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LOWER BOUNDS FOR THE NUMERICAL RADIUS

HWA-LONG GAU AND PEI YUAN WU

(Communicated by C.-K. Li)

Abstract. We show that if A = [ai j ]ni, j=1 is an n -by-n complex matrix and A′ = [a′i j ]ni, j=1 , where

a′i j =
{

ai j if (i, j) = (1,2), . . . ,(n−1,n) or (n,1),
0 otherwise,

then w(A) � w(A′) , where w(·) denotes the numerical radius of a matrix. Moreover, if n is odd
and a12, . . . ,an−1,n,an1 are all nonzero, then w(A) = w(A′) if and only if A = A′ . For an even
n , under the same nonzero assumption, we have W(A) = W(A′) if and only if A = A′ , where
W(·) is the numerical range of a matrix.

1. Introduction

Let A = [ai j]ni, j=1 be an n -by-n complex matrix. The numerical range and nu-
merical radius of A are W (A) = {〈Ax,x〉 : x ∈ Cn,‖x‖ = 1} and w(A) = max{|z| : z ∈
W (A)} , respectively, where 〈·, ·〉 and ‖ · ‖ denote the standard inner product and its
associated norm of vectors in Cn . In this paper, we obtain various lower bounds for
the numerical radius of A . The primary one is w(A) � w(A′) , where A′ is the n -by-n
matrix obtained from A by replacing all its entries other than a12, . . . ,an−1,n and an1

by zeros (cf. Proposition 3.1). We also consider when the equality w(A) = w(A′) holds.
Under the assumptions of odd n and nonzero a12, . . . ,an−1,n and an1 , this is the case
only when A = A′ (cf. Theorem 3.2). On the other hand, if n is even, then, under the
same nonzero assumption, we need the stronger condition W (A) =W (A′) to guarantee
the equality of A and A′ (cf. Theorem 3.5). Another lower bound for w(A) is w(A′′) ,
where A′′ is the matrix obtained from A′ by replacing its (n,1)-entry (= an1 ) by zero.
Again, we obtain conditions for the equality w(A) = w(A′′) (cf. Theorem 4.2).

In the following, we start in Section 2 with 2-by-2 matrices. The results therein
motivate the later developments. Section 3 gives the lower bound w(A′) for w(A) and
discusses when this can be attained. In Section 4, we consider some special cases,
generalizations and related consequences of the main results in Section 3, one of which
is Theorem 4.2 that we mentioned above.

We use 0n and In to denote the n -by-n zero matrix and identity matrix, respec-
tively. For a square matrix A , we use ReA for its real part (A+A∗)/2. The column
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vector with components x1, . . . ,xn is denoted by [x1 . . . xn]T and the diagonal matrix
with diagonals a1, . . . ,an by diag(a1, . . . ,an) . If A = [ai j]ni, j=1 and B = [bi j]ni, j=1 , their
Hadamard product A◦B is [ai jbi j]ni, j=1 . When A and B are real matrices, A � B means
that ai j � bi j for all i and j . We refer to [7] for other matrix notations and properties.
Our reference for the numerical range and numerical radius is [6, Chapter 1].

2. 2 -by-2 matrices

We start with the following preliminary result for 2-by-2 matrices. It lights the
way forward to the general n -by-n case.

PROPOSITION 2.1. Let A =
[
a
c

b
d

]
and A′ =

[
0
c

b
0

]
. Then

(a) w(A) � w(A′) ,

(b) w(A) = w(A′) if and only if a + d = 0 and ad is in [0,bc] , the line segment
connecting 0 and bc,

(c) w(A) = w(A′) implies that W (A) ⊇W (A′) , and

(d) W (A) = W (A′) if and only if A = A′ .

The example of A =
[

i
1

1−i

]
shows that (c) and (d) above cannot be further

strengthened. Indeed, since A is unitarily similar to
[
0
0

2
0

]
, we have W (A) = {z ∈ C :

|z| � 1} . On the other hand, we can easily derive that W (A′) = W (
[
0
1

1
0

]
) = [−1,1] .

Thus A 
= A′ , w(A) = w(A′) = 1, and W (A) � W (A′) . This shows that, in (c) (resp.,
(d)) of the preceding proposition, the conclusion W (A) ⊇W (A′) (resp., the condition
W (A) = W (A′)) cannot be replaced by W (A) = W (A′) (resp., w(A) = w(A′)).

Proof of Proposition 2.1. (a) Since W (A) is an elliptic disc with center (a+d)/2,
it is easily seen that w(A) � w(B) , where

B = A− 1
2
(a+d)I2 =

[ 1
2(a−d) b

c − 1
2(a−d)

]

(cf. [1, Lemma 5 (a)]). Note that a matrix C of the form
[
c11
c21

c12−c11

]
is unitarily

similar to [
(c2

11 + c12c21)1/2 (2|c11|2 + |c12|2 + |c21|2 −2|c2
11 + c12c21|)1/2

0 −(c2
11 + c12c21)1/2

]
whence w(C) can be computed to be

1
2
(2|c11|2 + |c12|2 + |c21|2 +2|c2

11 + c12c21|)1/2. (1)
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Thus w(B) = (1/2)
(
(1/2)|a−d|2+ |b|2+ |c|2+(1/2)|(a−d)2+4bc|)1/2

and w(A′) =
(|b|+ |c|)/2. Therefore, w(A) � w(B) � w(A′) as asserted.

