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Abstract. Let H be a complex separable infinite-dimensional Hilbert space and C be a con-
jugation on H . Let C and S denote respectively the set of C -symmetric operators and the
set of C -skew-symmetric operators on H . It is proved that C and S are Roberts orthogonal
to each other, and some distance formulas from an operator to the sets C , S are obtained.
We exhibit the annihilating relation between C and S by describing their preannihilators. As
applications, it is shown that S is hyperreflexive and not transitive.

1. Introduction

Throughout this paper, we let H denote a complex separable Hilbert space with
an inner product 〈·, ·〉 , and B(H ) the algebra of all bounded linear operators on H .
Let C be a conjugation on H , that is, C is conjugate-linear, invertible, C−1 = C and
〈Cx,Cy〉 = 〈y,x〉 for all x,y ∈ H . An operator T ∈ B(H ) is called C -symmetric if
CTC = T ∗ , and T is called C -skew-symmetric if CTC = −T ∗ . If T is C -symmetric
(C -skew-symmetric) for some conjugation C , then T is called complex symmetric
(skew symmetric). Complex symmetric operators and skew symmetric operators are
respectively natural generalizations of symmetric matrices and skew symmetric matri-
ces in the Hilbert space setting.

The general study of complex symmetric operators was initiated by Garcia, Puti-
nar and Wogen in [7, 8, 9, 10]. The class of complex symmetric operators includes
normal operators, Hankel operators, binormal operators, truncated Toeplitz operators
and many others. Recently, there has been a lot of work concerning complex symmet-
ric operators. The class of skew symmetric operators is closely related to the study
of complex symmetric operators. In view of [17, Lem. 1.4], a complex symmetric
operator has many skew symmetric relatives, and vice versa. For example, the self-
commutator of a complex symmetric operator is always skew symmetric; moreover, if
T is skew symmetric, then T 2k is complex symmetric for any positive integer n . This
observation provides a new approach to identifying new complex symmetric operators.
One can see such an application to Toeplitz operators in [12]. Recently there has been
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growing interest in skew symmetric operators (see [19, 20, 21, 22, 26]); in particular,
skew symmetric normal operators, partial isometries, compact operators and weighted
shifts are classified (see [17, 16, 22]).

We let CSO and SSO denote respectively the set of complex symmetric operators
on H and the set of skew symmetric operators on H . Lately there has been some
interest in the study of CSO and SSO as subsets of B(H ) (see [9, 25, 4, 5, 11, 23,
21]). We remark that CSO and SSO are neither closed under addition nor closed under
multiplication, although they are both closed under the adjoint operation. Thus neither
CSO nor SSO possesses a linear structure.

Assume that C is a conjugation on H . Denote

CC = {X ∈ B(H ) : CXC = X∗}

and

SC = {X ∈ B(H ) : CXC = −X∗}.
It is easy to see that CC and SC are two linear subspaces of B(H ) , and both closed
in the weak operator topology. We remark that CC is a typical linear subspace of
B(H ) included in CSO . In fact, if C1 is another conjugation on H , then there exists
unitary U ∈ B(H ) such that C1 = UCU∗ (see [6, Lem. 2.11]). It is easy to check
that UCCU∗ = CC1 . Thus CC and CC1 has the same structure as linear subspaces of
B(H ) . In addition, note that C is the union of all such linear spaces CC . Likewise,
one can also see that SC is a typical linear subspace of B(H ) included in SSO . In
this paper we are interested in the properties of CC and SC as linear subspaces of
B(H ) .

In what follows, we let C be a fixed conjugation on H and, for convenience, we
write C and S instead of CC and SC respectively. First we notice that C and S are
complementary subspaces of B(H ) . In fact, it is trivial to see C ∩S = {0} . Given
T ∈ B(H ) , we have T = A+B , where

A =
T +CT ∗C

2
and B =

T −CT∗C
2

.

Easy to see A ∈ C and B ∈ S . This shows that B(H ) = C +S . The aim of this
paper is to give some results which exhibit more connections between C and S .

