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(Communicated by N.-C. Wong)

Abstract. We establish non-Archimedean analogues of the GNS construction and Krein–Milman
theorem. For this purpose, we introduce notions of a state on a non-Archimedean algebra and of a
convex subset of a non-Archimedean vector space. As an application, we construct two operator
algebras associated to topological groups over which cyclic Banach left modules correspond
to cyclic unitary representations approximated by finite dimensional cyclic semisimple unitary
representations.

Introduction

This paper is devoted to two topics. One is a non-Archimedean analogue of the
GNS construction (cf. [12] Proposition 6.7.4), and the other one is a non-Archimedean
analogue of Krein–Milman theorem (cf. [11] Theorem 5.11.1). For this purpose, we in-
troduce notions of a state and a convexity in the non-Archimedean setting. We note
that there is an open question in [10] on a formulation of a convexity in the non-
Archimedean setting. Two convexities called M-convexity and 0-convexity in [9] are
ones of answers for it, and the convexity in this paper is also one of answers, because
they satisfy non-Archimedean analogues of Krein–Milman theorem.

To begin with, we recall the GNS construction and Krein–Milman theorem in the
Archimedean analysis. A state is a positive linear functional on a C∗ -algebra A of
norm 1, which automatically sends 1 to 1 as long as A is unital. For any Hilbert
A -module H admitting a cyclic vector ξ of norm 1, the map A → C, f �→ 〈ξ | fξ 〉
forms a state on A , and is called the vector state associated to (H ,ξ ) . The classical
theorem on the GNS construction states that every state on A is a vector state. The
GNS construction played an important role in Tomita–Takesaki theory (cf. [14]), which
gave a majour breakthrough to the study of type III factor von Neumann algebras.

Let V be an R-vector space, and S a convex subset of V . A point F ∈ S is
said to be an extreme point of S if S \ {F} is convex. Krein–Milman theorem states
that every compact convex subset in a topological R-vector space coincides with the
closure of the convex hull of the subset of its extreme points. It is well-known that
the set of states on A forms a compact convex subset of the continuous dual of A
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equipped with the weak star topology by Banach–Alaoglu theorem (cf. [12] Theorem
1.5.4). A state is said to be pure if it is an extreme points of the compact convex subset
of states. By Krein–Milman theorem, every state lies in the closure of the convex hull
of the set of pure states. Namely, every state can be approximated by mixed states, i.e.
states presented as [0,1]-linear combinations of pure states. This implies that every C∗ -
algebra admits many pure states, which are morally regarded as points in the context of
non-commutative geometry. There is a well-known conjecture on a non-commutative
extension of the Stone–Weierstrass theorem related to pure states (cf. [7]), and the study
of pure states itself is significant in non-commutative geometry.

Now we explain non-Archimedean analogues of the GNS-construction and Krein–
Milman theorem. We introduce a notion of a Banach topological algebra over a valu-
ation field (cf. Definition 1.15) as a non-Archimedean analogue of a C∗ -algebra, and
define a notion of a state on a Banach topological algebra. As a counterpart of a pair
of a Hilbert module over a C∗ -algebra and a cyclic vector of norm 1, we introduce a
notion of a GNS triad over a Banach topological algebra. Roughly speaking, a GNS
triad is a triad of a Banach left module V (cf. Definition 1.25), a cyclic element of V ,
and its dual cyclic element with several conditions on norms. We give a one-to-one
correspondence between states and equivalence classes of GNS triads in Theorem 2.5.
We introduce a notion of a pure (resp. mixed) states, and compare it with the notion
of a finite dimensional simple (resp. finite dimensional cyclic semisimple) Banach left
module in Theorem 2.6 (resp. Theorem 2.8).

There are several works on non-Archimedean analogues of the convexity and
Krein–Milman theorem such as [9] Theorem 3 and [3] 2.3 Theorem. We introduce an-
other non-Archimedean analogue of the convexity, which generalises the M-convexity
in [9], and extend [9] Theorem 3 for the M-convexity to a case where the fundamental
technique in its original proof using closed hyperplanes is not necessarily applicable.
For the precise statement, see Theorem 3.3. As a consequence, we show that if the
base field is a local field or a finite field, then the compact convex set of states on a
Banach topological algebra coincides with the closure of the convex hull of the subsets
of non-Archimedean extreme points in Theorem 3.5.

As an application, we define two operator algebras associated to topological groups.
They form Banach topological algebras, and the class of cyclic Banach left modules
corresponds to the class of cyclic unitary representations which can be approximated
by finite dimensional cyclic unitary representations. For the precise statement, see The-
orem 3.9. We note that we define the notion of the purity of a state in terms of a left
ideal of a Banach topological algebra, and the subset of pure states does not coincides
with the subset of non-Archimedean extreme points. Therefore Theorem 3.5 does not
imply that every state can be approximated by mixed states, and hence the construction
of such two operator algebras is not trivial.

We explain the contents of this paper. First, §1 consists of three subsections. In
§1.1, we introduce the notion of a convexity in the non-Archimedean setting. In §1.2,
we give a non-commutative analogue of Chinese reminder theorem, which helps us to
compute the kernel of a mixed state. We note that it is well-known that Chinese re-
minder theorem does not necessarily hold in non-commutative ring theory, and hence
we restrict a class of ideals in a non-commutative ring. In §1.3, we introduce the notion
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of a Banach topological algebra, and study module theory over a Banach topological al-
gebra. Next, §2 consists of three subsections. In §2.1, we introduce the notions of a state
and a GNS triad, and formulate the non-Archimedean analogue of the GNS construc-
tion. In §2.2, we introduce the notions of a pure state and a mixed state, and study the
relations between pure (resp. mixed) states and finite dimensional simple (resp. finite
dimensional cyclic semisimple) Banach left modules. In §2.3, we study the integrality
condition on the coefficients of mixed states associated to a given finite dimensional
cyclic semisimple Banach left module. Finally, §3 consists of three subsections. In
§3.1, we study the convexity associated to Q∩ [0,1] called the Archimedean convexity.
In §3.2, we establish the non-Archimedean analogue of Krein–Milman theorem, and
apply it to the compact convex set of states. In §3.3, we define and study two operator
algebras associated to topological groups.

1. Preliminaries

Throughout this paper, a ring is assumed to be associative and unital, but is not
assumed to be commutative. We denote by k a valuation field with a fixed valuation
| − | : k → [0,∞) , by Ok ⊂ k the valuation ring of k , and by mk ⊂ Ok the maximal
ideal of Ok . We say that k is a local field if k is a complete discrete valuation field
with #Ok/mk < ∞ . We introduce several notions which play important roles in the for-
mulations of the non-Archimedean GNS construction in §2 and the non-Archimedean
Krein–Milman theorem in §3.

1.1. General convexity

To begin with, we recall the the notion of the M-convexity appeared in [9]. Let
V be a k -vector space, and S ⊂ V a subset. We say that S is semiconvex (cf. [9]
Definition 1) if (1− c)F1 + cF2 ∈ S for any (c,(Fi)2

i=1) ∈ (1+mk)× S2 , is M-convex
if ∑3

i=1 ciFi ∈ S for any (ci,Fi)3
i=1 ∈ (Ok × S)3 with ∑3

i=1 ci = 1, and is 0-convex if it
is M-convex and contains 0 ∈ V . Let C denote the formal symbol M or 0. Suppose
that S is C -convex. A subset S′ ⊂ S is said to be an extreme set (cf. [9] Definition 2)
with respect to the C -convexity if S′ is a non-empty semiconvex subset and S \ S′ is
C -convex. An x ∈ S is said to be an extreme point with respect to the C -convexity if it
lies in some minimal extreme set of S with respect to the C -convexity. We denote by
ExtC(M) the set of extreme points of V with respect to the C -convexity. We generalise
these notions.

Let R be a ring. A subset R0 ⊂ R is said to be a convexity in R if R0 forms a
multiplicative subset, i.e. a submonoid of R with respect to the multiplication.

EXAMPLE 1.1. We have the following three typical examples of convexities in
R :

(i) Every subring of R forms a convexity in R . In particular, R forms a convexity in
R .



972 T. MIHARA

(ii) The intersection of any non-empty family of convexities in R again forms a con-
vexity in R . In particular, for any c ∈ R , the intersection FR,c of the non-empty
set of convexities in R containing c forms the smallest convexity in R containing
c .

(iii) If R is a Q -algebra, then the image FR,∞ of Q∩ [0,1] in R forms a convexity in
R .

Let R0 be a convexity in R , M a left R-module, and S a subset of M . We say
that S is R0 -convex if ∑n

i=1 ciFi ∈ S for any (ci,Fi)n
i=1 ∈ (R0 × S)n with n ∈ N \ {0}

and ∑n
i=1 ci = 1. For example, M itself forms an R0 -convex subset of M , and the

intersection of any non-empty family of R0 -convex subsets again forms an R0 -convex
subset of M . We denote by co(S;R0)⊂M the R0 -convex hull of S , i.e. the smallest R0 -
convex subset of M containing S , which is given as the intersection of the non-empty
set of R0 -convex subsets of M containing S . We have the presentation co(S;R0) =
{∑n

i=1 ciFi | n∈ N\{0},(ci,Fi)n
i=1 ∈ (R0×S)n,∑n

i=1 ci = 1} . Indeed, the right hand side
contains S by 1 ∈ R0 , is contained in co(S;R0) by the definition of the R0 -convexity,
and is R0 -convex by c1c2 ∈ R0 for any (c1,c2) ∈ R2

0 . When R0 is a subring of R , then
a subset of M is R0 -convex if and only if it is of the form m+M0 ⊂ M for an m ∈ M
and a left R0 -submodule M0 ⊂ M .

EXAMPLE 1.2. By Example 1.1 (i), Ok forms a convexity in k . Let V be a
k -vector space, and S a subset of V . Then S is M-convex if and only if S is Ok -
convex, and S is 0-convex if and only if S is an Ok -submodule. Indeed, for any
(ci,Fi)n

i=1 ∈ (Ok × S)n with n ∈ N∩ [2,∞) and ∑n
i=1 ci = 1, ∑n

i=1 ciFi is contained in
the M-convex hull of S by ∑n

i=1 ciFi = ((cn−1 + cn)Fn−1 +∑n−2
i=1 ciFi)− cnFn−1 + cnFn .

A semiconvexity in R0 is a subset R00 ⊂ R0 with 1 ∈ R00 . Let R00 be a semi-
convexity in R0 . We say that S is R00 -semiconvex if (1− c)F1 + cF2 ∈ S for any
(c,(Fi)2

i=1) ∈ R00×S2 . Suppose that S is an R0 -convex subset of M . A subset S′ ⊂ S
is said to be an R00 -face of S if S′ is a non-empty R00 -semiconvex subset of M and
S\S′ is an R0 -convex subset of M , and an R00 -face S′ ⊂ S is said to be extreme if there
is no R00 -face S′′ of S with S′′ � S′ . For an R0 -convex subset S ⊂ M , we denote by
Ext(S;R0,R00) the set of extreme R00 -faces of S , and by [S;R0,R00]⊂ S the closure of
co(

⋃
S′∈Ext(S;R0,R00) S

′;R0) in S as long as M is equipped with a topology.

EXAMPLE 1.3. The subset 1 + mk ⊂ k forms a semiconvexity in the convexity
Ok in k . Let V be a k -vector space, and S a subset of V . Then S is semiconvex
if and only if S is a (1+mk)-semiconvex subset of the underlying Ok -module of V .
Suppose that S is Ok -convex. A subset S′ ⊂ S is an extreme set of S if and only if S′
is a (1+mk)-face of S by Example 1.2. In particular, a v ∈V is an extreme point of S
if and only if v is contained in an extreme (1+mk)-face of S .

EXAMPLE 1.4. Let ℘� Ok be an ideal, M an Ok -module with ℘M = {0} , and
S ⊂ M an Ok -convex subset. Then 1+℘ forms a semiconvexity in the convexity Ok

in k , and every subset of M is (1+℘)-semiconvex. Therefore we have Ext(S;Ok,1+
℘) = {{m} | m ∈ S} and [S;Ok,1+℘] = S for any topology on M .
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EXAMPLE 1.5. Let M be an Ok -module, and S ⊂ M an Ok -convex subset. If
#Ok/mk = 2, then a subset of M is Ok -semiconvex if and only if it is (1 + mk)-
semiconvex, and hence the equality Ext(S;Ok,Ok) = Ext(S;Ok,1 + mk) holds. If
#Ok/mk �= 2, then a subset of M is Ok -semiconvex if and only if it is Ok -convex,
and hence the equality Ext(S;Ok,Ok) = /0 holds. (cf. [10] III Remarque in pp. 28–29)

1.2. Non-commutative Chinese reminder theorem

Let R be a ring. For a Z-submodule M ⊂ R , we denote by R−1M (resp. MR−1 ,
R−1MR−1 ) the largest left (resp. right, two-sided) ideal of R contained in M , which
is given as { f ∈ R | ∀ f ′ ∈ R, f ′ f ∈ M} (resp. { f ∈ R | ∀ f ′ ∈ R, f f ′ ∈ M} , { f ∈ R |
∀( f ′, f ′′) ∈ R2, f ′ f f ′′ ∈ M} ). We say that R is primitive if there exists a faithful simple
left R-module. A two-sided ideal I ⊂ R is said to be a primitive ideal of R or primitive
if R/I is primitive, or equivalently if I = AnnR(M) for some simple left R-module M
(cf. [1] Proposition 15.1). We denote by Max(R) the set of left maximal ideals of R ,
and by Prim(R) the set of primitive ideals. We note that for any ℘∈ Max(R) , M/℘
forms a simple left R-module with AnnR(R/℘)=℘R−1 , and hence ℘R−1 is primitive.

