(α)) = {λN}N∈Z,

where
λN =

π
2K(α)

(2N +1), N ∈ Z. (23)

In addition, all λN are simple, i.e. have the algebraic multiplicity equal to one. In
particular, if Reα = 0 , then σ (J(α)) ⊂ R .

4.2. Eigenvectors and their asymptotics

Define

Ck = Ck(z,α) :=
∫ 2K(α)

0
e−zt cn(t,α)snk(t,α)dt,

Dk = Dk(z,α) :=
∫ 2K(α)

0
e−zt dn(t,α)snk(t,α)dt, k ∈ N0.

(24)

The integration is carried out through the line segment in C connecting points 0 and
2K(α) . Integrals in (24) are well defined for any α ∈ C \ ((−∞,−1]∪ [1,∞)) since
functions sn(uK(α),α) , cn(uK(α),α) and dn(uK(α),α) are analytic in u ∈ R . For
our purposes, it is sufficient to restrict α on the unit disk |α| � 1 and exclude the
boundary points α = ±1.

Before we proceed with the further spectral analysis of J(α) , we investigate the
asymptotic behavior of Ck and Dk as k → ∞ . The integral form of the definition
formulas (24) is suitable for the application of the saddle point method. However,
some knowledge on values |sn(uK(α),α)| for u ∈ [0,2] and |α| � 1 is necessary.
The needed property is stated in the following lemma, proved in a separate paper [25]
devoted entirely to properties of function α �→ sn(uK(α),α) for complex α .

LEMMA 10. ([25]) Let |α| � 1 and α �= ±1 , then

|sn(uK(α),α)| < 1, ∀u ∈ [0,1). (25)

Hence, taking into account that sn(K(α),α) = 1 and sn(2K(α)− z,α) = sn(z,α) , the
function u �→ |sn(uK(α),α)| , restricted to the interval (0,2) , has the unique global
maximum at u = 1 with the value equal to 1.
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PROPOSITION 11. Let |α| � 1 , α �= ±1 and z ∈ C , then

Ck(z,α) =
√

2π
1−α2 ze−zK(α) 1

k3/2
+O(k−5/2), k → ∞,

Dk(z,α) =
√

2πe−zK(α) 1

k1/2
+O(k−3/2), k → ∞.

(26)

Proof. Notice that we have from (25) that if z1,z2 �= K(α) lie on the line segments
connecting 0 with K(α) and K(α) with 2K(α) , respectively, then, for any bounded
function f , ∣∣∣∣

(∫ z1

0
+
∫ 2K(α)

z2

)
f (t)snk(t,α)dt

∣∣∣∣= O(pk), k → ∞, (27)

with 0 < p < 1. On the other hand, on a sufficiently small neighborhood of K(α)
where logsn(t,α) is analytic, we apply the saddle point method following [22]. This
yields k−1/2 or k−3/2 leading terms, thus the exponentially small term (27) can be
neglected. In the notation of [22, Sec. 4.7, Thm. 7.1], we have

p(K(α)) = 0, p′′(K(α)) = 1−α2, p′′′(K(α)) = 0

and, denoting by qC , qD the corresponding functions q for Ck , Dk , respectively,

qC(K(α)) = 0, q′′C(K(α)) = 2ze−zK(α)
√

1−α2,

qD(K(α)) = e−zK(α)
√

1−α2,

thus we receive the asymptotic formulas (26). �
As showed in the following lemma, Ck and Dk satisfy certain difference equations

and are closely related to the eigenvectors of J(α) .

LEMMA 12. Let |α| � 1 , α �= ±1 , then, for all z ∈ C , one has

−zD0−α2C1 = e−2K(α)z−1, kCk−1 − zDk −α2(k+1)Ck+1 = 0,

−zC0 −D1 = −e−2K(α)z−1, kDk−1 − zCk − (k+1)Dk+1 = 0, k ∈ N.
(28)

Moreover, the sequence u = {un}n∈N defined by formulas

u2k+1 = i(−1)kαkeiK(α)zC2k (iz,α) ,

u2k+2 = (−1)k+1αkeiK(α)zD2k+1 (iz,α) , k ∈ N0,
(29)

is the solution of the system of equations

u2− zu1 = −2cos(K(α)z),
(2k+1)u2k+2− zu2k+1 +2kαu2k = 0,

2kαu2k+1− zu2k +(2k−1)u2k−1 = 0, k ∈ N,

or equivalently
J (α)u = zu−2cos(K(α)z)e1, z ∈ C. (30)
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Proof. We obtain (28) by integrating (24) by parts, appealing to the derivative
formulas (59) and using the identities (53) as well as the special values (52). The
second statement follows immediately from equations (29) and (28). �

Finally, we find the eigenvectors of J(α) .