The rest of this paper is organized as follows.
In Section 2, we shall prove that C and S are Roberts orthogonal to each other.

As applications, we obtain some distance formulas from an operator to the sets C , S ,
CSO and SSO .

In Section 3, we shall study the spaces C and S from the predual point of view.
We shall characterize the preannihilators of C and S . Our results exhibit the annihi-
lating relations between C and S .

In Section 4, we shall study the transitivity, reflexivity and hyperreflexivity of S .
This is partly inspired by a recent paper of Kliś-Garlicka and Ptak [15], where the
reflexivity and transitivity of C are studied.
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2. Orthogonality and distance formulas

In this section, we shall show that C and S are Roberts orthogonal to each other.
As applications, we shall provide some distance formulas from an operator to the sets
C , S , CSO and SSO .

Recall that two operators A,B ∈ B(H ) are said to be Roberts orthogonal, if
‖A−λB‖= ‖A+ λB‖ for all complex numbers λ (see [18]). It is known that Roberts
orthogonality implies Birkhoff orthogonality (see [1]).

Given T ∈B(H ) and a subset V of B(H ) , we let d(T,V ) denote the standard
distance from T to the set V , that is, d(T,V ) = inf{‖T −X‖ : X ∈ V } .

THEOREM 2.1. Let A ∈ C and B ∈ S . Then

(i) A is Roberts orthogonal to B;

(ii) ‖A‖ � ‖A−B‖ and ‖B‖ � ‖A−B‖ ;

(iii) d(A,S ) = ‖A‖ and d(B,C ) = ‖B‖ .

Proof. Note that C is isometric, CAC = A∗ and CBC = −B∗ . Then for any com-
plex number λ we have

‖A+ λB‖= ‖C(A+ λB)C‖= ‖A∗ −λB∗‖ = ‖A−λB‖. (2.1)

So A is Roberts orthogonal to B .
By (2.1), we have

‖A‖ =
‖A+B+A−B‖

2
� ‖A+B‖+‖A−B‖

2
= ‖A−B‖

and

‖B‖ =
‖B+A+B−A‖

2
� ‖A+B‖+‖A−B‖

2
= ‖A−B‖.

Note that A ∈ C , B ∈ S can be arbitrary and 0 ∈ C ∩S . It follows immediately that

d(A,S ) = ‖A‖ and d(B,C ) = ‖B‖. (2.2)

This ends the proof. �

COROLLARY 2.2. If T ∈ B(H ) , then

d(T,C ) =
‖T −CT ∗C‖

2
and d(T,S ) =

‖T +CT ∗C‖
2

.

Proof. Denote

A =
T +CT ∗C

2
and B =

T −CT∗C
2

.
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Easy to see A ∈ C , B ∈ S and T = A+B . Then, by (2.2), we have

d(T,C ) = d(B,C ) = ‖B‖ and d(T,S ) = d(A,C ) = ‖A‖.
This ends the proof. �

Note that CSO =∪CCc and SSO =∪CSc . Then the following result is clear from
Corollary 2.2.

COROLLARY 2.3. If T ∈ B(H ) , then

d(T,CSO) = inf
{‖T − JT∗J‖

2
: J is a conjugation on H

}

and

d(T,SSO) = inf
{‖T + JT∗J‖

2
: J is a conjugation on H

}
.

REMARK 2.4. Let T ∈ B(H ) . Recall that an operator A is called a transpose
of T if A = JT ∗J for some conjugation J on H . Note that any two transposes of T
are unitarily equivalent (see [11]). We let ZT denote the set of all transposes of T . By
Corollary 2.3, we have

d(T,CSO) =
d(T,ZT )

2
and d(T,SSO) =

d(−T,ZT )
2

.

COROLLARY 2.5. If T ∈ B(H ) , then

(i) T ∈CSO if and only if there exist conjugations {Cn}∞
n=1 so that CnT ∗Cn → T .