PROPOSITION 1.6. Let S be a subset of Max(R) with #S � 2 and
℘+

⋂
℘′∈S\{℘}℘′ = R for any ℘ ∈ S . If R is semisimple and left Artinian, then

there is an S′ ⊂ Max(R) with S ⊂ S′ , ℘+
⋂

℘′∈S′\{℘}℘′ = R for any ℘∈ S′ , and
⋂

℘∈S′℘= {0} .

Proof. Put Σ := {S′ ⊂Max(R) | S⊂ S′,(℘+
⋂

℘′∈S′\{℘}℘′)℘∈S′ = (R)℘∈S′} . Then
we have S ∈ Σ . Since R is left Artinian, there is an S′ ∈ Σ such that

⋂
℘∈S′℘ is a

minimal element of {⋂
℘∈S′′℘ | S′′ ∈ Σ} . It suffices to show

⋂
℘∈S′℘ = {0} . As-

sume
⋂

℘∈S′℘ �= {0} . Since R is semisimple, there is a left ideal ℘0 ⊂ R with
R = ℘0 ⊕ ⋂

℘′∈S′℘′ . By the assumption, we have ℘0 �= R , and hence there is a
℘ ∈ Max(A) with ℘0 ⊂ ℘. By ℘0 ⊂ ℘ � R = ℘0 ⊕⋂

℘′∈S′℘′ , we have ℘ /∈ S′
and

⋂
℘′∈S′�{℘}℘′ �

⋂
℘′∈S′℘′ . By ℘0 ⊕⋂

℘′∈S′℘′ = R , there is a unique (a,b) ∈
℘0 ×⋂

℘′∈S′℘′ with a + b = 1. Let ℘′ ∈ S′ . By ℘′ +
⋂

℘′′∈S′\{℘′}℘′′ = R , there
is a (c,d) ∈ ℘′ × ⋂

℘′′∈S′\{℘′}℘′′ with c + d = 1. We have da ∈ ℘0 ⊂ ℘, da =
d(a+ b)− db = d − db ∈ ⋂

℘′′∈S′\{℘′}℘′′ , and hence da ∈ ⋂
℘′′∈(S′�{℘})\{℘′}℘′′ . On

the other hand, we have c ∈ ℘′ , db ∈ ⋂
℘′′∈S′℘′′ , and hence c + db ∈ ℘′ . We ob-

tain 1 = c + d = c + d(a + b) = (c + db) + da ∈ ℘′ +
⋂

℘′′∈(S′�{℘})\{℘′}℘′′ . It im-
plies S′ � {℘} ∈ Σ . This contradicts the minimality of

⋂
℘′∈S′℘′ by

⋂
℘′∈S′�{℘}℘′ �

⋂
℘′∈S′℘′ . We conclude

⋂
℘∈S′℘= {0} . �

Suppose that R is commutative. Let A be an R-algebra. A left ideal ℘⊂ A is said
to be of finite codimension if A/℘ is finitely generated as an R-module. We denote
by MaxR(A) ⊂ Max(A) the subset of left maximal ideals of finite codimension, and by
BlR(A) ⊂ Prim(A) the subset of primitive ideals of finite codimension. We show the
structure of the residue ring of the finite intersection of finite dimensional blocks.
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PROPOSITION 1.7. Let (I1, . . . , In) ∈ BlR(A)n with n ∈ N\{0} . If Ii �= I j for any
(i, j) ∈ (N∩ [1,n])2 with i �= j , then the map A/

⋂n
i=1 Ii → ∏n

i=1 A/Ii given as the direct
product of the canonical projections is an R-algebra isomorphism.

Proof. Let i ∈ N∩ [1,n] . Take a ℘i ∈ MaxR(A) with Ii ⊂℘i . Since Ii is of finite
codimension, A/Ii forms a simple R-algebra by Wedderburn’s theorem (cf. [1] 13.4
Theorem), and ℘iA−1 = AnnA(A/℘i) coincides with Ii . Since ℘i is of finite codi-
mension, M is finitely generated as a right EndA(A/℘i)-module. Therefore the map
ϕi : A/Ii = A/AnnA(A/℘i) ↪→ EndEndA(A/℘i)(A/℘i) induced by the scalar multiplica-
tion A×A/℘i → A/℘i is an R-algebra isomorphism by the simplicity of A/℘i and
Jacobson density theorem (cf. [1] 14.5 Corollary).

Put M :=
⊕n

i=1 A/℘i . By Ii �= I j , we have HomA(A/℘i,A/℘j) = {0} for any
(i, j)∈ (N∩[1,n])2 with i �= j . Therefore the embedding

⊕n
i=1 EndA(A/℘i) ↪→EndA(M)

associated to the presentation M =
⊕n

i=1 A/℘i is an R-linear isomorphism, and induces
an R-algebra isomorphism ϕ : EndEndA(M)(M) → ∏n

i=1 EndEndA(A/℘i)(A/℘i) .
Since M is finitely generated as an R-module, M is finitely generated as a right

EndA(M)-module. Therefore the map ψ : A/AnnA(M) ↪→ EndEndA(M)(M) induced by
the scalar multiplication A×M → M is an R-algebra isomorphism by the semisim-
plicity of M and Jacobson–Bourbaki density theorem (cf. [6] D 2.2). Since the map
A/

⋂n
i=1 Ii = A/AnnA(M) → ∏n

i=1 A/Ii given as the direct product of the canonical
projections coincides with the composite of the R-algebra isomorphisms ψ , ϕ , and
(
⊕n

i=1 ϕi)−1 , it is an R-algebra isomorphism. �

COROLLARY 1.8. (Non-commutative Chinese reminder theorem)
Let (℘i)n

i=1 ∈ MaxR(A)n with n ∈ N . If ℘iA−1 �= ℘jA−1 for any (i, j) ∈ (N∩ [1,n])2

with i �= j , then the map A/
⋂n

i=1℘i → ∏n
i=1 A/℘i given as the direct product of the

canonical projections is an A-linear isomorphism.

Proof. The injectivity is obvious, and the surjectivity follows from Proposition 1.7
by ℘iA−1 ∈ BlR(A) for any i ∈ N∩ [1,n] . �

COROLLARY 1.9. Let (I0, . . . , In)∈BlR(A)n+1 with n∈N\{0} and
⋂n

i=1 Ii ⊂ I0 .
If Ii �= I j for any (i, j) ∈ (N∩ [1,n])2 with i �= j , then there is an i ∈ N∩ [1,n] with
Ii = I0 .

Proof. By I0 �= A , the canonical projection ∏n
i=0 A/Ii → ∏n

i=1 A/Ii is not an iso-
morphism. Therefore the assertion follows from Proposition 1.7 and

⋂n
i=0 Ii =

⋂n
i=1 Ii .
�

1.3. Banach topological algebra

We introduce notions of a Banach topological k -algebra and a Banach left module
over a Banach topological k -algebra. For this purpose, we recall Banach k -vector
spaces. For a k -vector space V , a map ‖− ‖ : V → [0,∞) is said to be a norm if it
satisfies ‖v− v′‖� max{‖v‖,‖v′‖} for any (v,v′) ∈ V 2 , ‖v‖ > 0 for any v ∈ V \ {0} ,
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and ‖cv‖= |c| ‖v‖ for any (c,v) ∈ k×V . A normed k -vector space is a pair (V,‖−‖)
of a k -vector space V and a norm ‖−‖ : V → [0,∞) .

Let (V,‖− ‖) be a normed k -vector space. We abbreviate (V,‖− ‖) to V . We
equip V with the ultrametric V ×V → [0,∞), (v,v′) �→ ‖v− v′‖ , and call the metric
topology on V the norm topology on V . For a subset S ⊂ V , we put S�1 := {v ∈ S |
‖v‖ � 1} . We say that V is a Banach k -vector space if the ultrametric on V is com-
plete, is finite dimensional if the underlying k -vector space of V is finite dimensional,
and is unramified if ‖V‖⊂ [0,∞) is contained in the closure of |k| ⊂ [0,∞) . We prepare
the terminology on a condition on k and V appearing frequently.

DEFINITION 1.10. We refer as the hypothesis (I) to the condition that the valua-
tion of k is discrete or the norm of V is trivial.

Let V1 and V2 be normed k -vector spaces, and f : V1 →V2 a k -linear homomor-
phism. We say that f is bounded if there is a C ∈ [0,∞) with ‖ f (v)‖ � C‖v‖ for
any v ∈ V1 , and is submetric if ‖ f (v)‖ � ‖v‖ for any v ∈ V1 . If f is bounded, then
f is continuous. Conversely, if the valuation of k is non-trivial and f is continuous,
or if the norms of V1 and V2 are trivial, then f is bounded. We denote by Ban(k)
the category of Banach k -vector spaces and bounded k -linear homomorphisms, and
by Ban�1(k) ⊂ Ban(k) the subcategory of submetric k -linear homomorphisms. The
correspondence V �V�1 gives a functor Ban�1(k) → Set, which is faithful as long as
the valuation of k is non-trivial.

Let W ⊂ V be a closed k -vector subspace. Then W forms a normed k -vector
space with respect to the restriction to W of the norm of V , and V/W forms a normed
k -vector space with respect to the quotient norm (cf. [2] 1.1.6). If V is a Banach
k -vector space, then so are W and V/W by [2] Proposition 1.1.6/1, [2] Proposition
1.1.7/3, and [2] 2.8.1. Since the preimage in V of the image in V/W of an open subset
U ⊂V can be presented as

⋃
w∈W (w+U) , we have the following:

PROPOSITION 1.11. The canonical projection V � V/W is an open submetric
k -linear homomorphism.

If f is continuous, then ker( f ) ⊂ V1 forms a closed k -vector subspace because
f is continuous and V2 is T1 . In the case where V1 and V2 are Banach k -vector
spaces, we say that f is admissible if ker( f ) and im( f ) are closed and the induced
map V1/ker( f ) → im( f ) is an isomorphism in Ban(k) . By Proposition 1.11, every
admissible k -linear homomorphism between Banach k -vector spaces is bounded.

We denote by B(V1,V2) the k -vector space of bounded k -linear homomorphisms
V1 → V2 , which forms a normed k -vector space with respect to the operator norm
‖ − ‖ : B(V1,V2) → [0,∞), f �→ ‖ f‖ := inf{C ∈ [0,∞) | ∀v ∈ V1,‖ f (v)‖ � C‖v‖} .
If V2 is a Banach k -vector space, then so is B(V1,V2) . For a k -vector subspace
W ⊂ B(V1,V2) , we put W� :=

⋂
w∈W ker(w) ⊂ V1 . For a normed k -vector space V ,

we abbreviate B(V,k) to VD and B(V,V ) to B(V ) . We have the following two fun-
damental properties on bounded k -linear homomorphisms:
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PROPOSITION 1.12. Suppose that k is complete. Let V be a normed k -vector
space, and W ⊂ V a k-vector subspace. Under the hypothesis (I), for any w ∈ WD ,
there is a w̃ ∈VD with w̃|W = w|W and ‖w̃‖ = ‖w‖ .

PROPOSITION 1.13. Suppose that k is complete. Let V1 and V2 be Banach k -
vector spaces and f : V1 →V2 a k -linear homomorphism. The the following hold:

(i) If V1 is finite dimensional, then f is admissible.

(ii) If the valuation of k is non-trivial and f is continuous and surjective, then f is
admissible.

Proposition 1.12 for the case where the valuation of k is discrete immediately fol-
lows from Hahn–Banach theorem (cf. [8] Theorem 3). Proposition 1.12 for the case
where the norm on V is trivial immediately follows from the semisimplicity of the un-
derlying ring of k . Proposition 1.13 for the case where the valuation of k is non-trivial
immediately follows from [2] Proposition 2.3.3/4, [2] Corollary 2.3.3/5, and Banach’s
open mapping theorem (cf. [4] Theorem I.3.3/1). Proposition 1.13 (i) for the case where
the valuation of k is trivial is easily reduced to the following:

PROPOSITION 1.14. Suppose that the valuation of k is trivial. For any finite
dimensional normed k -vector space V , ‖V‖ ⊂ [0,∞) is a bounded subset, and the
norm topology on V coincides with the discrete topology.

Proof. When V = {0} , then the assertions are obvious. Assume V �= {0} . Take
a k -linear basis S ⊂ V . By V �= {0} , we have S �= /0 . For any (cv)v∈S ∈ k⊕S , we have
‖∑v∈S cvv‖ � maxv∈S |cv| ‖v‖ = maxv∈S ‖v‖ . Therefore ‖V‖ ⊂ [0,∞) is a bounded
subset.

We denote by P the set of subsets S′ of S such that there is a ((ci,v)v∈S′)i∈N ∈
(k⊕S′)N with 0 < ‖∑v∈S′ ci+1,vv‖ < ‖∑v∈S′ ci,vv‖ for any i ∈ N . Assume that the norm
topology on V does not coincide with the discrete topology. Then {0} ⊂ V is not
open, and hence for any ε > 0, there is a v ∈ V with 0 < ‖v‖ < ε . By a recursion,
we obtain a sequence ((ci,v)v∈S)i∈N ∈ (k⊕S)N with 0 < ‖∑v∈S ci+1,vv‖ < ‖∑v∈S ci,vv‖
for any i ∈ N . It implies S ∈ P �= /0 . Since P forms a non-empty finite partially
ordered set with respect to the inclusions, it admits a minimal element S′ . Take a
((ci,v)v∈S′)i∈N ∈ (k⊕S′)N with 0 < ‖∑v∈S′ ci+1,vv‖ < ‖∑v∈S′ ci,vv‖ for any i ∈ N . By
‖∑v∈S′ ci,vv‖ > 0, we have {v ∈ S′ | ci,v �= 0} �= /0 for any i ∈ N . By the pigeonhole
principle, there is a v0 ∈ S′ with #{i ∈ N | ci,v0 �= 0} = ∞ . We denote by (in)n∈N ∈ NN

the unique sequence with {in | n ∈ N} = {i ∈ N | ci,v0 �= 0} and in < in+1 for any
n ∈ N . We have ‖v0 + ∑v∈S′\{v0} c−1

in,v0
cin,vv‖ = |c−1

in,v0
| ‖∑v∈S′ cin,vv‖ = ‖∑v∈S′ cin,vv‖

for any n ∈ N , and hence ‖∑v∈S′\{v0} c−1
in,v0

(cin,v − cin+1,v)v‖ = ‖∑v∈S′ cin,vv‖ for any

n ∈ N . It implies that the sequence ((c−1
in,v0

(cin,v− cin+1,v))v∈S′\{v0})n∈N ∈ (k⊕(S′\{v0}))N

satisfies 0 < ‖∑v∈S′\{v0} c−1
in+1,v0

(cin+1,v − cin+2,v)v‖ < ‖∑v∈S′\{v0} c−1
in,v0

(cin,v − cin+1,v)v‖
for any n ∈ N . This contradicts the minimality of S′ . It implies that the norm topology
on V coincides with the discrete topology. �
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Now we introduce the notion of a Banach topological k -algebra. A normed k -
algebra is a pair (A,‖− ‖) of a k -algebra A and a norm ‖− ‖ : A → [0,∞) on the
underlying k -vector space of A with ‖1‖ ∈ {0,1} and ‖ f f ′‖ � ‖ f‖ ‖ f ′‖ for any
( f , f ′) ∈ A2 .