PROPOSITION 13. Let 0 < |α| < 1 and let {λN}N∈Z be the simple eigenvalues
of J(α) , cf. (23). Then the eigenvectors of J(α) corresponding to the eigenvalues
{λN}N∈Z read

v(N)
2k+1 := i(−1)kαkC2k (iλN ,α) , v(N)

2k+2 := (−1)k+1αkD2k+1 (iλN ,α) , k ∈N0, (31)

where Ck , Dk are as in (24). Moreover,

v(N)
2k+1 = iπ1/2(−1)N+k λN

2(1−α2)
αk

k3/2
+O(αkk−5/2), k → ∞,

v(N)
2k+2 = iπ1/2(−1)N+k αk

k1/2
+O(αkk−3/2), k → ∞.

(32)

Proof. Since v(N) = e−iK(α)λNu , the second claim follows from Proposition 11.
Moreover, 0 �= v(N) ∈ �2(N) . Since cos(K(α)λN) = 0, equation (30) yields J(α)v(N) =
λNv(N) . �

We conclude this subsection by showing the completeness of {v(N)}N∈Z in �2(N) .

PROPOSITION 14. Let |α| < 1 , then the set of eigenvectors {v(N)}N∈Z of J(α) ,
defined in (31), is complete in �2(N) .

Proof. The proof is based on [10, Cor. XI.9.31] and the fact that {λN}N∈Z are
simple, see Theorem 9.

It follows from (12) and (13) that there exist c(α),δ (α) > 0 such that

‖(J(α)− z)−1‖ � C < ∞, |z| > c(α) and ||argz|−π/2|< δ (α).

Moreover, from Proposition 5, (J(0)−z)−1 ∈Sp for every p > 1, thus by (13) and the
ideal property of Schatten classes, we obtain that (J(α)− z)−1 ∈ Sp for every p > 1
as well. �

4.3. The case |α| = 1

While σ(J(α)) is discrete for |α| < 1, i.e., a set of isolated points in C , it sud-
denly fills the entire complex plane if |α| = 1, α �= ±1.

THEOREM 15. Let |α| = 1 and α �= ±1 . Then

σ(J(α)) = σe2(J(α)) = C.
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Proof. We proceed analogously to the proof of the second claim in Proposition 3,
however, we begin with the sequence u defined in (29), use that u satisfies (30) and
that we know the asymptotic behavior of Ck and Dk , as stated in Proposition 11.

Take arbitrary z∈ C . We define a family of sequences u(a) , a∈ (0,1) , by putting

un(a) = anun, n ∈ N,

where un is as in (29). By Proposition 11, one has

|u2k+1| =
√

π |z|
2|1−α2|

1

k3/2
(1+o(1)), |u2k+2| =

√
π

1

k1/2
(1+o(1)), k → ∞. (33)

Thus u(a) ∈ �2(N) for every a ∈ (0,1) and there exist constants C1 > 0, C2 � 0,
independent of a , such that

‖u(a)‖2 � C1a
4

(
∞

∑
k=1

a4k

k

)
−C2 = −C1a

4 ln
(
1−a4)−C2. (34)

Since u satisfies (30), we get

‖(J (α)− z)u(a)‖2 = (1−a)2
∞

∑
k=1

a4k|(2k+1)(a+1)u2k+2− zu2k+1|2

+
(1−a)2

a2

∞

∑
k=1

a4k|2kα(a+1)u2k+1− zu2k|2

+a2|(a−1)u2−2cos(K(α)z)|2.

Hence, for a ∈ (0,1) , we have from (33) that

‖(J (α)− z)u(a)‖2 � C3
(1−a)2

a2

∞

∑
k=1

ka4k +C4 = C3
a2

(1+a)2(1+a2)2 +C4 � C5,

(35)
where C3 , C4 and C5 depend on z , but are independent of a . Notice that (35) implies
in particular that u(a) ∈ Dom(J(α)) for all a ∈ (0,1) .