(ii) T ∈ SSO if and only if there exist conjugations {Cn}∞
n=1 so that CnT ∗Cn →−T .

EXAMPLE 2.6. Let e be a unit vector in H . Denote T = e⊗ e . Then T is
positive and rank-one. It follows that T ∈ CSO . Now we shall use Corollary 2.3 to
calculate d(T,SSO) .

If dimH = 1, then, by [13, page 217], SSO = {0} . Hence d(T,SSO)= ‖T‖= 1.
In what follows, we assume that dimH � 2.

Let J be a conjugation on H . Note that T and JT ∗J are both positive. Then

‖T + JT∗J‖ � 〈(T + JT∗J)e,e〉 = 〈Te,e〉+ 〈JT ∗Je,e〉
= 1+ 〈JT∗Je,e〉 � 1.

Since J can be arbitrary, in view of Corollary 2.3, it follows that d(T,SSO) � 1
2 .

Since dimH � 2, we can find another unit vector f ∈ H with 〈e, f 〉 = 0. By
[24, Thm. 2.1], there exists a conjugation J0 on H such that J0e = f . Then

J0T
∗J0 = J0(e⊗ e)J0 = (J0e)⊗ (J0e) = f ⊗ f .

It follows that ‖T +J0T ∗J0‖= ‖e⊗e+ f ⊗ f‖= 1. In view of Corollary 2.3, it follows
that d(T,SSO) � 1

2 . Therefore we obtain d(T,SSO) = 1
2 .
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EXAMPLE 2.7. Let {en}∞
n=1 be an orthonormal basis of H and T be the unilat-

eral shift on H defined as Tei = ei+1 for i � 1. We shall prove that d(T,CSO) = 1.
Since 0 ∈CSO , it follows that d(T,CSO) � ‖T‖ = 1.

If A ∈ B(H ) and ‖T −A‖< 1, then ‖(T −A)T ∗‖ < 1, I− (T −A)T ∗ is invert-
ible and

A = T − (T −A) =
(
I− (T −A)T ∗

)
T.

Since T is Fredholm and ind T =−1, it follows that A is also a Fredholm operator and
ind A = ind T = −1. So A is not complex symmetric. Thus we obtain d(T,CSO) � 1.
Therefore d(T,CSO) = 1.

3. Preannihilators

This section is devoted to the descriptions of the preannihilators of C and S . To
proceed, we first introduce some notation and terminology.

The set of all trace class operators on H will be denoted by B1(H ) with the
norm ‖ ·‖1 . Then B(H ) is the dual space of B1(H ) in the sense that each bounded
linear functional l on B1(H ) corresponds uniquely to an operator A ∈ B(H ) such
that

l(X) = tr(AX), ∀X ∈ B1(H ),

where tr(·) denotes the trace function. In this case, ‖l‖ = ‖A‖ . Let V be a linear
subspace of B(H ) . We denote by V⊥ the preannihilator of V , that is,

V⊥ = {X ∈ B1(H ) : tr(AX) = 0,∀A ∈ V }.

The main result of this section is the following theorem which describes the pre-
annihilators of C and S .

THEOREM 3.1.

(i) C⊥ = S ∩B1(H ) .

(ii) S⊥ = C ∩B1(H ) .

Note that C ∩B1(H ) and S ∩B1(H ) are complementary subspaces of B1(H ) .
Then the above theorem shows that C ∩B1(H ) is the predual of C , and S ∩B1(H )
is the predual of S .

We need an auxiliary result. The reader is referred to [6, Lem. 2.16] for a proof.

LEMMA 3.2. Let T ∈B(H ) and {en} be an orthonormal basis of H such that
Cen = en for all n .

(i) If T ∈ C then 〈Tei,e j〉 = 〈Te j,ei〉 for all i, j .

(ii) If T ∈ S , then 〈Tei,e j〉 = −〈Te j,ei〉 for all i, j .



946 S. ZHU

Now we are going to give the proof of Theorem 3.1.