Let (A,‖− ‖) be a normed k -algebra. We abbreviate (A,‖−‖) to A . We also
regard A as a normed k -vector space. We say that A is a Banach k -algebra if A is
a Banach k -vector space. We denote by Alg�1(k) the category of Banach k -algebras
and submetric k -algebra homomorphisms.

DEFINITION 1.15. A Banach topological k -algebra is a pair (A,τ) of a Banach
k -algebra A and a topology τ on A�1 which is weaker than or equal to the relative
topology of the norm topology on A and for which A�1 forms a topological Ok -
algebra.

Let A = (A,τ) be a Banach topological k -algebra. We denote by A�1 the topo-
logical Ok -algebra (A�1,τ) , by A◦ the Banach k -algebra A , and by A op the Banach
topological k -algebra (Aop,τ) . We note that the inclusion A�1 ↪→ A◦ is an open map
by definition. We say that A is unramified if A◦ is unramified, and is finite dimen-
sional if A◦ is finite dimensional.

For Banach topological k -algebras A1 and A2 , a submetric k -algebra homo-
morphism A1 →A2 means a submetric k -algebra homomorphism ϕ : (A1)◦ → (A2)◦
whose restriction (A1)�1 → (A2)�1 is continuous. We denote by A lg�1(k) the cate-
gory of Banach topological k -algebras and submetric k -algebra homomorphisms. The
correspondence A �A◦ gives a faithful functor A lg�1(k) → Alg�1(k) , and the cor-
respondence A �A�1 gives a functor A lg�1(k) → Set , which is faithful as long as
the valuation of k is non-trivial.

For example, every Banach k -algebra A forms a Banach topological k -algebra
Adisc with respect to the relative topology on A�1 of the norm topology on A . The cor-
respondence A� Adisc gives a fully faithful functor Alg�1(k) ↪→A lg�1(k) . Therefore
the notion of a Banach topological k -algebra is a generalisation of that of a Banach k -
algebra.

EXAMPLE 1.16. Let G be a discrete group. Then the completion C0(G,k) of
k[G] with respect to the supremum norm of coefficients forms a Banach k -algebra such
that the canonical embedding k[G] ↪→ C0(G,k) is a k -algebra homomorphism, and
hence forms a Banach topological k -algebra C0(G,k)disc .

We uses similar conditions many times in this paper, and hence we introduce the
terminology on conditions on k and A for convenience.

DEFINITION 1.17. We refer as the hypothesis (II) to the condition that |k×| ⊂
(0,∞) is discrete, as the hypothesis (III) to the condition that k is a local field or a finite
field equipped with the trivial valuation, as the hypothesis (IV) to the condition that A
is unramified, as the hypothesis (V) to the condition that A�1 is Hausdorff, and as the
hypothesis (VI) to the condition that A coincides with (A◦)disc .



978 T. MIHARA

We have another important example of a Banach topological k -algebra. A topo-
logical Ok -module is said to be linear if the set of its open Ok -submodules forms
a fundamental system of neighbourhoods of 0. Let K be a topological Ok -algebra.
We say that K is flat if the underlying Ok -module of K is flat, and is linear) if the
underlying topological Ok -module of K is linear. Assume the hypothesis (III). Sup-
pose that K is a compact Hausdorff flat linear topological Ok -algebra. Then k⊗Ok K
forms an unramified Banach topological k -algebra Kcomp with respect to the norm
‖− ‖ : k⊗Ok K → [0,∞), f �→ inf{|c| | c ∈ k,∃ f ′ ∈ K, c⊗ f ′ = f} and the topology
on (k⊗Ok K,‖− ‖)�1 associated to the topology on K through the Ok -algebra iso-
morphism K → (k⊗Ok K,‖− ‖)�1, f �→ 1⊗ f . We denote by Alg�1(Ok) the cat-
egory of compact Hausdorff flat linear topological Ok -algebras and continuous Ok -
algebra homomorphisms. The correspondence K � Kcomp gives a fully faithful func-
tor Alg�1(Ok) ↪→A lg�1(k) . Therefore the notion of a Banach topological k -algebra is
also a generalisation of that of a compact Hausdorff flat linear topological Ok -algebra.

EXAMPLE 1.18. Assume the hypothesis (III). Let G be a profinite group. Then
the Iwasawa algebra Ok[[G]] forms a compact Hausdorff flat linear topological Ok -
algebra, and hence k⊗Ok Ok[[G]] forms a Banach topological k -algebra Ok[[G]]comp .

We have a structure theorem of a finite dimensional Banach topological k -algebra.

PROPOSITION 1.19. Assume the hypotheses (III) and (V). If A is finite dimen-
sional, then the hypothesis (VI) holds and A�1 forms a compact Hausdorff flat linear
topological Ok -algebra. In addition, under the hypothesis (IV), A is isomorphic to
(A�1)comp in A lg�1(k) .

Proof. We equip (A◦)�1 the relative topology of the norm topology on A◦ . Sup-
pose that A is finite dimensional. If k is a local field, then every bounded closed
subset of A◦ is compact by Proposition 1.13 (i). If k is a finite field equipped with
the trivial valuation, then A◦ is a finite discrete set by Proposition 1.14. Therefore
(A◦)�1 forms a compact Hausdorff flat linear topological Ok -algebra. The inclusion
A�1 ↪→ A◦ is an open map from a Hausdorff topological space onto (A◦)�1 , and
hence is a homeomorphism onto the image. It implies that A�1 is a compact Hausdorff
flat linear topological Ok -algebra, and A coincides with (A◦)disc . In addition, sup-
pose that A is unramified. Then the inclusion (A◦)�1 ↪→ A◦ induces an isomorphism
(A�1)comp = ((A◦)�1)comp → A◦ in A lg�1(k) . �

We formulate a Banach topological k -algebra obtained as a quotient of a given
Banach topological k -algebra. A closed ideal of A is a closed two-sided ideal of A◦ ,
and a strictly closed ideal of A is a strictly closed (cf. [2] Definition 1.1.5/1) two-sided
ideal I of A◦ such that A�1∩ I is closed in A�1 . We have a criterion for a two-sided
ideal of A◦ to be a strictly closed ideal of A .

PROPOSITION 1.20. Assume the hypotheses (II) and (IV). Then a two-sided ideal
I of A◦ is a strictly closed ideal of A if and only if A�1∩ I is closed in A�1 .
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Proof. The inverse implication is obvious. Suppose that A�1∩I is closed in A�1 .
We show that I is strictly closed in A◦ . For this purpose, we equip (A◦)�1 with
the relative topology of the norm topology on A◦ , and show that ( f +(A◦)�1)∩ I is
closed in f +(A◦)�1 for any f ∈ A◦ . Let f ∈ A◦ . Since A◦ is unramified, there is a
c∈Ok \{0} with c f ∈A�1 . By the continuity of the addition A�1×A�1 →A�1 , the
map A�1 → A�1, f ′ �→ c f + f ′ is continuous, and hence A�1 ∩ (−c f + I) = −c f +
(A�1∩ I) is closed in A�1 . By the continuity of the scalar multiplication Ok×A�1 →
A�1 , the map A�1 → A�1, f ′ �→ c f ′ is continuous, and hence A�1 ∩ (− f + I) =
A�1 ∩ c−1(A�1 ∩ (−c f + I)) is closed in A�1 . By the continuity of the identity map
(A◦)�1 → A�1 , (A◦)�1 ∩ (− f + I) is closed in (A◦)�1 . By the continuity of the
addition A◦ ×A◦ → A◦ , the map A◦ → A◦, f ′ �→ − f + f ′ is continuous, and hence
( f + (A◦)�1) ∩ I = −(− f ) + ((A◦)�1 ∩ (− f + I)) is closed in f + (A◦)�1 . Since
{ f + (A◦)�1 | f ∈ A◦} forms an open covering of A◦ , I is closed in A◦ . By the
assumption, ‖A◦ \ {0}‖ ⊂ (0,∞) is discrete. Therefore every closed ideal of A◦ is
strictly closed by [2] Proposition 1.1.5/4. In particular, I is strictly closed in A◦ . �

Let I ⊂A◦ be a closed ideal of A . Then (A◦/I)�1 admits the strongest topology
which is weaker than or equal to the relative topology of the norm topology on A◦/I ,
for which (A◦/I)�1 forms a topological Ok -algebra, and for which the Ok -algebra
homomorphism A�1 → (A◦/I)�1, f �→ f + I is continuous. We state the existence as
a proposition in order to refer later.

PROPOSITION 1.21. We denote by P the set of topologies τ on (A◦/I)�1 which
is weaker than or equal to the relative topology of the norm topology on A◦/I , for
which (A◦/I)�1 forms a topological Ok -algebra, and for which the Ok -algebra ho-
momorphism A�1 → (A◦/I)�1, f �→ f + I is continuous. Then P admits the strongest
element.

Proof. Since P admits the weakest element { /0,(A◦/I)�1} , P is not empty. The
strongest element of P is given as the pull-back of the topology on the topological
Ok -algebra ∏τ∈P((A◦/I)�1,τ) through the diagonal embedding

(A◦/I)�1 ↪→ ∏
τ∈P

((A◦/I)�1,τ). �

We denote by A /I the Banach topological k -algebra given as the pair of the
Banach k -algebra A◦/I and the topology on (A◦/I)�1 which is the strongest element
of P in Proposition 1.21.

EXAMPLE 1.22. If I is a strictly closed ideal of A , then the restriction A�1 →
(A◦/I)�1 of the canonical projection A◦ � A◦/I is surjective by the definition of
the strict closedness, and hence the topology on (A /I)�1 coincides with the topology
associated to the quotient topology on A�1/(A�1∩ I) through the Ok -algebra isomor-
phism A�1/(A�1∩ I) → (A◦/I)�1 .
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EXAMPLE 1.23. Under the hypothesis (VI), the topology on (A /I)�1 coincides
with the restriction of the norm topology on A◦/I by the continuity of the canonical
projection A◦� (A /I)◦ = A◦/I , and hence A /I coincides with (A◦/I)disc .

We have a structure theorem of a finite dimensional quotient of a Banach topolog-
ical k -algebra.

PROPOSITION 1.24. Let I ⊂ A◦ be a closed ideal of A . Assume either one of
the two conditions that the hypotheses (III), (IV), (V) hold and A�1 ∩ I is closed in
A�1 , or that the hypothesis (VI) holds and k is complete. If A◦/I is finite dimensional,
then A /I coincides with (A◦/I)disc .

Proof. If k is complete and A coincides with (A◦)disc , then A /I coincides with
(A◦/I)disc by Example 1.23. Suppose that k is a local field or a finite field equipped
with the trivial valuation, A◦ is unramified, A�1 is Hausdorff, and A�1 ∩ I is closed
in A�1 . Then I is a strictly closed ideal of A by Proposition 1.20, and hence the
canonical projection A◦ � A◦/I induces a homeomorphic Ok -algebra isomorphism
A�1/(A�1 ∩ I) → (A /I)�1 by Example 1.22. In particular, (A /I)�1 is Hausdorff,
and A /I coincides with ((A /I)◦)disc by Proposition 1.19. �

Now we introduce the notion of a Banach left A -module. Let A be a normed
k -algebra. A normed left A-module is a pair (V,‖− ‖) of a left A-module V and a
norm ‖−‖ : V → [0,∞) of the underlying k -vector space of V with ‖ f v‖ � ‖ f‖ ‖v‖
for any ( f ,v) ∈ A×V .

Let (V,‖−‖) be a normed left A-module. We abbreviate (V,‖−‖) to V . We
also regard V as a normed k -vector space. We say that V is a Banach left A-module
if V is a Banach k -vector space. We denote by Ban(A) the category of Banach left
A-modules and bounded A-linear homomorphisms.

DEFINITION 1.25. A Banach left A -module is a Banach left A◦ -module V such
that the scalar multiplication A�1×V →V is continuous. A Banach right A -module
is a Banach left A op -module. We denote by Ban(A ) ⊂ Ban(A◦) the full subcategory
of Banach left A -modules.

For example, every Banach left A-module forms a Banach left Adisc -module with
respect to the action of (Adisc)◦ = A , and hence the inclusion Ban(Adisc) ↪→ Ban(A) is
the identity of a category. Therefore the notion of a Banach left module over a Banach
topological k -algebra is a generalisation of that of a Banach left module over a Banach
k -algebra.