By putting (33), (34) and (35) together, we obtain

∀k ∈ N, lim
a→1−

〈ek,u(a)〉
‖u(a)‖ = 0 and lim

a→1−
‖(J(α)− z)u(a)‖

‖u(a)‖ = 0,

thus z ∈ σe2(J(α)) by [11, Thm. IX.1.3]. �

REMARK 16. The asymptotic formulas (32) have been derived as a direct conse-
quence of Proposition 11, thus they remain valid also for |α| = 1, α �= ±1. For such
α , one observes that v(N) /∈ �2(N) . Consequently, since the solution of the difference
equations J (α)u = zu is unique up to a multiplicative constant, we get that {λN}N∈Z ,
defined as in (23), are not eigenvalues of J(α) .
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4.4. Other properties of eigenvectors

In this subsection, we provide some additional results related to eigenvectors of
J(α) for |α| < 1. Namely, we derive a generating function formula for eigenvectors,
give a Rodriguez-like identity for orthogonal polynomials associated with Jacobi matrix
J (α) and present an integral formula for the norm of eigenprojections.

Note that formulas for v(N) given in Proposition 13 are expressible in terms of
Fourier coefficients of some analytic functions. Indeed, let us put

Ck(s,α) := e−i s
2 cn

(
K(α)s

π
,α
)

sn2k
(

K(α)s
π

,α
)

,

Dk(s,α) := e−i s
2 dn

(
K(α)s

π
,α
)

sn2k+1
(

K(α)s
π

,α
)

, k ∈ N0,

and denote the corresponding Fourier coefficients by γn(k) and δn(k) , respectively,

γn(k) :=
1
2π

∫ 2π

0
e−ins Ck(s,α)ds, δn(k) :=

1
2π

∫ 2π

0
e−ins Dk(s,α)ds. (36)

Then
Ck(s,α) = ∑

n∈Z

γn(k)eins, Dk(s,α) = ∑
n∈Z

δn(k)eins

and we have

v(N)
2k+1 = 2iK(α)(−1)kαkγN(k), v(N)

2k+2 = 2K(α)(−1)k+1αkδN(k), k ∈ N0. (37)

In [7], Carlitz investigated the sequence of polynomials {Pn}n∈N defined recur-
sively by the recurrence rule

Pn+1(x) = xPn(x)−w2
n−1Pn−1(x), n � 2,

with initial conditions P1(x) = 1 and P2(x) = x ; sequence {wn}n∈N is as in (1). If we
put

pn(x) :=

(
n−1

∏
k=1

1
wk

)
Pn(x) =

1

α�(n−1)/2�(n−1)!
Pn(x), n ∈ N, x ∈ C, (38)

then the sequence p = {pn}n∈N is the solution of the eigenvalue equation J (α)p(x) =
xp(x) normalized such that p1(x) = 1. Since such a solution is uniquely determined
by its first entry, the vector v(N) is a constant multiple of p(λN) with λN as in (23). In
detail, for 0 < |α| � 1, α �= ±1, we have

v(N)
k = v(N)

1 pk(λN), k ∈ N, N ∈ Z. (39)

REMARK 17. Notice that the Fourier expansion (50) can be used to evaluate v(N)
1 ,

v(N)
1 =

iK(α)
π

∫ 2π

0
e−i(N+ 1

2 )s cn

(
K(α)s

π
,α
)

ds =
2π i
α

qN+ 1
2

1+q2N+1 , N ∈ Z. (40)



SPECTRAL ANALYSIS OF NON-SELF-ADJOINT JACOBI OPERATOR 917

Taking into account that Pk(x) is a monic polynomial in x of degree k−1 and combin-

ing (38), (39) and (40), we obtain an asymptotic formula for v(N)
k as N → ∞ with fixed

k � 2,

v(N)
k =

2iπk

α�(k+1)/2�K(α)k−1(k−1)!
Nk−1qN+1/2 +O

(
Nk−2qN

)
, N → ∞, (41)

where 0 < |α| � 1, α �= ±1.
It is a straightforward application of elementary properties of Jacobian elliptic

functions to verify that

Ck(−z,α) = −e2K(α)zCk(z,α), Dk(−z,α) = e2K(α)zDk(z,α).