Proof of Theorem 3.1. Since C is a conjugation on H , by [6, Lem. 2.11], there
exists an orthonormal basis {en} such that Cen = en for all n . For i, j � 1, denote

Ei, j = ei⊗ e j + e j ⊗ ei, Fi, j = ei⊗ e j − e j ⊗ ei.

Here ei ⊗ e j is defined as (ei ⊗ e j)(x) = 〈x,e j〉ei for x ∈ H . Clearly Ei, j,Fi, j ∈
B1(H ) .

Claim 1. Ei, j ∈ C for all i, j .
For i, j � 1 and x ∈ H , note that

C(ei ⊗ e j)x = C(〈x,e j〉ei) = 〈e j,x〉ei

= 〈Cx,Cej〉ei = 〈Cx,e j〉ei = (ei ⊗ e j)Cx.

Thus C(ei ⊗ e j) = (ei ⊗ e j)C for all i, j . It follows that CEi, jC = Ei, j = E∗
i, j . So

Ei, j ∈ C .
Claim 2. Fi, j ∈ S for all i, j .
From the proof of Claim 1, one can see that CFi, jC = Fi, j = −F∗

i, j . So Fi, j ∈ S .
(i) “⊆”. Assume that X ∈ C⊥ . Then it follows from Claim 1 that

0 = tr(XEi, j) = tr(X(ei⊗ e j))+ tr(X(e j ⊗ ei)) = 〈Xei,e j〉+ 〈Xej,ei〉,

that is, 〈Xei,e j〉 = −〈Xej,ei〉 . Noting that

〈Xei,e j〉 = 〈ei,X
∗e j〉 = 〈CX∗e j,Cei〉 = 〈CX∗Cej,ei〉

and {ei} is an orthonormal basis of H , it follows that −X = CX∗C . So X ∈ S ∩
B1(H ) .

“⊇”. Assume that X ∈ S ∩B1(H ) . For n � 1, denote by Pn the orthogonal
projection of H onto ∨{ei : 1 � i � n} , where ∨ denotes closed linear span. Then
‖PnXPn−X‖1 → 0. It suffices to prove that PnXPn ∈ C⊥ for all n .

Now fix an n � 1. For any Y ∈ C , one can verify that

tr(YPnXPn) =
∞

∑
i=1

〈YPnXPnei,ei〉

=
n

∑
i=1

〈YPnXei,ei〉 =
n

∑
i=1

〈PnXei,PnY
∗ei〉.

Note that

PnXei =
n

∑
j=1

〈PnXei,e j〉e j and PnY
∗ei =

n

∑
j=1

〈PnY
∗ei,e j〉e j.
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It follows that

tr(YPnXPn) =
n

∑
i=1

〈PnXei,PnY
∗ei〉

=
n

∑
i=1

n

∑
j=1

〈PnXei,e j〉 · 〈e j,PnY
∗ei〉

=
n

∑
i=1

n

∑
j=1

〈Xei,e j〉 · 〈Ye j,ei〉

= Δ1 + Δ2 + Δ3,

where
Δ1 = ∑

1�i< j�n

〈Xei,e j〉 · 〈Ye j,ei〉,

Δ2 = ∑
1� j<i�n

〈Xei,e j〉 · 〈Ye j,ei〉

and

Δ3 =
n

∑
i=1

〈Xei,ei〉 · 〈Yei,ei〉.

Since Y ∈ C and X ∈ S , it follows from Lemma 3.2 that

〈Yei,e j〉 = 〈Ye j,ei〉, 〈Xei,e j〉 = −〈Xej,ei〉.

Then 〈Xei,ei〉 = 0, Δ3 = 0 and

Δ2 = ∑
1� j<i�n

〈Xei,e j〉 · 〈Ye j,ei〉

= − ∑
1� j<i�n

〈Xej,ei〉 · 〈Yei,e j〉

= − ∑
1�i< j�n

〈Xei,e j〉 · 〈Ye j,ei〉 = −Δ1.

This implies that tr(YPnXPn) = 0. Since Y ∈ C is arbitrary, we deduce that PnXPn ∈
C⊥ . This proves the statement (i).