EXAMPLE 1.26. For a topological group G , a unitary k -linear representation
of G is a pair (V,ρ) of an unramified Banach k -vector space V and a continuous
map ρ : G×V →V giving a k -linear action of G on V with ‖ρ(g,v)‖ = ‖v‖ for any
(g,v) ∈ G×V . Let G be a discrete group, and (V,ρ) a unitary k -linear representation
of G . Then there is a unique structure on V as a Banach left C0(G,k)-module with
gv = ρ(g,v) for any (g,v) ∈ G×V by the definition of the norm of C0(G,k) . In
particular, V forms a Banach left C0(G,k)disc -module

∫
G(V,ρ) .
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We have another example of a Banach left module over a Banach topological k -
algebra. Let K be a compact Hausdorff flat linear topological Ok -algebra. A Banach
left K -module is a Banach k -vector space V equipped with a continuous Ok -bilinear
homomorphism K×V →V for which V forms a left K -module with ‖ f v‖� ‖v‖ for
any ( f ,v) ∈ K ×V . We denote by Ban(K) the category of Banach left K -modules
and bounded K -linear homomorphisms. Every Banach left K -module V forms a Ba-
nach left Kcomp -module Vcomp with respect to the natural action of k⊗Ok K , and the
correspondence V �Vcomp gives an equivalence Ban(K)→Ban(Kcomp) of categories.
Therefore the notion of a Banach left module over a Banach topological k -algebra is
also a generalisation of a Banach left module over a compact Hausdorff flat linear topo-
logical Ok -module.

EXAMPLE 1.27. Assume the hypothesis (III). Let G be a profinite group, and
(V,ρ) a unitary k -linear representation of G . By the argument in [13] p. 11, there
is a unique structure on V as a topological left Ok[[G]]-module with gv = ρ(g,v)
for any (g,v) ∈ G×V . We note that k is assumed to be a local field of characteris-
tic 0 in [13], but the corresponding argument is also valid under the hypothesis (III).
In particular, V forms a Banach left Ok[[G]]-module, and hence forms a Banach left
Ok[[G]]comp -module

∫
G(V,ρ) . When G is a finite discrete group, then there is a unique

G-equivariant k -algebra isomorphism C0(G,k)disc → Ok[[G]]comp in A lg�1(k) by the
definitions, through which the convention of

∫
G(V,ρ) is compatible with Example 1.26.

Let V be a Banach left A -module. By the continuity of the scalar multiplication
A�1 ×V → V , the map A�1 → V, f �→ f v is continuous for any v ∈ V . Therefore
A�1∩AnnA◦(V ) =

⋂
v∈V AnnA�1(v) is closed in A�1 . The scalar multiplication A◦×

V → V induces an injective k -algebra homomorphism A◦/AnnA◦(V ) ↪→ B(V ) , and
hence we obtain the following by Proposition 1.24:

PROPOSITION 1.28. Assume either one of the two conditions that the hypotheses
(III), (IV), (V) hold, or that the hypothesis (VI) holds and k is complete. If V is finite
dimensional, then A /AnnA◦(V ) coincides with (A◦/AnnA◦(V ))disc .

Let v ∈ V and w ∈ VD . We denote by v ∗w : A◦ → k the map given by set-
ting (v ∗w)( f ) := w( f v) for an f ∈ A◦ . Then we have ‖(v ∗w)( f )‖ = ‖w( f v)‖ �
‖w‖ ‖ f v‖ � ‖w‖ ‖ f‖ ‖v‖ for any f ∈ A◦ , and hence v∗w forms a bounded k -linear
homomorphismwith ‖v∗w‖� ‖v‖ ‖w‖ . We will use the correspondence (w,v)� v∗w
in order to formulate a non-Archimedean analogue of the GNS construction in §2.1.

A Banach left A -submodule of V is a closed left A◦ -module of V , which forms
a Banach left A -submodule with respect to the restrictions of the norm and the scalar
multiplication. We say that V is simple if V admits exactly two Banach left A◦ -
modules, is isotypic if AnnA◦(V ) ∈ Blk(A◦) , and is semisimple if the underlying k -
vector space of V is the direct sum of a family of the underlying k -vector spaces of
simple Banach left A -submodules. By [2] Proposition 2.3.3/4, we have the following:
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PROPOSITION 1.29. Suppose that k is complete. Let ((A,‖−‖),τ) be a Banach
topological k -algebra, and (V,‖−‖) a finite dimensional Banach left ((A,‖−‖),τ)-
module. Then (V,‖− ‖) is a simple (resp. semisimple) Banach left ((A,‖ − ‖),τ)-
module if and only if V is a simple (resp. semisimple) left A-module.

Let V be a Banach left A -module. A v ∈V is said to be cyclic if A◦v is dense in
V . We say that V is cyclic if V admits a cyclic element. In particular, if V is simple,
then V is cyclic. We regard VD as a Banach right A -module in a natural way. A
w ∈ VD is said to be cocyclic if (wA◦)� = {0} . By Proposition 1.13 (i), Proposition
1.14, and [2] Proposition 2.3.3/4, we have the following:

PROPOSITION 1.30. Suppose that k is complete and V is finite dimensional.
Then a w ∈VD is cocyclic if and only if w is cyclic.

As a consequence, we obtain the following:

COROLLARY 1.31. Suppose that k is a complete valuation field with #k �= 2 and
V is a finite dimensional cyclic semisimple Banach left A -module with V �= {0} . Then
for any cyclic element v ∈V , there is a cocyclic element w ∈VD with w(v) = 1 .

Proof. By Proposition 1.13 (i) and Proposition 1.29, VD forms a finite dimen-
sional cyclic semisimple Banach right A -module. Take a cyclic element w′ ∈VD and
a family S of simple Banach left A -submodules of V such that the underlying k -
vector space of V is the direct sum of the underlying k -vector spaces of elements of S .
By V �= {0} , we have S �= /0 . For a W ∈ S , we denote by w′

W ∈W the composite of
the projection V �W associated to S , the inclusion W ↪→ V , and w′ . Then we have
w′ = ∑W∈S w′

W , and ∑W∈S cW w′
W is cyclic for any (cW )W∈S ∈ (k×)S . By #k �= 2, there

is a (cW )W∈S ∈ (k×)S with (∑W∈S w′
W )(v) = 1, and ∑W∈S w′

W is cocyclic by Proposi-
tion 1.30. �

2. Non-Archimedean states

In this section, we assume that k is complete so that a finite dimensional Banach
k -vector space is not necessarily trivial. Let A denote a Banach topological k -algebra.
We introduce a notion of a state on A , and study a non-Archimedean analogue of the
GNS construction.

2.1. Non-Archimedean GNS construction

Let F be a bounded k -linear homomorphism A◦ → k . We put ℘F := A −1◦ ker(F)
and IF := A −1◦ ker(F)A −1◦ . By the continuity of the multiplication A◦ ×A◦ → A◦ ,
℘F and IF are closed in A◦ . The map A◦ → [0,∞), f �→ inf{C ∈ [0,∞) | ∀ f ′ ∈
A◦, |F( f ′ f )|�C‖ f ′‖} induces a well-defined norm ‖−‖F of the underlying k -vector
space of A◦/℘F , which satisfies ‖v‖F � ‖F‖ ‖v‖ for any v ∈ A◦/℘F , ‖ f v‖F �
‖ f‖ ‖v‖F for any ( f ,v) ∈ A◦ ×A◦/℘F , and |F( f )| � ‖ f +℘F‖F for any f ∈ A◦ .
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We denote by VF the completion of the underlying left A◦ -module of A◦/℘F with
respect to ‖ − ‖F , and regard it as a Banach left A◦ -module. We also denote by
‖− ‖F the extension of ‖− ‖F : A◦/℘F → [0,∞) to VF . Then the image vF ∈ VF

of 1+℘F ∈ A◦/℘F forms a cyclic element, and F induces a well-defined bounded
k -linear homomorphism wF : VF → k . We put TF := (VF ,vF ,wF ) , and study the corre-
spondence F � TF , which is a non-Archimedean analogue of the GNS construction.

PROPOSITION 2.1. The equality ‖v‖F = ‖v∗wF‖ holds for any v ∈VF , and wF

is submetric and cocyclic.

Proof. Let f ∈ A◦ . We show ‖ f +℘F‖F = ‖( f +℘F)∗wF‖ . For any f ′ ∈ A◦ ,
we have |(( f +℘F)∗wF)( f ′)|= |wF( f ′ f +℘F)|= |F( f ′ f )|� ‖ f ′‖ ‖ f +℘F‖F . Since
the image of A◦ in VF is dense, we obtain ‖( f +℘F) ∗wF‖ � ‖ f +℘F‖F . For any
C ∈ (0,‖ f +℘F‖F) , there is an f ′ ∈A◦ with C‖ f ′‖< |F( f ′ f )|= |(( f +℘F)∗wF)( f ′)|
by the definition of ‖− ‖F . It ensures ‖ f +℘F‖F = ‖( f +℘F) ∗wF‖ . Since the
image of A◦ in VF is dense, the map VF → A D◦ , v �→ v ∗wF is isometric. We have
|wF( f +℘F)| = |F( f )| = |(( f +℘F) ∗wF )(1)| � ‖ f +℘F‖F for any f ∈ A◦ . Since
the image of A◦ in VF is dense, wF is submetric. For any v ∈ ⋂

f∈A◦ ker(wF f ) , we
have v∗wF = 0, and hence ‖v‖F = ‖v∗wF‖ = 0. It ensures that wF is cocyclic. �

We say that F is positive if the map A�1 →A D◦ , f �→ ( f f ′)∗F is continuous for
any f ′ ∈ A◦ , is a pre-state on A if F is positive and satisfies F(1) = 1, and is a state
on A if F is a submetric pre-state on A .

PROPOSITION 2.2. Suppose that F is positive. Then the following hold:

(i) The map A�1 → A D◦ , f �→ ( f v)∗wF is continuous for any v ∈VF .

(ii) The Banach left A◦ -module VF forms a Banach left A -module.

(iii) The equality AnnA◦(VF) = IF holds, and A�1∩ IF is closed in A�1 .

(iv) Assume the hypotheses (II), (IV), and (V), or assume the hypothesis (VI). Then
(A /IF)�1 is again Hausdorff.

(v) Assume the hypotheses (III), (IV) and (V), or assume the hypothesis (VI). If VF is
finite dimensional, then A /IF coincides with (A◦/IF)disc .

Proof. We show the assertion (i). Let v ∈ VF . For any f ∈ A�1 and ε ∈ (0,∞) ,
there is an f ′ ∈ A◦ with ‖( f ′ +℘F)− v‖F < ε by the definition of VF , and we have
{ f ′′ ∈ A�1 | ‖( f ′′ f ′)∗F − ( f f ′)∗F‖ < ε} = { f ′′ ∈ A�1 | ‖( f ′′v)∗wF − ( f v)∗wF‖ <
ε} . It ensures the continuity of the map A�1 → A D◦ , f �→ ( f v)∗wF by the positivity
of F .

We show the assertion (ii). The map VF →A D◦ , v �→ v∗wF is isometric by Propo-
sition 2.1, and hence the map A�1 →VF , f �→ f v is continuous for any v ∈VF by the
assertion (i). We show the continuity of the scalar multiplication A�1×VF →VF . Let
U3 be an open subset of VF with f v ∈U3 for an ( f ,v) ∈A�1×VF . Take an ε ∈ (0,∞)
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with {v′ ∈ VF | ‖v′ − f v‖F < ε} ⊂U3 . Put U1 := { f ′ ∈ A�1 | ‖ f ′v− f v‖F < ε} and
U2 := {v′ ∈ VF | ‖v′ − v‖F < ε} . By the continuity of the map A�1 → VF , f �→ f v ,
U1 forms an open neighbourhood of f in A�1 . For any ( f ′,v′) ∈U1 ×U2 , we have
‖ f ′v′ − f v‖F �max{‖ f ′(v′ − v)‖F ,‖ f ′v− f v‖F} < ε , and hence f ′v′ ∈U3 . It implies
the continuity of the scalar multiplication A�1×VF →VF .

We show the assertion (iii). We have AnnA◦(VF) ⊂ AnnA◦(vF) = IF . Since vF

is cyclic, we obtain AnnA◦(VF) = IF . We show that A�1 ∩ IF is closed in A�1 . For
any v ∈ VF , AnnA�1(v) is closed in A�1 , because the map A�1 → VF , f �→ f v is
continuous and VF is T1 . We have A�1∩ IF = A�1∩AnnA◦(VF) =

⋂
v∈VF

AnnA�1(v) ,
and hence A�1∩ IF is closed in A�1 . The assertion (v) follows from the assertion (iii)
by Proposition 1.24.

We show the assertion (iv). If A = (A◦)disc , then we have A /IF = (A◦/IF)disc

by Example 1.23. Suppose that |k×|⊂ (0,∞) is discrete and A◦ is unramified. Then IF
is a strictly closed ideal of A by Proposition 1.20, and hence the canonical projection
A◦� A◦/IF induces a homeomorphic Ok -algebra isomorphism A�1/(A�1 ∩ IF) →
(A /IF)�1 by Example 1.22. In particular, (A /IF)�1 is Hausdorff. �

We denote by S(A ) ⊂ A D◦ the subset of pre-states on A . Then S(A )�1 coin-
cides with the set of states on A by definition. By the continuity of the structure of
A D◦ as a k -vector space, the subset of A D◦ consisting of positive functionals forms a
k -vector subspace, and S(A ) (resp. S(A )�1 ) forms a k -convex subset of A D◦ (resp.
an Ok -convex subset of (A D◦ )�1 ).

EXAMPLE 2.3. Let A be a Banach k -algebra. Since the inclusion (Adisc)�1 ↪→
(Adisc)◦ is a homeomorphism onto the image, an F ∈ AD is a pre-state on Adisc if and
only if F(1) = 1 by Proposition 2.1 and the continuity of the multiplication A◦×A◦ →
A◦ .