Hence, taking into account that λ−N−1 = −λN , one deduces from (31) that

v(−N−1)
k = (−1)k+1v(N)

k , k ∈ N, N ∈ Z.

The last relation together with asymptotic formula (41) allows for obtaining the asymp-

totic formula for v(N)
k also as N →−∞ .

To supplement the knowledge about polynomials pn , we provide a Rodriguez-like
formula for pn , which seems to be a new result.

PROPOSITION 18. For all z ∈ C and k ∈ N0 , one has

p2k+1(z) =
(−1)k

αk(2k)!
d2k

du2k

∣∣∣∣
u=0

eizu dn(u,α)
[

u
sn(u,α)

]2k+1

, (42)

p2k+2(z) =
i(−1)k+1

αk(2k+1)!
d2k+1

du2k+1

∣∣∣∣
u=0

eizu cn(u,α)
[

u
sn(u,α)

]2k+2

. (43)

Proof. We prove the statement for particular z = λn with n ∈ Z , see (23). Since
both sides of equalities (42) and (43) are polynomials in z , these identities then hold
for all z ∈ C .

By splitting the integral in (36) for γn(k) to two integrals over (0,π) and (π ,2π) ,
applying the substitution s = t − 2π in the second one and using identities (54), one
finds

γn(k) =
1
2π

∫ π

−π
ei(n+1)s Ck(s,α)ds.

Take the parallelogram with vertices at points ±π , ±π +2π iK′(α)/K(α) . Integrating
the function

z �→ ei(n+1)zCk(z,α)

over the boundary of this parallelogram and taking into account that the integrand is a
2π -periodic function, hence the integrals over the lateral sides cancel each other, we
obtain

1
2π

(∫ π

−π
+
∫ −π+2π i K′(α)

K(α)

π+2π i K′(α)
K(α)

)
ei(n+1)zCk(z,α)dz = iRes

(
ei(n+1)zCk(z,α),z = iπ

K′(α)
K(α)

)
,
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for the function Ck(·,α) has the only singularity within the parallelogram located at

z = iπ K′(α)
K(α) . Next, we parametrize the complex line segment in the second integral on

the LHS of (4.4) such that z = t +2π iK′(α)/K(α) where −π � t � π . Taking further
into account that

Ck

(
t +2π i

K′(α)
K(α)

,α
)

= −eπK′(α)/K(α)Ck(t,α),

as one deduces with the aid of (55), the equation (4.4) can be written as

(1+q2n+1)γn(k) = iRes

(
ei(n+1)zCk(z,α),z = iπ

K′(α)
K(α)

)
,

where we have substituted for the nome q = exp(−πK′(α)/K(α)) . Note the singular-
ity of the function Ck(·,α) at z = iπK′(α)/K(α) is a pole of order 2k+1. Thus, using
identities (56) in the second step, one gets

Res

(
ei(n+1)zCk(z,α),z = iπ

K′(α)
K(α)

)

=
1

(2k)!
d2k

dz2k

∣∣∣∣
z=iπ K′(α)

K(α)

(
z− iπ

K′(α)
K(α)

)2k+1

ei(n+1)zCk(z,α)

= − iqn+ 1
2

α2k+1(2k)!
d2k

dz2k

∣∣∣∣
z=0

ei(n+ 1
2 )z dn

(
K(α)z

π
,α
)⎡⎣ z

sn
(

K(α)z
π ,α

)
⎤
⎦

2k+1

.

Consequently, we arrive at the formula

γn(k) =
π

K(α)
qn+ 1

2

1+q2n+1

1
α2k+1(2k)!

d2k

du2k

∣∣∣∣
u=0

e
i(n+ 1

2 )π u
K(α) dn(u,α)

[
u

sn(u,α)

]2k+1

.

Now, it suffices to apply identities (37), (39) and (40) to obtain (42) with z = λn .
The second identity (43) is to be verified in a similar way. This time one deduces

that

δn(k) = − 1
2π

∫ π

−π
ei(n+1)s Dk(s,α)ds

= − π
K(α)

qn+ 1
2

(1+q2n+1)
1

α2k+1(2k+1)!