(ii) “⊆”. Assume that A ∈ S⊥ . Then, by Claim 2, we have

0 = tr(AFi, j) = tr(A(ei ⊗ e j))− tr(A(e j ⊗ ei)) = 〈Aei,e j〉− 〈Aej,ei〉,

that is, 〈Aei,e j〉 = 〈Ae j,ei〉 . Noting that

〈Aei,e j〉 = 〈ei,A
∗e j〉 = 〈CA∗e j,Cei〉 = 〈CA∗Cej,ei〉

and {ei} is an orthonormal basis of H , it follows that A = CA∗C . So A ∈ C ∩
B1(H ) .
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“⊇”. Assume that A ∈ C ∩B1(H ) . For n � 1, denote by Pn the orthogonal
projection of H onto ∨{ei : 1 � i � n} . Then ‖PnAPn−A‖1 → 0. It suffices to prove
that PnAPn ∈ S⊥ for all n .

Now fix an n � 1. For any B ∈ S , one can verify that

tr(PnAPnB) =
∞

∑
i=1

〈PnAPnBei,ei〉

=
n

∑
i=1

〈APnBei,ei〉 =
n

∑
i=1

〈PnBei,PnA
∗ei〉.

Note that

PnBei =
n

∑
j=1

〈Bei,e j〉e j and PnA
∗ei =

n

∑
j=1

〈PnA
∗ei,e j〉e j =

n

∑
j=1

〈ei,Ae j〉e j.

It follows that

tr(PnAPnB) =
n

∑
i=1

〈PnBei,PnA
∗ei〉 =

n

∑
i=1

n

∑
j=1

〈Bei,e j〉 · 〈Aej,ei〉.

Since A ∈ C and B ∈ S , by Lemma 3.2, we have

〈Ae j,ei〉 = 〈Aei,e j〉, 〈Bei,e j〉 = −〈Bej,ei〉.
Then, by the latter part of the proof of (i), one can see tr(PnAPnB) = 0. Since B ∈ S
is arbitrary, we deduce that PnAPn ∈ S⊥ . This ends the proof. �

REMARK 3.3. We let B0(H ) denote the set of all compact operators in B(H ) .
It is well known that B1(H ) is the dual space of B0(H ) in the sense that each
bounded linear functional l on B0(H ) corresponds uniquely to an operator A ∈
B1(H ) such that

l(X) = tr(AX), ∀X ∈ B0(H ).

Using similar arguments in the proof of Theorem 3.1, one can prove that

(C ∩B1(H ))⊥ = S ∩B0(H ) and (S ∩B1(H ))⊥ = C ∩B0(H ).

4. Transitivity, reflexivity and hyperreflexivity

As applications of Theorem 3.1, we shall explore in this section the transitivity,
reflexivity and hyperreflexivity of S . We first introduce some notation.

Let V be a linear subspaces of B(H ) . The reflexive closure of V is given by

Ref V = {T ∈ B(H ) : Tx ∈ V x,∀x ∈ H }.
A linear subspace V of B(H ) is called reflexive if Ref V = V , and V is called
transitive if Ref V = B(H ) . For a linear subspace V of B(H ) , it is well known that
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the following are equivalent: (i) V is transitive, (ii) V x = H for all nonzero x ∈ H ,
and (iii) V⊥ contains no rank-one operator. Recall that V is said to be hyperreflexive
if there exists a constant δ > 0 such that

d(A,V ) � δ · sup
{‖QAP‖ : P,Q are projections and QV P = {0}}, ∀A ∈ B(H ).

It is known that hyperreflexivity implies reflexivity.
In their paper [14], Kliś-Garlicka and Ptak studied several generalizations of hy-

perreflexivity. For 1 � k < ∞ , denote by Fk the set of operators on H of rank at most
k . Given a linear subspace V of B(H ) and A ∈ B(H ) , define

αk(A,V ) = sup{|tr(AX)| : X ∈ V⊥∩Fk,‖X‖1 = 1}.