A pre-GNS triad over A is a triad (V,v,w) of a Banach left A -module V , a
cyclic element v ∈ V , and a cocyclic element w ∈ VD with w(v) = 1 such that the
k -linear homomorphism V → A D◦ , v �→ v∗w is admissible. A GNS triad over A is a
pre-GNS triad (V,v,w) over A with ‖v‖ = 1, ‖w‖ = 1, and ‖v′‖ = ‖v′ ∗w‖ for any
v′ ∈V .

EXAMPLE 2.4. Let V be a Banach left A -module, v ∈ V a cyclic element, and
w ∈ VD a cocyclic element with w(v) = 1. If V is finite dimensional, then (V,v,w)
forms a pre-GNS triad over A by Proposition 1.13 (i).

Let (V1,v1,w1) and (V2,v2,w2) be pre-GNS triads over A . A bounded (resp. sub-
metric) A -linear homomorphism (V1,v1,w1) → (V2,v2,w2) means a bounded (resp.
submetric) A◦ -linear homomorphism f : V1 →V2 with f (v1) = v2 and w2 ◦ f = w1 . A
bounded A -linear homomorphism (V1,v1,w1) → (V2,v2,w2) is unique and has dense
image, because v1 and v2 are cyclic. We denote by GNS(A ) the category of pre-
GNS triads over A and bounded A -linear homomorphisms, and by GNS�1(A ) ⊂
GNS(A ) the subcategory of GNS triads over A and submetric A -linear homomor-
phisms.
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Let T = (V,v,w) be a pre-GNS triad over A . We denote by FT : A◦ → k the map
given by setting FT ( f ) := w( f v) for an f ∈ A◦ . We obtain a correspondence T � FT ,
which is a non-Archimedean analogue of the construction of a vector state (cf. [12]
(6.7.14)).

THEOREM 2.5. (Non-Archimedean GNS construction) The following hold:

(i) For any pre-state (resp. state) F on A , TF forms a pre-GNS (resp. GNS) triad
over A , and FTF coincides with F .

(ii) For any pre-GNS (resp. GNS) triad T over A , FT forms a pre-state (resp.
state) on A , and there is a unique isomorphism TFT → T in GNS(A ) (resp.
GNS�1(A )).

Proof. Let F be a pre-state on A . We have wF(vF) = F(1) = 1, and hence TF

forms a pre-GNS triad by Proposition 2.1 and Proposition 2.2 (ii). We obtain FTF ( f ) =
wF( f vF ) = wF( f +℘F) = F( f ) for any f ∈A◦ , and hence FTF coincides with F . The
map A◦ → A D◦ , v �→ v ∗wF is isometric by Proposition 2.1, and hence is admissible.
Therefore TF forms a pre-GNS state. Suppose that F is a state on A . Then we have
1 = |wF(vF)|� ‖wF‖ ‖vF‖F � ‖wF‖ ‖vF‖� ‖wF‖ ‖1‖= ‖wF‖� ‖F‖� 1, and hence
‖wF‖ = ‖F‖ = 1 and ‖vF‖F = ‖vF‖ = 1. Therefore TF forms a GNS triad over A .

Let T = (V,v,w) be a pre-GNS triad over A . By the continuity of the scalar
multiplication A�1 ×V → V , the map A�1 → V, f �→ f v′ is continuous for any v′ ∈
V . Since w is cocyclic, the admissible k -linear homomorphism ι : V → A D◦ , v �→
v ∗w is injective. For any f ∈ A◦ , we have |w( f v)| � ‖w‖ ‖ f v‖ � ‖w‖ ‖ f‖ ‖v‖ �
(‖w‖ ‖v‖)‖ f‖ and f ∗ FT = f ∗ (v ∗w) = ( f v) ∗w . Therefore FT is a bounded k -
linear homomorphism, and the map A�1 → A D◦ , f �→ ( f f ′) ∗FT coincides with the
map given as the composite of the continuous maps A�1 → V, f �→ f f ′v and V →
A D◦ , v′ �→ v′ ∗w . We have FT (1) = w(v) = 1, and hence FT forms a pre-state on A .

By f ∗FT = f ∗(v∗w)= ( f v)∗w for any f ∈A◦ , the map A◦ →A D◦ , f �→ ( f v)∗
w induces an isometric k -linear homomorphism VFT ↪→ A D◦ onto the closed image.
It factors through ι , because ( f v) ∗w lies in the image of V for any f ∈ A◦ . The
resulting map ι ′ : VFT ↪→ V is an injective admissible A◦ -linear homomorphism with
dense image, and hence is an isomorphism in Ban(A ) . Indeed, we have ι ′( f +℘F) =
f v for any f ∈ A◦ , and hence the image of VFT in V contains the dense subset A◦v .
By the assertion (i), TFT forms a pre-GNS triad over A , and ι ′ gives an isomorphism
TFT → T in GNS(A ) . Suppose that T is a GNS triad over A . Then we have ‖FT‖�
‖w‖ ‖v‖ = 1, and hence FT is a state on A . By ‖v′‖ = ‖v′ ∗w‖ for any v′ ∈ V , ι is
isometry, and hence so is ι ′ . �

2.2. Pure states and mixed states

Let F be a pre-state on A . We say that F is pure if ℘F ∈ Maxk(A◦) . We note
that it is not good to formulate the notion of the purity of a state in a way similar to the
Archimedean case, because there is no non-trivial extreme set with respect to the M-
convexity consisting of a single point by [9] Theorem 4. We denote by PS(A )⊂ S(A )
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the subset of pure pre-states on A . We have a characterisation of the purity of a pre-
state using the GNS construction, which is an analogue of [12] Theorem 6.8.11.

THEOREM 2.6. The following hold:

(i) Let F ∈ PS(A ) . Then VF forms a finite dimensional simple Banach left A◦ -
module.

(ii) Let V be a finite dimensional simple Banach left A -module. Then there is a pair
(F, ι) of an F ∈ PS(A ) and an isomorphism ι : VF →V in Ban(A ) .

(iii) Let V be a finite dimensional simple Banach left A -module. If the hypothesis
(II) holds and V is unramified, then there is a pair (F, ι) of an F ∈ PS(A )�1

and an isomorphism ι : VF →V in Ban(A ) .

Proof. Let F ∈ PS(A ) . Then the underlying left A◦ -module of VF is simple,
and hence VF forms a finite dimensional simple Banach left A -module by Proposition
1.29.

Let V be a finite dimensional simple Banach left A -module. Since V admits
exactly two Banach left A -submodule, we have V �= {0} . Take a v ∈ V \ {0} . By
Proposition 1.13 (i), there is a w ∈VD with w(v) = 1. Every non-zero element of V or
VD is a cyclic element whose annihilator is a maximal one-sided ideal by Proposition
1.29. Therefore v is a cyclic element with ℘FT = AnnA◦(v) ∈ Maxk(A◦) , and w is a
cocyclic element by Proposition 1.30. By Proposition 1.11 and Proposition 1.13 (i), the
k -linear homomorphism A◦ � V, f �→ f v is admissible. Therefore (V,v,w) forms a
pre-GNS triad over A .

Suppose that |k×|⊂ (0,∞) is discrete and that V is unramified. Take a c∈ k× with
|c| = ‖v‖ , and replace v by c−1v so that we obtain ‖v‖ = 1. Since the k -linear homo-
morphism kv→ k, c′v �→ c′ is of operator norm 1, there is a w′ ∈VD with w′(c−1v)= 1
and ‖w′‖ = 1 by Proposition 1.12. Replace w by w′ so that we obtain ‖w‖ = 1. Then
(V,v,w) forms a GNS triad over A . �

We say that F is isotypic if IF ∈ Blk(A ) . If F is pure, then F is isotypic because
A◦/℘F is a faithful simple left A◦ -module with IF = AnnA(A/℘F) . We denote by
IS(A ) ⊂ S(A ) the subset of isotypic pre-states and by IS(A , I) ⊂ IS(A ) the subset
of isotypic pre-states F with IF = I , and put PS(A , I) := PS(A )∩ IS(A , I) for an
I ∈ Blk(A◦) . We show that isotypic pre-states are spanned by pure pre-states sharing
blocks.

PROPOSITION 2.7. Assume the hypotheses (III), (IV), and (V), or assume the hy-
pothesis (VI). Let F ∈ S(A ) . Then the following are equivalent:

(i) The pre-state F is isotypic.

(ii) There is a (ci,Fi)n
i=1 ∈ (k×PS(A ))n with n ∈ N\{0} , ∑n

i=1 ci = 1 , ∑n
i=1 ciFi =

F , and IFi = IF for any i ∈ N∩ [1,n] .

(iii) There is an I ∈ Blk(A◦) with I ⊂ IF .
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Proof. The implication from (ii) to (iii) follows from the fact that every two-sided
ideal of A◦ belonging to Blk(A◦) is maximal by Wedderburn’s theorem (cf. [1] 13.4
Theorem), and the implication (iii) to (i) follows from Jacobson density theorem (cf.
[1] 14.5 Corollary). Suppose that F is isotypic. Replacing A by A /IF , we may
assume that A coincides with (A◦)disc by Proposition 2.2 (v) and that there is a k -
algebra isomorphism ι : Mn(K) → A◦ with n ∈ N \ {0} for a division k -algebra K
finite dimensional as a k -vector space by Wedderburn’s theorem. Then an F ∈ A D◦ is
a pre-state on A if and only if F(1) = 1 by Example 2.3.

Since A◦ is a simple k -algebra with dimk A◦ < ∞ , we have IF = {0} and S(A ) =
PS(A ) = PS(A , IF) . We denote by Ei, j ∈Mn(K) the matrix whose (i, j)-th entry is 1
and whose other entries are 0 for an (i, j) ∈ (N∩ [1,n])n . We identify K with the image
of the embedding K ↪→ A◦, c �→ ∑n

i=1 ι(cEi,i) . Then K forms a Banach k -algebra by
[2] Proposition 2.3.3/4. Moreover, the embedding �i, j : K ↪→ A◦, c �→ ι(cEi, j) is an

isomorphism in Ban(K) for any (i, j) ∈ (N∩ [1,n])n , and the bijective map � : Kn2 →
A◦, (ci, j)n

i, j=1 �→ ∑n
i, j=1 ι(ci, jEi, j) is an isomorphism in Ban(K) by Proposition 1.13

(i). We denote by pi, j : A◦ → K the continuous K -linear homomorphism given as the

composite of �−1 and the (i, j)-th projection Kn2 → K for a (i, j) ∈ (N∩ [1,n])2 for an
(i, j)∈ (N∩[1,n])2 . By Proposition 1.13 (i), Kdisc admits a pre-state ϕ : K → k . We put
S0 := {i ∈ N∩ [0,1] | F(ι(Ei,i)) = 0} , S1 := (N∩ [1,n])\S0 , Fi,1 := ϕ ◦ pi,i +∑i−1

j=1 F ◦
pi, j ∈ PS(A , IF) for an i∈N∩ [1,n] , Fi,−1 := ϕ ◦ pi,i−∑n

j=i F ◦ pi, j for an i∈N∩ [1,n] ,
Fi,(0,1) := ϕ ◦ pi,i +F ◦ pi,i ∈ PS(A , IF) for an i ∈ S0 , Fi,(0,−1) := ϕ ◦ pi,i for an i ∈ S0 ,

ci := F(ι(Ei,i)) ∈ k× for an i ∈ S1 , and Fi,0 := c−1
i F ◦ pi,i for an i ∈ S1 . Then we

have ∑i∈S1
ci = 1, F = ∑n

i=1(Fi,1 −Fi,−1)+ ∑i∈S0
(Fi,(0,1)−Fi,(0,−1))+ ∑i∈S1

ciFi,0 , and
Fi, j ∈ PS(A , IF) for any (i, j) ∈ (N∩ [1,n])×{−1,0,1,(0,−1),(0,1)} . �

We study the relation between decompositions of semisimple cyclic Banach left
A -modules and of mixed states on A . Let k0 ⊂ k be a convexity (cf. Example 1.1). We
say that F is k0 -mixed if there is a (ci,Fi)n

i=1 ∈ (k0×PS(A ))n with n∈N , ∑n
i=1 ci = 1,

and ∑n
i=1 ciFi =F . We denote by MS(A ;k0)⊂ S(A) the k0 -convex subset of k0 -mixed

pre-states on A , which coincides with co(PS(A );k0) by definition. We will deal with
several convexities in k in §2.3, but only deal with the full-convexity k in k in this
subsection. We state our main theorem on mixed pre-states.

THEOREM 2.8. Assume the hypotheses (III), (IV), and (V), or assume the hypoth-
esis (VI). Let F ∈ S(A ) . Then VF is a finite dimensional semisimple Banach left
A -module if and only if F ∈ MS(A ;k) .

In order to verify Theorem 2.8, we study a linear combination of isotypic pre-
states, and show the relation between the annihilator and the decomposition.

LEMMA 2.9. Let F ∈ S(A ) . For any pair ((ci)n
i=1,(Fi)n

i=1) of a (ci)n
i=1 ∈ (k×)n

and an (Fi)n
i=1 ∈ IS(A )n with n ∈ N and ∑n

i=1 ciFi = F , if IFi �= IFj for any (i, j) ∈
(N∩ [1,n])2 with i �= j , then the equality ℘F =

⋂n
i=1℘Fi holds.