× d2k+1

du2k+1

∣∣∣∣
u=0

e
i(n+ 1

2 )π u
K(α) cn(u,α)

[
u

sn(u,α)

]2k+2

. �

Next, we derive some generating functions formulas for sequences γN(k) and
δN(k) with N fixed. They may be deduced from the result of Carlitz, see [7, Eqs. (7.8),
(7.9)], although the formulas there are treated rather as formal series, no comment on
the convergence is given and 0 < α < 1 is assumed.
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PROPOSITION 19. If 0 < |α| < 1 , then for N ∈ Z and t from a neighborhood of
the real line, one has

cn

(
K(α)

π
t,α

) ∞

∑
k=0

γN(k)α2k sn2k
(

K(α)
π

t,α
)

=
π

αK(α)
qN+ 1

2

1+q2N+1 cos

((
N +

1
2

)
t

)
,

dn

(
K(α)

π
t,α

) ∞

∑
k=0

δN(k)α2k sn2k+1
(

K(α)
π

t,α
)

=
iπ

αK(α)
qN+ 1

2

1+q2N+1 sin

((
N+

1
2

)
t

)
.

Proof. We prove in detail the first formula. By Lemma 10 and the analyticity of

the function t �→ sn
(

K(α)
π t,α

)
on a neighborhood of R , there is an open set U ⊂ C

such that R ⊂U and ∣∣∣∣sn
(

K(α)
π

t,α
)∣∣∣∣< 1√|α| , t ∈U.

Since, in addition, by (32) and (37) , γN(k) =O
(
k−3/2

)
as k→∞ . Hence, for 0< |α|<

1, the series on the LHS of the first generating formula converges locally uniformly in
U .

By using the definition (36) of γN(k) , interchanging the sum and integral and
summing up, one arrives at

cn

(
K(α)

π
t,α

) ∞

∑
k=0

γN(k)α2k sn2k
(

K(α)
π

t,α
)

=
∫ 2π

0

e−i(N+ 1
2 )s

2π

cn
(

K(α)
π t,α

)
cn
(

K(α)
π s,α

)
1−α2 sn2

(
K(α)

π t,α
)

sn2
(

K(α)
π s,α

)ds.

Applying the identity (57), one evaluates the integral with the aid of Fourier expansion
(50) of the function cn, for

∫ 2π

0
e−i(N+ 1

2 )s cn

(
K(α)

π
(t + s)

)
ds =

2π2

αK(α)
qN+ 1

2

1+q2N+1 ei(N+ 1
2 )t .

The second generating function formula can be obtained similarly, one applies the
identity (58) and proceeds analogously. �

COROLLARY 20. Let M,N ∈ Z and 0 < |α| < 1 . Then it holds

∞

∑
k=0

γN(k)γM(k)α2k =
π

2αK(α)
qN+ 1

2

1+q2N+1 δM,N .

∞

∑
k=0

δN(k)δM(k)α2k =
π

2αK(α)
qN+ 1

2

1+q2N+1 δM,N .
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Proof. Multiply the first identity in Proposition 19 by (2π)−1e−i(M+1/2)t and in-
tegrate w.r.t. t from 0 to 2π . The second formula is to be derived analogously. �

It would be interesting to know whether the set of eigenvectors {v(N)}N∈Z forms a
basis of �2(N) , or not. From this point of view, it is useful to have some knowledge on
the norm of the eigenprojections {QN}N∈Z corresponding to the eigenvalues {λN}N∈Z .
Designating the dependence on α in the eigenvectors by writing v(N) = v(N)(α) and
observing that v(N)(α) is the eigenvector of J∗(α) corresponding to the eigenvalue
λN , we have that

QN =

〈
v(N)(α), ·

〉
〈
v(N)(α),v(N)(α)

〉v(N)(α). (44)

Since v(N)(α) = −v(N)(α) , one obtains

‖QN‖ =
‖v(N)(α)‖2

|〈v(N)(α),v(N)(α)
〉 | .

Corollary 20 enable us to derive an integral formula for ‖QN‖ , nevertheless, it does not
give a complete answer on the behavior of ‖QN‖ yet as finding an asymptotic formula
for ‖v(N)‖ as N → ∞ seems to be a not easy task.