The subspace V is called k -hyperreflexive if there is a constant δ > 0 such that

d(A,V ) � δ ·αk(A,V ), ∀A ∈ B(H ).

In particular, 1-hyperreflexivity coincides with hyperreflexivity (see [2, Prop. 58.1]).
In [15], Kliś-Garlicka and Ptak proved that C is transitive and not reflexive; more-

over, by describing the set C⊥ ∩F2 , they proved that C is 2-hyperreflexive.
The main results of this section is the following two theorems.

THEOREM 4.1. S is not transitive.

THEOREM 4.2. S is hyperreflexive and hence reflexive.

The proof of Theorem 4.1 is an immediate consequence of Theorem 3.1.

Proof of Theorem 4.1. Note that C ∩B1(H ) contains many rank-one operators.
In fact, for any nonzero e ∈ H , one can check that (Ce)⊗ e ∈ C ∩B1(H ) . Thus,
by Theorem 3.1 (ii), S⊥ contains rank-one operators, which implies that S is not
transitive. �

REMARK 4.3. It is well known that a skew symmetric operator can not have an
odd rank (see [13, page 217]). Thus, by Theorem 3.1 (i), C⊥ contains no rank-one
operator, which implies that C is transitive. Hence Theorem 3.1 provides another view
of Theorem 2.1 in [15].

To prove Theorem 4.2, we first make some preparation.

LEMMA 4.4. ([8], Thm. 3) If A ∈ B(H ) is C-symmetric and of rank one, then
A is of the form (Ce)⊗ e, where e ∈ H and e �= 0 .

LEMMA 4.5. If T ∈ B(H ) is C-symmetric, then

‖T‖ = sup{|〈CTx,x〉| : x ∈ H ,‖x‖ = 1}.
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Proof. Denote m = sup{|〈CTx,x〉| : x ∈ H ,‖x‖ = 1} . It is obvious that m �
‖T‖ . So it suffices to prove ‖T‖ � m . Assume that λ = ‖T‖ . It is obvious that
λ ∈ σ(|T |) . By Theorem 2 in [3], there exists a sequence of unit vectors { fn} such
that limn→∞(T −λC) fn = 0, that is, limn→∞(CT −λ ) fn = 0. For each n � 1, note that

‖T‖ = λ = |〈λ fn, fn〉| � |〈(λ −CT) fn, fn〉|+ |〈CT fn, fn〉|.
Then ‖T‖ � limsupn→∞ |〈CT fn, fn〉| � m . This ends the proof. �

Proof of Theorem 4.2. Let A ∈ B(H ) . The proof is divided into two cases.
Case 1. A ∈ C .
By Lemma 4.4, each operator in C ∩F1 has the form (Ce)⊗ e for some nonzero

e ∈ H . Then, in view of Theorem 3.1, we have C ∩F1 = S⊥∩F1 and

α1(A,S ) = sup{|tr(A(Ce⊗ e))| : e ∈ H ,‖e‖ = 1}
= sup{|〈ACe,e〉| : e ∈ H ,‖e‖ = 1}
= sup{|〈CA∗e,e〉| : e ∈ H ,‖e‖ = 1}
= ‖A∗‖ = ‖A‖ (by Lem. 4.5)
= d(A,S ). (by Thm. 2.1)

Case 2. A /∈ C .
Set

A1 =
A+CA∗C

2
and A2 =

A−CA∗C
2

.

Then A1 ∈ C , A2 ∈ S and A = A1 +A2 . It follows that d(A,S ) = d(A1,S ) . On
the other hand, noting that tr(A2X) = 0 for all X ∈ S⊥ , we deduce α1(A,S ) =
α1(A1,S ) . By the proof in Case 1, we deduce that

d(A,S ) = d(A1,S ) = α1(A1,S ) = α1(A,S ).

Thus, in either case, we have proved that d(A,S ) = α1(A,S ) . This shows that
T is hyperreflexive. �
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