Proof. We have
⋂n

i=1 kerFi ⊂ kerF and hence
⋂n

i=1℘Fi ⊂℘F . Let f ∈℘F . By
Proposition 1.7, there is an (ei)n

i=1 ∈ A n◦ with ∑n
i=1 ei = 1 and eiA◦ ⊂ IFj for any
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(i, j) ∈ (N∩ [1,n])2 with i �= j . Let i ∈ N∩ [1,n] . For any f ′ ∈A◦ , we have Fi( f ′ f ) =
Fi(ei f ′ f ) = c−1

i F(ei f ′ f ) = 0. It implies f ∈℘Fi . We obtain f ∈ ⋂n
i=1℘Fi . �

Proof of Theorem 2.8. First, suppose F ∈ MS(A ;k) . Put F = ∑n
i=1 ciFi ∈ S(A )

with n ∈ N , ((ci)n
i=1,(Fi)n

i=1) ∈ (k× ×PS(A ))n , ∑n
i=1 ci = 1, and ∑n

i=1 ciFi = F . We
have

⋂n
i=1 kerFi ⊂ kerF and hence

⋂n
i=1℘Fi ⊂℘F . The diagonal map A◦ → ∏n

i=1VFi

induces a bounded injective A◦ -linear homomorphism A◦/
⋂n

i=1℘Fi ↪→ ∏n
i=1VFi . It

implies that VF is a subquotient of ∏n
i=1VFi by [2] Proposition 2.3.3/4. Since VFi is

a finite dimensional simple Banach left A -module for any i ∈ N∩ [1,n] by Theorem
2.6, VF is a finite dimensional semisimple Banach A -module by Proposition 1.29.

Next, suppose that VF is a finite dimensional semisimple Banach left A -module.
By F(1) = 1, we have ℘F � A◦ , and hence VF �= {0} . By Proposition 1.29, VF admits
a family (Wh)m

h=1 of simple Banach left A -submodules with m∈ N\{0} such that the
underlying k -vector space of VF is presented as

⊕m
h=1Wh . For an h ∈ N∩ [1,m] , we

denote by vh ∈ Wh the image of 1 +℘F by the h -th projection VF �Wh , and put
Ih := AnnA◦(vh)A −1◦ . We have ℘F = AnnA◦(1+℘F) =

⋂m
h=1 AnnA◦(vh) and hence

IF =
⋂n

h=1 Ih . Put S := {Ih | h∈N∩[1,m]} . By Proposition 1.7, the diagonal map A◦ →
∏I∈S A◦/I induces an isomorphism A◦/IF → ∏I∈S A◦/I in Ban(A◦) . Therefore there
is an (eI)I∈S ∈ A S◦ with ∑I∈S eI = 1 and eIA◦ ⊂ ⋂

I′∈S\{I} I′ for any I ∈ S .
Let I ∈ S . Then A /I coincides with (A◦/I)disc by Proposition 1.28, and A /I

admits a pre-state by Proposition 1.13 (i). Composing the canonical projection A �
A /I , we obtain a pre-state ϕI on A with IϕI = I . We denote by FI : A → k the
pre-state given by setting FI( f ) := (1− F(eI))ϕI( f ) + F(eI f ) for an f ∈ A◦ . We
have FI ∈ IS(A , I) , and hence there is a (ci,I ,Fi,I)

nI
i=1 ∈ (k× PS(A , I))nI with nI ∈

N , ∑nI
i=1 ci,I = 1, and ∑nI

i=1 ci,IFi,I = FI by Proposition 2.7. We obtain a presentation
F = ∑I∈S(FI −(1−F(eI))ϕI) = ∑I∈S(−(1−F(eI))ϕI +∑nI

i=1 ci,IFi,I) with ∑I∈S(−(1−
F(eI))+ ∑nI

i=1 ci,I) = ∑I∈S F(eI) = F(1) = 1. �

As a consequence, we obtain the following:

COROLLARY 2.10. Let V be a finite dimensional cyclic semisimple Banach left
A -module with V �= {0} . Suppose #k �= 2 . Assume the hypotheses (III), (IV), and (V),
or assume the hypothesis (VI). Then there is a pair (F, ι) of an F ∈ MS(A ;k) and an
isomorphism ι : VF →V in Ban(A ) .

Proof. Take a cyclic element v ∈ V . By Corollary 1.31, there is a cocyclic ele-
ment w ∈ VD with w(v) = 1. The k -linear homomorphism V → A D◦ , v′ �→ v′ ∗w is
admissible by Proposition 1.13, and hence (V,v,w) forms a pre-GNS triad. Therefore
the assertion follows from Theorem 2.5 (ii) and Theorem 2.8. �

2.3. Integrality of coefficients

We consider several convexities in k for coefficients of mixed pre-states. Let V
be a Banach left A -module. We prepare the terminology on a condition on k , A , and
V appearing frequently.
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DEFINITION 2.11. We refer as the hypothesis (VII) to the condition that the hy-
potheses (III), (IV), and (V) hold or the hypotheses (I) and (VI) hold.

We show an integral variant of Corollary 2.10.

THEOREM 2.12. Let V be a finite dimensional cyclic semisimple Banach left A -
module with V �= {0} . Suppose #k �= 2 . Under the hypothesis (VII), there is a pair
(F, ι) of an F ∈ MS(A ;Ok) and an isomorphism ι : VF →V in Ban(A ) .

When #k �= 2, we have #O×
k �= 1. Therefore in order to verify Theorem 2.12, it

suffices to show the following:

LEMMA 2.13. Let V be a finite dimensional cyclic semisimple Banach left A -
module with V �= {0} . Under the hypothesis (VII), for any c∈ k\{0,1} , there is a pair
(F, ι) of an F ∈ MS(A ;Fk,c) and an isomorphism ι : VF →V in Ban(A ) .

In order to verify Lemma 2.13, we compare isotypic pre-states and cyclic isotypic
Banach left A -modules. Let k0 be a convexity in k . We put IMS(A ;k0) := IS(A )∩
MS(A ;k0) and IMS(A , I;k0) := IS(A , I)∩MS(A ;k0) for an I ∈ Blk(A ) .

LEMMA 2.14. The following hold:

(i) Let F ∈ IMS(A ;k0) . Then VF is a finite dimensional cyclic isotypic semisimple
Banach left A -module.

(ii) Let V be a finite dimensional cyclic isotypic semisimple Banach left A -module.
Under the hypothesis (VII), for any c ∈ k \ {0,1} , there is a pair (F, ι) of an
F ∈ IMS(A ;Fk,c) and an isomorphism ι : VF →V in Ban(A ) .

Proof. The assertion (i) follows from Proposition 2.2 (iii) and Theorem 2.8. We
show the assertion (ii). Replacing A by A /AnnA◦(V ) , we may assume that A coin-
cides with (A◦)disc by Proposition 1.28 and A◦ is simple and left Artinian by Jacobson
density theorem (cf. [1] 14.5 Corollary). Then an F ∈ A D◦ is a pre-state on A if and
only if F(1) = 1 by Example 2.3.

Take a cyclic element v ∈ V . By Proposition 1.29, V admits a family (Wi)n
i=1

of simple Banach left A -submodules with n ∈ N \ {0} and V =
⊕n

i=1Wi . We de-
note by vi ∈ Wi the image of v by the projection V � Wi associated to the direct
sum decomposition, and put ℘i := AnnA◦(vi) for an i ∈ N∩ [1,n] . By Proposition
1.29, ℘i is a left maximal ideal for any i ∈ N∩ [1,n] . Since v = ∑n

i=1 vi is cyclic, we
have

⋂n
i=1℘i = AnnA◦(v) and ℘i +

⋂
j∈(N∩[1,n])\{i}℘j = A◦ for any i ∈ N∩ [1,n] .

By Proposition 1.6, there is an S ⊂ Max(A◦) with {℘i | i ∈ N∩ [1,n]} ⊂ S , ℘+
⋂

℘′∈S\{℘}℘′ = A◦ for any ℘∈ S , and
⋂

℘∈S℘ = {0} . By Wedderburn’s theorem
(cf. [1] 13.4 Theorem), there is a pair (K, ι) of a division k -algebra K and a k -algebra
isomorphism A◦ → Md(K) with d ∈ N . Let ℘∈ S . We have dimK(Md(K)⊗A◦℘) =
d(d − 1) . Put ℘∨ :=

⋂
℘′∈S\{℘}℘′ . By

⋂
℘∈S℘ = {0} and ℘+℘∨ = A◦ , we ob-

tain dimK(Md(K)⊗A◦ ℘∨) = d , and hence ℘∨ is a minimal left ideal of A◦ for any
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℘∈ S . In particular, #S coincides with d , and the underlying k -vector space of A◦ is
presented as the direct sum

⊕
℘∈S℘∨ .

By [1] 7.2 Proposition, there is an orthogonal system (e℘)℘∈S ∈ A S◦ of primitive
idempotents with ∑℘∈S e℘ = 1 and A◦e℘ = ℘∨ . We obtain a decomposition of the
underlying k -vector space of A◦ as the direct sum

⊕
(℘,℘′)∈S2 e℘A◦e℘′ . The natural

map A◦ → ∏(℘,℘′)∈S2 e℘A◦e℘′ is an isomorphism in Ban(k) by [2] Corollary 2.3.3/5
for the case where the valuation of k is non-trivial and by Proposition 1.14 for the
case where the valuation of k is trivial. For each i ∈ N∩ [1,n] , there is a bounded
k -linear homomorphism ϕi : e℘iA◦e℘i → k with ϕ(e℘i) = 1 by Proposition 1.13 (i).
Let i ∈N∩ [1,n] . We define a bounded k -linear homomorphism Fi : A◦ → k by setting
Fi( f ) := ϕi(e℘i f e℘i) for an f ∈ A◦ . Then we have Fi(1) = ϕi(e℘i) = 1 and ℘i =⊕

℘∈S
⊕

℘′∈S\{℘i} e℘A◦e℘′ ⊂℘Fi . It implies ℘Fi = ℘i and Fi ∈ PS(A ) . Put F :=
cn−1Fn+∑n−1

i=1 (1−c)ci−1Fi ∈ IMS(A ;Fk,c) . We have
⋂n

i=1 ker(Fi)⊂ ker(F) and hence
AnnA◦(v) =

⋂n
i=1℘i =

⋂n
i=1℘Fi ⊂℘F . Let f ∈℘F . We show f ∈AnnA◦(v) . Assume

f /∈℘i for an i ∈ N∩ [1,n] . By ℘i ∈ Max(A◦) , there is an f ′ ∈ A◦ with 1− f ′ f ∈℘i .
We obtain F(e℘i f

′ f ) = uFi(e℘i f
′ f e℘i) = uFi(e℘i) = u for a u∈ {cn−1}∪{(1−c)ci−1 |

i ∈ N∩ [1,n− 1]} ⊂ Fk,c \ {0} . This contradicts f ∈℘F . It implies f ∈ AnnA◦(v) .
We conclude ℘F =

⋂n
i=1℘i , and the map A◦ → V, f �→ f v induces an isomorphism

VF →V in Ban(A ) . �

Proof of Lemma 2.13. By Proposition 1.29, V admits a family (Wi)n
i=1 of isotypic

Banach left A◦ -submoduleswith n∈N\{0} and V =
⊕n

i=1Wi such that AnnA◦(Wi) �=
AnnA◦(Wj) for any (i, j) ∈ (N∩ [1,n])2 with i �= j . For each i ∈ N∩ [1,n] , there is
a pair (Fi, ιi) of an Fi ∈ IMS(A ;Fk,c) and an isomorphism ι : VFi → Wi in Ban(A )
by Lemma 2.14 (ii). If n = 1, then we have V = W1 , and (F1, ι1) is a pair of an
F ∈ MS(A ;Fk,c) and an isomorphism ι : VF1 → V in Ban(A ) . Assume that n �= 1.
Put F := cn−1Fn + ∑n−1

i=1 (1− c)ci−1Fi ∈ MS(A ;Fk,c) . By Lemma 2.9, we have ℘F =
⋂n

i=1℘Fi . By Proposition 1.13 (i) and Corollary 1.8, (ιi)n
i=1 induces an isomorphism

VF →V in Ban(A ) . �

In the following in this subsection, suppose ch(k) = 0 so that the Archimedean
convexity Fk,∞ in k makes sense. For an F ∈ MS(A ;k) , we put ΣF := {I ∈ Blk(A◦) |
IF ⊂ I} , and call it the support of F . Then ΣF is a finite subset by Corollary 1.9 and
Lemma 2.9. We show the unique existence of an isotypic decomposition of an Fk,∞ -
mixed pre-state on A .

PROPOSITION 2.15. For any F ∈ MS(A ;Fk,∞) , there is a unique (cI ,FI)I∈ΣF ∈
∏I∈ΣF

((Fk,∞ \ {0})× IMS(A , I;Fk,∞)) with ∑I∈ΣF
cI = 1 and ∑I∈ΣF

cIFI = F .

In order to verify Proposition 2.15, we study the uniqueness of such a decomposi-
tion first. For an I ∈ Blk(A◦) , we denote by k⊗ IMS(A , I;k) ⊂ A D◦ the image of the
map k× IMS(A , I;k)) → A D◦ , (c,F) �→ cF .

LEMMA 2.16. For any finite subset Σ⊂Blk(A◦) , the map ∏I∈Σ(k⊗IMS(A , I;k))
→ A D◦ , (GI)I∈Σ �→ ∑I∈Σ GI is injective.
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Proof. Let (Gi,I)I∈Σ)2
i=1 ∈ (∏I∈Σ(k⊗IMS(A , I;k)))2 with ∑I∈Σ G1,I = ∑I∈Σ G2,I .