PROPOSITION 21. Let 0 < |α| < 1 , N ∈ Z and QN be as in (44). Then one has

‖QN‖ =
|α|

4|K(α)|π
|1+q2N+1|
|q|N+ 1

2

‖v(N)(α)‖2

and

‖v(N)(α)‖2 =
|K(α)|2

π2

∫ 2π

0

∫ 2π

0
e−i(N+ 1

2 )(u+v) c(u)c(v)− s(u)s(v)d(u)d(v)

1−|α|2s2(u)s2(v)
dudv

where we use abbreviations s(u) = sn
(

K(α)
π u,α

)
, c(v) = cn

(
K(α)

π v,α
)

, etc.

Proof.
By Corollary 20 and formulas (37), one computes

〈
v(N)(α),v(N)(α)

〉
=

4K(α)π
α

qN+1/2

1+q2N+1 .

In the RHS of the equality

‖v(N)(α)‖2 = −
∞

∑
n=1

v(N)
n (α)v(N)

n (α),

substitute by formulas (37), interchange the summation and integrals and sum it up. �
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We conclude by comparing numerics of pseudospectrum of J(α) for α = 0.5 and
α = 0.5i, see Figure 1. The plots are computed in Mathematica as the log of the norm
of the inverse of J(α)− z truncated to 1000× 1000 matrix. Although all eigenvalues
are real in both cases, the pseudospectra have completely different character and they
suggest that the eigenvectors of J(α) for non-real α , |α| < 1, do not form a Riesz
basis (as otherwise the ε -pseudospectrum should be contained in a κε -neighborhood
of eigenvalues with some κ > 0, see, e.g., [19]). More plots of pseudospectra of J(α)
with various values of α can be found in Appendix B.

Figure 1: Pseudospectra of J(α) for α = 0.5 (up) and α = 0.5i (down).

5. The case |α| > 1

For the sake of completeness, we describe the spectral properties of the Jacobi
operator J(α) also in the case when |α| > 1. However, the analysis is very similar to
the case |α|< 1, therefore we provide only final formulas omitting detailed derivations.

In fact, the problem is reformulated using the operator J̃(β ) associated with Jacobi
matrix

J̃ (β ) := α−1J (α), β := α−1. (45)

Hence, if |α| > 1, then 0 < |β | < 1 and operator J̃(β ) has discrete spectrum.
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Taking (45) together with (15) one obtains identities

〈e1, J̃(β )2n+1e1〉 = 0, 〈e1, J̃(β )2ne1〉 = β 2nC2n
(
β−2) , n ∈ N0, β ∈ C\ {0}.

Thus, for 0 < β < 1 and taking into account (48), one derives the analogue of (16),
namely ∫

R

eixzdμ̃(x) = dn(z,β ),

where μ̃(·) := 〈e1,EJ̃(·)e1〉 where EJ̃ stands for the spectral measure of J̃(β ) . The
application of the inverse Fourier transform and the formula (51) then yields

μ̃(t) =
π

2K(β )
δ (t)+

π
K(β )

∞

∑
n=1

qn

1+q2n

[
δ
(

t− nπ
K(β )

)
+ δ

(
t +

nπ
K(β )

)]
.

Consequently, one has σ(J̃(β )) = π
K(β )Z for 0 < β < 1.

For the corresponding Weyl m-function, one derives the Mittag-Leffler expansion

m̃(z,β ) := 〈e1,(J̃(β )− z)−1e1〉 = − π
K(β )

∞

∑
n=−∞

qn

1+q2n

1
z− nπ

K(β )
.

which holds true for any 0 < |β | < 1 and z ∈ ρ(J̃(β )) . Consequently,

σ(J̃(β )) =
π

K(β )
Z, |β | < 1,

and all eigenvalues are simple.
From equations (28), it follows that the vector ũ = {ũn}n∈N defined by formulas

ũ2k+1 := i(−1)kβ keiK(β )zD2k (iz,β ) ,

ũ2k+2 := (−1)k+1β k+1eiK(β )zC2k+1 (iz,β ) , k ∈ N0,

satisfies
J (β )ũ = zũ−2isin(K(β )z)e1, z ∈ C.

Consequently, vectors ṽ(N) , N ∈ Z , with entries

ṽ(N)
2k+1 := i(−1)kβ kD2k

(
iλ̃N ,β

)
, ṽ(N)

2k+2 := (−1)k+1β k+1C2k+1

(
iλ̃N ,β

)
, k ∈ N0,

are eigenvectors of J̃(β ) corresponding to eigenvalues

λ̃N :=
π

K(β )
N, N ∈ Z.