We show (G1,I)I∈Σ = (G2,I)I∈Σ . Put G := ∑I∈Σ G1,I . Let I ∈ Σ . There is an eI ∈⋂
I′∈Σ\{I} I′ with 1 − eI ∈ I by Proposition 1.7. We obtain G1,I( f ) = G1,I( f eI) =

F( f eI) = G2,I( f eI) = G2,I( f ) for any f ∈ A◦ . �

Proof of Proposition 2.15. By Lemma 2.16, it suffices to verify the existence of
the isotypic decomposition. Take a presentation F = ∑m

j=1 c′jF ′
j with m ∈ N \ {0} ,

(c′j)m
j=1 ∈ Fm

k,∞ , (F ′
j )

m
j=1 ∈ PS(A )m , and ∑m

j=1 c′j = 1. Replacing (c′j)m
j=1 by a sub-

sequence, we may assume (c′j)
m
j=1 ∈ (Fk,∞ \ {0})m . Put Σ := {IF ′

j
| j ∈ N∩ [1,m]} ⊂

Blk(A◦) , and SI := { j ∈ N∩ [1,m] | IF ′
j
= I} for an I ∈ Σ . Then cI := ∑ j∈SI

c′j is a non-

empty sum of elements in the image of Q∩(0,1] for any I ∈ Σ , and we have ∑I∈Σ cI =
∑m

j=1 c′j = 1. It implies (cI)I∈Σ ∈ (Fk,∞ \ {0})Σ . Putting FI := ∑ j∈SI
c−1
I c′jF ′

j ∈
IMS(A , I;Fk,∞) for an I ∈ Σ , we obtain ∑I∈Σ cIFI = ∑I∈Σ ∑ j∈SI

c′jF ′
j = ∑m

j=1 c′jF ′
J = F .

By Lemma 2.9, we have IF =
⋂

I∈Σ IFI =
⋂

I∈Σ I . It implies Σ ⊂ ΣF . Let I ∈ ΣF . By⋂
I′∈Σ I′ ⊂ I , we have I ∈ Σ by Corollary 1.9. We obtain Σ = ΣF . �

We denote by (cF,I,F [I])I∈ΣF ∈ ∏I∈ΣF
((Fk,∞ \{0})× IMS(A , I;Fk,∞)) the unique

element with ∑I∈Σ cF,I = 1 and ∑I∈ΣF
cF,IF [I] for an F ∈ MS(A ;Fk,∞) . For a Banach

left A -module V , we put ΣV := {I ∈Blk(A◦) |AnnA◦(V )⊂ I} , and call it the support
of V . We obtain the compatibility of the isotypic decompositions and the supports of a
cyclic semisimple Banach left A -module and an Fk,∞ -mixed pre-state on A .

THEOREM 2.17. Let V be a Banach left A -module with V �= {0} . Under the
hypothesis (VII), V is a finite dimensional cyclic semisimple Banach left A -module if
and only if there is an F ∈MS(A ;Fk,∞) with ΣF = ΣV such that VF is isomorphic to V
in Ban(A ) and VF [I] is isomorphic to the I -isotypic component {v∈V | Iv = {0}}⊂V
in Ban(A ) for any I ∈ ΣV .

Proof. The direct implication follows from Theorem 2.8. Suppose that V is cyclic
and semisimple. By Lemma 2.13, there is a pair (F, ι) of an F ∈ MS(A ;Fk,2−1) and
an isomorphism ι : VF → V in Ban(A ) . By Proposition 2.15 and MS(A ;Fk,2−1) ⊂
MS(A ;Fk,∞) , (cF,I ,F[I])I∈ΣF ∈ ∏I∈ΣF

((Fk,∞ \ {0})× IMS(A , I;Fk,∞)) makes sense.
For any I ∈ ΣF , we have IF ⊂ I = IF[I] , and the canonical projection VF �VF[I] gives
an isomorphism in Ban(A ) between the I -isotypic component {v ∈ VF | Iv = {0}}
and VF[I] by Lemma 2.9. We have ΣV = ΣVF = ΣF by AnnA◦(VF) = IF . �

3. Non-Archimedean Krein–Milman theorems

We study the relation between states on A and several convexities. It is pity that
we could not expect that the notion of a pure state on A is described in terms of an
extreme face. On the other hand, we have several results on faces of MS(A ) and
S(A ) .
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3.1. Archimedean convexity on states

In this subsection, we only consider the case ch(k) = 0 so that we can deal with the
Archimedean convexity Fk,∞ in k . We note that Fk,∞ is not totally bounded, and hence
a Hausdorff topological k -vector space admits no non-trivial compact Fk,∞ -convex sub-
set. Therefore we do not have a result on the existence of an extreme Fk,∞ -face as in
[9] Theorem 3. Instead, we given an explicit example of an Fk,∞ -face of MS(A ;Fk,∞) .

THEOREM 3.1. Suppose that k is complete. Then IMS(A , I;Fk,∞) forms an
Fk,∞ -face of MS(A ;Fk,∞) for any I ∈ Blk(A) .

Proof. Put S := IMS(A , I;Fk,∞) . Let (Fi,ci)n
i=1 ∈ ((MS(A ;Fk,∞) \ S)×Fk,∞)n

with n ∈ N \ {0} and ∑n
i=1 ci = 1. Put F := ∑n

i=1 ciFi ∈ MS(A ;Fk,∞) . We show
F ∈MS(A ;Fk,∞)\S . For each i∈N∩ [1,n] , there is a (ci,I′ ,Fi,I′)I′∈ΣFi

∈∏I∈ΣFi
((Fk,∞\

{0})× IMS(A , I′;Fk,∞)) with ∑I′∈ΣFi
ci,I′ = 1, and ∑I′∈ΣFi

ci,I′Fi,I′ = Fi by Proposi-
tion 2.15. Put Σ :=

⋃n
i=1 ΣFi , cI′ := ∑n

i=1 ∑I′′∈ΣFi∩{I′} cici,I′′ ∈ Fk,∞ \ {0} and FI′ :=

∑n
i=1 ∑I′′∈ΣFi∩{I′} c−1

I′ cici,I′′Fi,I′′ ∈ IMS(A , I′;Fk,∞) for an I′ ∈ Σ . We have ∑I′∈Σ cI′ =
∑I′∈Σ ∑n

i=1 ∑I′′∈ΣFi∩{I′} cici,I′′ = ∑n
i=1 ∑I′∈ΣFi

cici,I′ = ∑n
i=1 ci = 1 and ∑I′∈Σ cI′FI′ =

∑I′∈Σ ∑n
i=1 ∑I′′∈ΣFi∩{I′} cici,I′′Fi,I′′ = ∑n

i=1 ∑I′∈ΣFi
cici,I′′Fi,I′′ = ∑n

i=1 ciFi = F . By (Fi)n
i=1 ∈

(MS(A ;Fk,∞) \ S)n , there is an I′ ∈ Σ with I′ �= I . Since cI′ lies in the image of
Q∩ (0,1] , we obtain F ∈ IMS(A ,Fk,∞) \ S by Proposition 2.15 and Lemma 2.16. It
implies that S is an Fk,∞ -face of MS(A ,Fk,∞) . �

Theorem 3.1 implies that an Fk,∞ -linear combination of non-isotypic pre-states is
never an isotypic pre-state. This is a phenomenon specific to the Archimedean con-
vexity Fk,∞ in k . Indeed, there are obvious examples of Ok -linear combinations of
non-isotypic states which are isotypic states.

3.2. Non-Archimedean convexity on states

We verify a variant of Krein–Milman theorem for the non-Archimedean convexity
Ok in k . For this purpose, we study extreme faces. By an obvious imitation of the proof
of [9] Theorem 2, we obtain the existence of an extreme face.

PROPOSITION 3.2. Let R be a topological ring, R0 a convexity in R, R00 a sub-
convexity of R0 , M a topological left R-module, and S ⊂ M a non-empty compact
R0 -convex subset. If there is a c ∈ R× with (c,−c,c−1) ∈ R3

0 , then every closed R00 -
face S′ with S′ � S contains an extreme R00 -face.

Proof. We denote by Σ the set of closed R00 -faces of S contained in S′ , which
is non-empty by S′ ∈ Σ and which is directed by anti-inclusions. For any non-empty
totally ordered subset Σ0 ⊂ Σ ,

⋂
S′′∈Σ0

S′′ is non-empty by the compactness of S , and
forms a closed R00 -face of S contained in S′ . By Zorn’s lemma, Σ admits a minimal
element S0 . We show S0 ∈ Ext(S;R0,R00) . Let S′′ be an R00 -face of S with S′′ ⊂ S0 .
Take an F0 ∈ S \ S′ . Since S′ is closed, there is an open neighbourhood U0 ⊂ S of F0
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contained in S \ S′ . Let F ∈ S \ S′′ . Put U := {F ′ ∈ S | cF ′ − cF +F0 ∈U0} . By the
continuity of the R-module structure of M , U is an open neighbourhood of F ∈ S . For
any F ′ ∈U , we have F ′ = c−1(cF ′ − cF +F0)+F − c−1F0 ∈ S \ S′ ⊂ S \ S0 ⊂ S \ S′′ .
It ensures that S′′ is a closed R00 -face of S . By the minimality of S0 in Σ , we obtain
S′′ = S0 . It implies S0 ∈ Ext(S;R0,R00) . �

Applying Proposition 3.2 to the case (R,R0,R00) = (Ok,Ok,1+℘) for a suitable
ideal ℘ � Ok , we obtain a non-Archimedean variant of Krein–Milman theorem. We
say that a topological space is non-trivial if it admits more than two open subsets.

THEOREM 3.3. (non-Archimedean Krein–Milman theorem) Let ℘ ⊂ Ok be an
ideal with ℘⊂ ϖOk for a ϖ ∈ mk , M a linear topological Ok -module, and S ⊂ M
a non-trivial compact closed Ok -convex subset. Then the equality [S;Ok,1 +℘] = S
holds.

Before proving Theorem 3.3, we note that through the equivalence in Example
1.3, Theorem 3.3 gives a wide generalisation of [9] Theorem 3 for the M-convexity,
in which it was assumed that k is locally compact, ℘= mk , M is Hausdorff, and M
admits a structure of a topological k -vector space. As is written in [9], there is no non-
trivial Ok -convex subset in a topological k -vector space unless k is locally compact,
but there are many non-trivial Ok -convex subsets in several topological Ok -modules
as long as #Ok/mk < ∞ . It is remarkable that the fundamental technique in the proof
of [9] Theorem 3 using the result on closed hyperplanes in [5] Proposition 69 is not
applicable to Theorem 3.3 because we are free from many assumptions. In order to
verify Theorem 3.3, we prepare the following:

LEMMA 3.4. Let ℘⊂ Ok be an ideal with ℘⊂ ϖOk for a ϖ ∈ mk , M a linear
topological Ok -module, S ⊂ M a compact Ok -convex subset, and S′ � S a non-empty
closed Ok -convex subset. Then S admits a closed (1+℘)-face S′′ with S′ ∩S′′ = /0 .

Proof. If ℘ = {0} , then the assertion follows from Example 1.4, because (m−
m′) + S′ is a closed subset of S contained in S \ S′ for any (m,m′) ∈ (S \ S′)× S′ .
Assume ℘ �= {0} . Let F0 ∈ S \ S′ . Since M is linear and S′ is closed in S , there
is an open Ok -submodule L ⊂ M with (F0 + L)∩ S ⊂ S \ S′ . Take an F ′

0 ∈ S′ and a
ϖ ∈ mk \ {0} with ℘⊂ ϖOk . For an n ∈ N , put Ln := {F ∈ M | F ′

0 + ϖnF ∈ S′ +L} .
In particular, we have F ′

0 +L0 = S′ +L . By the continuity of the Ok -module structure
of M , Ln is an open Ok -submodule of M for any n∈ N , and

⋃
n∈N(F ′

0 +Ln) coincides
with M . By the compactness of S , there is an n∈N with S⊂ F ′

0 +Ln . We denote by n0

the minimum of such an n ∈ N . By (F ′
0 +L0)∩S = (S′+L)∩S ⊂ S\ (F0 +L) � S , we

have n0 �= 0. Put S′′ := S \ (F ′
0 +Ln0−1) . Then S′′ is a non-empty closed subset of S .

Let (c,(Fi)2
i=1) ∈ (1+℘)× (S′′)2 . Put F := (1− c)F1 + cF2 ∈ S . We have ϖn0−1(1−

c)(F1−F ′
0) ∈ ϖn0(Ln0 \Ln0−1)⊂ L0 and ϖn0−1c(F2−F ′

0) ∈ ϖn0−1(Ln0 \Ln0−1)⊂ L1 \
L0 . It implies ϖn0−1(F−F ′

0)+F ′
0 = ϖn0−1(1−c)(F1−F ′

0)+ϖn0−1c(F2−F ′
0)∈ L1\L0

and hence F ∈ S′′ . Therefore S′′ is (1+℘)-semiconvex. �
Proof of Theorem 3.3. If S = /0 , then the assertion is obvious. Assume S �= /0 . To

begin with, we show [S;Ok,1+℘] �= /0 . Since S is non-trivial, there is an F0 ∈ S such
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that the closure S′ of {F0} in S does not coincide with S . Then S′ forms a non-empty
closed Ok -convex subset of S with S′ � S , and hence S admits a closed (1+℘)-face
S′′ with S′ ∩ S′′ = /0 by Lemma 3.4. Therefore S admits an extreme (1+℘)-face by
Proposition 3.2. It implies [S;Ok,1+℘] �= /0 .

We show [S;Ok,1+℘]= S . Since S is closed, we have [S;Ok,1+℘]⊂ S . Assume
[S;Ok,1+℘] � S . Since [S;Ok,1+℘] is a non-empty closed Ok -convex subset of S ,
S admits a closed (1+℘)-face S′ with [S;Ok,1+℘]∩S′ = /0 by Lemma 3.4. There-
fore S admits an extreme (1+℘)-face S′′ with [S;Ok,1+℘]∩S′′ = /0 by Proposition
3.2. It contradicts S′′ ⊂ co(

⋃
S′′′∈Ext(S;Ok,1+℘)) S

′′′;Ok) ⊂ [S;Ok,1 +℘] . We conclude
[S;Ok,1+℘] = S . �

We apply Theorem 3.3 to S(A )�1 . Here we equip A D◦ with the topology of
pointwise convergence, and equip its subset with the relative topology.

THEOREM 3.5. Under the hypotheses (III) and (VI), the equality [S(A )�1,Ok,1+
mk] = S(A )�1 holds.

Proof. If #S(A )�1 � 1, then the assertion holds. Assume #S(A )�1 � 2. The
topological Ok -module (A D◦ )�1 is compact, Hausdorff, and linear, because the evalu-

ation map (A D◦ )�1 → O
A�1
k , F �→ (F( f )) f∈A�1 is a homeomorphism onto the closed

image. It implies that S(A )�1 is a Hausdorff topological space with #S(A )�1 � 2,
and hence S(A )�1 is non-trivial. We have S(A )�1 = {F ∈ (A D◦ )�1 | F(1) = 1} by
Example 2.3. Since k is Hausdorff, {F ∈ (A D◦ )�1 | F(1) = 1} is closed in (A D◦ )�1 ,
and hence is compact. Therefore we obtain [S(A )�1,Ok,1+mk] = S(A )�1 by Theo-
rem 3.3. �

3.3. States on groups

In this subsection, suppose that k is complete so that a finite dimensional Banach
k -vector space is not necessarily trivial. We apply the non-ArchimedeanGNS construc-
tion to Banach topological k -algebras associated to groups. Let G be a topological
group. We recalled the notion of a unitary k -linear representation of G in Example
1.26. Let (V,ρ) be a unitary k -linear representation of G . We say that (V,ρ) is irre-
ducible if (V,ρ) admits exactly two closed G-stable k -vector subspaces, is semisimple
if the underlying k -vector subspace of V is the direct sum of a family of the underlying
k -vector spaces of closed G-stable k -vector subspaces which are irreducible unitary k -
linear representations of G with respect to the restriction of ρ , and is finite dimensional
if V is finite dimensional.

First, suppose that G is a discrete group. We introduced the Banach topological
k -algebra C0(G,k)disc in Example 1.26. We consider another Banach topological k -
algebra associated to G . We denote by ρ̃ : k[G]→B(V ) the k -algebra homomorphism
given by setting ρ̃([g])v := ρ(g,v) for a (g,v) ∈ G×V . Let f = ∑g∈G f (g)[g] ∈ k[G] .
We put ‖ f‖ρ := ‖ρ̃( f )‖ . Then we have ‖ f‖ρ � maxg∈G | f (g)| by definition. We note
that the right hand side is the norm of the image of f in C0(G,k) through the canonical
embedding k[G] ↪→ C0(G,k) .
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We denote by ‖ f‖ms ∈ [0,maxg∈G | f (g)|] the infimum of a C∈ [0,∞) with ‖ f‖ρ �
C for any finite dimensional irreducible unitary k -linear representation (V,ρ) of G .
Then the map ‖− ‖ms : k[G] → [0,∞), f �→ ‖ f‖ms forms a non-Archimedean semi-
norm on k[G] . We denote by C∗(G,k) the completion of (k[G],‖ − ‖ms) , and by
δG : G→C∗(G,k) the composite of the natural embedding G ↪→ k[G] and the canonical
k -algebra homomorphism k[G]→C∗(G,k) . Then C∗(G,k) forms a Banach k -algebra,
and admits a unique submetric G-equivariant k -algebra homomorphism C0(G,k) →
C∗(G,k) with dense image. When G is a finite discrete group, then the underlying
k -algebra of C∗(G,k) is isomorphic to the semisimplification of k[G] by Proposition
1.29. We obtain a Banach topological k -algebra C ∗(G,k) := C∗(G,k)disc .

Next, suppose that the hypothesis (III) holds and G is a profinite group. We in-
troduced the Banach topological k -algebra Ok[[G]]comp in Example 1.27. We consider
another Banach topological k -algebra associated to G . Let (V,ρ) be a unitary k -
linear representation of G . We denote by ρ̃ : k⊗Ok Ok[[G]] → B(V ) the k -algebra
homomorphism given by setting ρ̃(c⊗ f )v := c f v for a (c, f ,v) ∈ k×Ok[[G]]×V . Let
f ∈ k⊗Ok Ok[[G]] . We put ‖ f‖ρ := ‖ρ̃( f )‖ . Then we have ‖ f‖ρ � inf{|c| | c∈ k,∃ f ′ ∈
Ok[[G]], c⊗ f ′ = f} by definition. We note that the right hand side is the norm of the
image of f in (Ok[[G]]comp)◦ through the identity map k⊗Ok Ok[[G]]→ (Ok[[G]]comp)◦ .

We denote by ‖ f‖ms ∈ [0, inf{|c| | c ∈ k,∃ f ′ ∈ Ok[[G]], c⊗ f ′ = f}] the infimum
of a C ∈ [0,∞) with ‖ f‖ρ �C for any finite dimensional irreducible unitary k -linear
representation (V,ρ) of G . Then the map ‖ − ‖ms : k ⊗Ok Ok[[G]] → [0,∞), f �→
‖ f‖ms forms a non-Archimedean seminorm on k[G] . We denote by C∗(G,k) the
completion of (k⊗Ok Ok[[G]],‖− ‖ms) , and by δG : G → C∗(G,k) the composite of
the natural embedding G ↪→ k⊗Ok Ok[G] and the canonical k -algebra homomorphism
k⊗Ok Ok[[G]] → C∗(G,k) . Then C∗(G,k) forms a Banach k -algebra, and admits a
unique submetric G-equivariant k -algebra homomorphism (Ok[[G]]comp)◦ → C∗(G,k)
with dense image. When G is a finite discrete group, then the convention of C∗(G,k)
is compatible with the previous one by definition.

We equip C∗(G,k)�1 with the strongest topology τG which is weaker than or
equal to the relative topology of the norm topology on C∗(G,k) , for which C∗(G,k)�1

forms a topological Ok -algebra, and for which the Ok -algebra homomorphism Ok[[G]]
→C∗(G,k)�1 given as the composite of the embedding Ok[[G]] ↪→ k⊗Ok Ok[[G]], f �→
1⊗ f and the canonical k -algebra homomorphism k⊗Ok Ok[[G]]→ C∗(G,k) is contin-
uous. The existence of τG can be verified in a completely similar way to the proof of
Proposition 1.21. We obtain a Banach topological k -algebra C ∗(G,k) := (C∗(G,k),τG) .
When G is a finite discrete group, then the convention of C ∗(G,k) is compatible with
the previous one by definition.

Suppose that G is a discrete group (resp. that the hypothesis (III) holds and G is
a profinite group). A unitary k -linear representation (V,ρ) of G is said to be GNS
if ρ̃ admits a unique bounded extension ρ̃∗ : C∗(G,k) → B(V ) and V admits a pair
(v,w) ∈V ×VD for which (V,v,w) forms a pre-GNS triad over C ∗(G,k) through ρ̃∗ .
For example, every finite dimensional irreducible unitary k -linear representation (V,ρ)
of G is GNS by the definition and Theorem 2.6 (ii), and hence every finite dimensional
cyclic semisimple unitary k -linear representation of G is GNS by Proposition 1.13 (i)
and Corollary 2.10.
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We have #(k[G])� #(
⊔

n∈N(kn×Gn))= max{ℵ0,#k,#G} , and hence #C∗(G,k)�
#(k[G]N) � (max{ℵ0,#k,#G})ℵ0 = max{2ℵ0 ,#k,#G} . Therefore the underlying k -
vector space of a GNS unitary k -linear representation of G is of dimension
� max{2ℵ0,#k,#G} . We denote by Rep(G,k) the set of GNS unitary k -linear repre-
sentations of G whose underlying k -vector space is a k -vector subspace of
k⊕max{2ℵ0 ,#k,#G} . Using Rep(G,k) , we show the hypotheses (IV) and (V) for C ∗(G,k) .

PROPOSITION 3.6. The Banach topological k -algebra C ∗(G,k) is unramified
and the topological Ok -algebra C ∗(G,k)�1 is Hausdorff.

Proof. When G is a discrete group, then the assertion is obvious. Assume that the
hypothesis (III) holds and G is a profinite group. For any unramified Banach k -vector
space V , B(V ) is an unramified Banach k -algebra. Therefore C ∗(G,k) is unramified.
We show that C ∗(G,k)�1 is Hausdorff. Let (V,ρ) ∈ Rep(G,k) . The map Ok[[G]] →
V, f �→ f v is continuous for any v ∈ V . It implies that the map Ok[[G]] → B(V )
given as the composite of the embedding Ok[[G]] ↪→ k⊗Ok Ok[[G]], f �→ 1⊗ f and
ρ̃ : k⊗Ok Ok[[G]] → B(V ) is continuous, where B(V ) is equipped with the topology
of pointwise convergence. Therefore the diagonal map Ok[[G]]→ ∏(V,ρ)∈Rep(G,k) B(V )
is continuous. In particular, the topology τ on C∗(G,k)�1 given as the pull-back of
the topology of ∏(V,ρ)∈Rep(G,k) B(V ) through the restriction of ∏(V,ρ)∈Rep(G,k) ρ̃∗ sat-
isfies that the Ok -algebra homomorphism Ok[[G]] → (C∗(G,k)�1,τ) is continuous.
Moreover, ∏(V,ρ)∈Rep(G,k) ρ̃∗ is injective, because every finite dimensional irreducible
k -linear representation of G admits a homeomorphic G-equivariant k -linear isomor-
phism to some (V,ρ) ∈ Rep(G,k) . Therefore τ is Hausdorff. Since B(V )�1 is a
topological Ok -algebra with respect to the topology of pointwise convergence by the
equicontinuity of the natural action B(V )�1 ×V → V for any (V,ρ) ∈ Rep(G,k) ,
(C∗(G,k)�1,τ) forms a topological Ok -algebra. Since the topology on B(V )�1 of
the pointwise convergence is weaker than or equal to the relative topology of the norm
topology for any (V,ρ) ∈ Rep(G,k) , τ is weaker than or equal to the relative topology
of the norm topology. As a consequence, C ∗(G,k)�1 is Hausdorff by the universality
of τG . �

We abbreviate S(C ∗(G,k)) (resp. PS(C ∗(G,k)) , MS(C ∗(G,k);k)) to S(G,k)
(resp. PS(G,k) , MS(G,k)). We note that for any F ∈ S(G,k) , VF forms a unitary
k -linear representation of G with respect to the action G×VF →VF , (g,v) �→ [g]v . We
equip C∗(G,k)D with the topology of pointwise convergence, and its subset with the
relative topology.

In the following in this subsection, we assume that the hypothesis (III) holds
and that G is a discrete group or a profinite group. We show the following non-
Archimedean analogue of [12] Theorem 6.8.11:

THEOREM 3.7. The k -convex subset MS(G,k) is dense in S(G,k) .

In order to verify Theorem 3.7, it suffices to show the following:
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LEMMA 3.8. Let F ∈ S(G,k) . For any finite dimensional k -vector subspace E ⊂
C∗(G,k) , there is an F ′ ∈ MS(G,k) with F |E = F ′|E .

Proof. By F(1) = 1 �= 0 = F(0) , we have C∗(G,k) �= {0} . Replacing E by
E + k1, we may assume 1 ∈ E . Since k is a complete discrete valuation field (resp.
the valuation of k is trivial), E�1 admits an Ok -linear basis S1 with 1 ∈ S1 and
‖ f‖ = 1 for any f ∈ S1 by ‖1‖ = 1, Proposition 3.6, and [10] IV 3 Corollaire 1
(resp. by the semisimplicity of the underlying ring of k ). Take a complete system
S2 ⊂ Ok of representatives of the canonical projection Ok� Ok/mk with 1 ∈ S2 . Let
c = (c f ) f∈S1 ∈ SS1

2 \ {(0) f∈S1} . By ‖∑ f∈S1
c f f‖ = max f∈S1 |c f | = 1, there is a fi-

nite dimensional irreducible unitary k -linear representation (Vc,ρc) of G such that the
unique bounded extension ρ̃∗

c : C∗(G,k)→B(V ) of ρ̃c satisfies ‖ρ̃∗
c(∑v∈S1

c f f )‖= 1.
Put (V,ρ) := ∏

c∈S
S1
2

(Vc,ρc) . Then (V,ρ) is GNS, and the unique bounded extension

ρ̃∗ : C∗(G,k) → B(V ) of ρ̃ satisfies ‖ρ(∑ f∈S1
c f f )‖ = 1 for any (c f ) f∈S1 ∈ SS1

2 . By
∑ f∈S1

k f = E , we have ker(ρ̃∗)∩E = {0} . We denote by A ⊂ B(V ) the image of
ρ̃∗ , which forms a finite dimensional Banach k -algebra whose underlying k -algebra
is semisimple by Proposition 1.29 and Jacobson–Bourbaki density theorem (cf. [6] D
2.2). By Proposition 1.28 and Proposition 3.6, C ∗(G,k)/ker(ρ̃∗) is isomorphic to Adisc

in A lg�1(k) . By Theorem 2.8, we have MS(Adisc;k) = S(Adisc) . By Proposition 1.12,
Example 2.3, and (1,1) ∈ S1 ×S2 , there is an F0 ∈ S(Adisc) with F0 ◦ ρ̃∗|E = F |E . By
the surjectivity of ρ̃∗ : C∗(G,k) → A , we have F0 ◦ ρ̃∗ ∈ MS(G,k) . �

We denote by G∨
k the quotient of Rep(G,k) by the equivalence relation given by

homeomorphic G-equivariant k -linear isomorphisms. By Proposition 1.12 and Theo-
rem 2.5 (ii), the correspondence F � VF yields a surjective map S(G,k)� G∨

k . We
equip G∨

k with the quotient topology of S(G,k) . By Theorem 2.8, Proposition 3.6, and
Theorem 3.7, we obtain the following:

THEOREM 3.9. The subset of G∨
k consisting of equivalence classes of finite di-

mensional cyclic semisimple unitary k -linear representations of G is dense.

In other words, every GNS unitary k -linear representation of G is approximated
by finite dimensional cyclic semisimple unitary k -linear representations of G with re-
spect to the topology analogous to the one of convergence of matrix coefficients.
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