A straightforward application of formulas (26) yields the asymptotic relations

ṽ(N)
2k+1 = iπ1/2(−1)N+k β k

k1/2
+O(β kk−3/2), k → ∞,

ṽ(N)
2k+2 = iπ1/2(−1)N+k+1 λ̃N

2(1−β 2)
β k+1

k3/2
+O(β kk−3/2), k → ∞.
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Orthogonal polynomials studied by Carlitz in [7, § 8] are determined recursively
by the recurrence rule

P̃n+1(x) = xP̃n(x)−β 2w2
n−1P̃n−1(x), n � 2,

with initial conditions P̃1(x) = 1 and P̃2(x) = x ; sequence {wn}n∈N is as in (1) and
α = β−1 . For the sequence of polynomials p̃ = { p̃n}n∈N satisfying the eigenvalue
equation J̃ (β )p̃(x) = xp̃(x) and normalized such that p̃1(x) = 1, one gets

p̃n(x) =
1

β �n/2�(n−1)!
P̃n(x), n ∈ N.

The eigenvectors ṽ(N) are related to these polynomials by relation

ṽ(N)
k = 2π i

qN

1+q2N p̃k(λ̃N), k ∈ N, N ∈ Z.

For n ∈ N , one readily verifies that

P̃n(z) = β n−1Pn
(
β−1z

)
and p̃n(z) = pn

(
β−1z

)
.

Consequently, identities (42) and (43) yield

p̃2k+1(z) =
(−1)kβ k

(2k)!
d2k

du2k

∣∣∣∣
u=0

ei zu
β dn(u,β )

[
u

sn(u,β )

]2k+1

,

p̃2k+2(z) =
i(−1)k+1β k

(2k+1)!
d2k+1

du2k+1

∣∣∣∣
u=0

ei zu
β cn(u,β )

[
u

sn(u,β )

]2k+2

, k ∈ N0.

Let us end with the integral formula for the norm of the eigenprojection

Q̃N =

〈
ṽ(N)(β ), ·

〉
〈
ṽ(N)(β ), ṽ(N)(β )

〉 ṽ(N)(β ).

which reads

‖Q̃N‖ =
1

4|K(β )|π
|1+q2N|
|q|N ‖ṽ(N)(β )‖2

with

‖ṽ(N)(β )‖2 =
|K(β )|2

π2

∫ 2π

0

∫ 2π

0
e−iN(u+v) d(u)d(v)− s(u)s(v)c(u)c(v)

1−|β |2s2(u)s2(v)
dudv

where we use abbreviations s(u) = sn
(

K(β )
π u,β

)
, c(v) = cn

(
K(β )

π v,β
)

, etc.
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A. Jacobian elliptic functions

Jacobian elliptic functions are deeply investigated and very well-known. For con-
venience, some of their selected properties, which are used within the paper, are sum-
marized here. As a primarily source we use [20], other useful references are [1, Chp. 16],
[24] and [2].

The (copolar) triplet of Jacobian elliptic functions sn(u,α) , cn(u,α) and dn(u,α)
can be defined with the aid of Jacobi’s theta functions, see [20, Eqs. (2.1.1-3)] (modulus
α coincides with k in the Lawden’s notation). Each of these functions is meromorphic
in u (for fixed α ) with simple poles and simple zeros and is meromorphic in α (for
fixed u ). In most applications, the range for the modulus α is restricted to 0 < α < 1.
As such, all three functions are real-valued for u ∈ R .

Taylor series expansions of Jacobian elliptic functions can be written in the form:

sn(u,α) =
∞

∑
n=0

(−1)nC2n+1
(
α2) u2n+1

(2n+1)!
, (46)

cn(u,α) =
∞

∑
n=0

(−1)nC2n
(
α2) u2n

(2n)!
, (47)

dn(u,α) =
∞

∑
n=0

(−1)nα2nC2n
(
α−2) u2n

(2n)!
. (48)

Expansions (46), (47) and (48) are absolutely convergent for |α| � 1 and |u| < π/2,
see [30, Thm. 3.2]. For n ∈ N , Cn(x) is a polynomial in x of degree �(n− 1)/2�
with positive integer coefficients. No explicit formula for polynomials Cn is known, al-
though a lot of authors studied them and found various combinatorial interpretations for
their coefficients. Let us mention at least [13, 29]. Polynomials Cn may be computed
recursively by formulas

C2n+1(x) = ∑
j+k=n

(
2n
2 j

)
C2 j(x)xkC2k

(
x−1) ,

C2n+2(x) = ∑
j+k=n

(
2n+1
2 j +1

)
C2 j+1(x)xkC2k

(
x−1) , n ∈ N0,

and C0(x) = 1. First few polynomials Cn(x) read

C1(x) = 1, C3(x) = 1+ x, C5(x) = 1+14x+ x2, C7(x) = 1+135x+135x2+ x3,

C2(x) = 1, C4(x) = 1+4x, C6(x) = 1+44x+16x2, C8(x) = 1+408x+912x2+64x3.

Zeros, poles as well as periodicity properties of Jacobian elliptic functions are
expressible in terms of the complete elliptic integral of the first kind

K(α) =
∫ 1

0

dt√
(1− t2)(1−α2t2)

,
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where the principle square root is used. As function of α2 , K is analytic in C\ [1,∞) .
Note that K(α) > 0 whenever α2 < 1. The conjugate elliptic integral K′ is defined as
K′(α) = K(α ′) where the complementary modulus α ′ satisfies α2 + α ′2 = 1. Sim-
ilarly, as function of α2 , K′ is analytic in C \ (−∞,0] . Finally, recall the nome
q(α) = exp(−πK′(α)/K(α)) ; the dependence on the modulus α is suppressed in the
notation for q . Note that all functions sn, cn, dn, K , K′ and q are functions of α2

rather then α .
Fourier series for Jacobian elliptic functions read

sn(u,α) =
2π

αK(α)

∞

∑
n=0

qn+1/2

1−q2n+1 sin
(2n+1)πu

2K(α)
, (49)

cn(u,α) =
2π

αK(α)

∞

∑
n=0

qn+1/2

1+q2n+1 cos
(2n+1)πu

2K(α)
, (50)

dn(u,α) =
π

2K(α)
+

2π
K(α)

∞

∑
n=1

qn

1+q2n cos
nπu
K(α)

, (51)

where | Im(u/K(α))| < Im(iK′(α)/K(α)) .
Finally, we recall some special values, see [1, Sec. 16.5–16.8],

sn(0,α) = sn(2K(α),α) = 0,

cn(0,α) = dn(0,α) = dn(2K(α),α) = −cn(2K(α),α) = 1,
(52)

identities, see [1, Sec. 16.9] and [1, Sec. 16.8],

dn2(z,α)+ α2 sn2(z,α) = 1, sn2(z,α)+ cn2(z,α) = 1, (53)

and

sn(u+2K(α),α) = −sn(u,α), cn(u+2K(α),α) = −cn(u,α), (54)

sn(u+2iK′(α),α) = sn(u,α), cn(u+2iK′(α),α) = −cn(u,α), (55)

sn(u+ iK′(α),α) =
1

α sn(u,α)
, cn(u+ iK′(α),α) =− idn(u,α)

α sn(u,α)
, (56)

addition formulas, see [20, Eqs. 2.4.12, 2.4.14],

cn(u+ v)+ cn(u− v) =
2cn(u)cn(v)

1−α2 sn2(u)sn2(v)
, (57)

cn(u+ v)− cn(u− v) =
2sn(u)sn(v)dn(u)dn(v)

1−α2 sn2(u)sn2(v)
, (58)

and formulas for derivatives, see [1, Sec. 16.16],

∂
∂ z

sn(z,α) = cn(z,α)dn(z,α),
∂
∂ z

cn(z,α) = −sn(z,α)dn(z,α),

∂
∂ z

dn(z,α) = −α2 sn(z,α)cn(z,α).
(59)
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B. Pseudospectra of J(α)

We investigate numerically the pseudospectra of J(α) for α lying close to the
unit circle, see Figure 2, and approaching i from inside, see Figure 3. The plots suggest
that in spite of the reality of the spectrum in some cases, the pseudospectra (and so the
basis properties of eigenvectors) crucially depend on the self-adjointness of J(α) .

Figure 2: Pseudospectra of J(α) with α ’s lying on the circle with |α| = 0.95 .
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Figure 3: Pseudospectra of J(α) with purely imaginary α ’s approaching i .
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