(b) From (a), we have w(A) = w(A′) if and only if w(A) = w(B) and w(B) =
w(A′) . Since (a + d)/2 is the scalar approximant to A under w(·) by [1, Lemma
5 (a)], its uniqueness follows from the Loewner–Behrend theorem (cf. [2, Theorem
11.8.10.7]). Hence the equality w(A) = w(B) is equivalent to a+d = 0. On the other
hand, w(B) = w(A′) is equivalent to |a− d|2 + |(a− d)2 + 4bc| = 4|bc| , which is the
same as (a−d)2 +4bc = −t(a−d)2 for some t � 0 or −(a−d)2/4 being in [0,bc] .
The assertion in (b) then follows by combining these two conditions together.

(c) Under the assumption w(A) = w(A′) , we obtain from the proof of (b) that
A = B and a2 + bc = sbc for some s , 0 � s � 1. The latter condition yields that
the foci ±(a2 + bc)1/2 of the elliptic disc W (A) and the foci ±(bc)1/2 of W (A′) are
on the same line passing through the origin. Moreover, their major axes are both of
length 2w(A) and minor axes of lengths 2(|b|2 + |c|2−2|a2 +bc|)1/2 and 2||b|− |c|| ,
respectively. Since

|b|2 + |c|2−2|a2 +bc|= |b|2 + |c|2−2s|bc|� |b|2 + |c|2−2|bc|= ||b|− |c||2,

we conclude that W (A) ⊇W (A′) .
(d) If W (A) = W (A′) , then the coincidence of their foci yields from (c) that a is

zero. Moreover, d is also zero from a+d = 0 (by (b)). Thus A = A′ as required. �

We remark that Proposition 2.1 (a) is also a special case of [3, Theorem 2.1].
We now seek along the line of the preceding proposition the largest lower bound

for the numerical radius of a given 2-by-2 matrix. This is done via the next proposition.

PROPOSITION 2.2. Let A =
[
a
0

b
c

]
. Then

(a) A is unitarily similar to

B ≡ 1
2

[
a+ c

(
(|a− c|2 + |b|2)1/2 + |b|)eiθ(

(|a− c|2 + |b|2)1/2−|b|)eiθ a+ c

]
,

where the real θ satisfies a− c = |a− c|eiθ ,

(b) the maximum value of |x| for which a matrix of the form
[∗∗ x∗

]
is unitarily

similar to A is
(|b|+(|a− c|2 + |b|2)1/2

)
/2 , which occurs when

[∗∗ x∗
]

equals
B,

(c) the maximum value of |x|+ |y| for which a matrix of the form
[∗
y

x∗
]

is unitarily

similar to A is (|a− c|2 + |b|2)1/2 , which occurs when
[∗
y

x∗
]

equals B.

Proof. (a) This follows by showing, via a simple computation, that A and B have
equal traces, determinants and Frobenius norms.
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(b) If
[
z
y

x
w

]
is unitarily similar to A , then

[
z−λ

y
x

w−λ
]

is unitarily similar to

A−λ I2 for any λ in C . Hence

|x| � min
λ∈C

‖A−λ I2‖ =
1
2

(|b|+(|a− c|2 + |b|2)1/2)
by [1, Lemma 5 (b)]. From (a), the inequality becomes an equality when

[
z
y

x
w

]
equals

B . Our assertion follows.

(c) If
[
z
y

x
w

]
is unitarily similar to A , then

[
z−a

y
x

w−a

]
is unitarily similar to[

0
0

b
c−a

]
. From |x|2 + |y|2+ |z−a|2+ |w−a|2 = |b|2+ |c−a|2 and det

[
z−a

y
x

w−a

]
= (z−a)(w−a)− xy = 0, we obtain

(|x|+ |y|)2 = |x|2 + |y|2 +2|xy|
= (|a− c|2 + |b|2−|z−a|2−|w−a|2)+2|(z−a)(w−a)|
� |a− c|2 + |b|2.

Hence |x|+ |y|� (|a−c|2 + |b|2)1/2 . The equality is attained for
[
z
y

x
w

]
= B from (a).

This proves (c). �

COROLLARY 2.3. If A =
[
a
0

b
c

]
, then {x∈C :

[∗∗ x∗
]

is unitarily similar to A}=

{z ∈ C : |z| � (|b|+(|a− c|2 + |b|2)1/2
)
/2} .

Proof. It was known that the set of x ’s for which
[∗∗ x∗

]
is unitarily similar to A is

a closed circular disc centered at the origin (cf. [9, Theorem 4] or [6, p. 84, Exercise]).
Our assertion follows from Proposition 2.2 (b). �

PROPOSITION 2.4. If A =
[
a
0

b
c

]
, then w(A) � (|a−c|2 + |b|2)1/2/2 . Moreover,

the equality holds if and only if a+ c = 0 .

Proof. Since A is unitarily similar to the matrix B in Proposition 2.2 (a), we have
w(A) = w(B) � w(B′) by Proposition 2.1 (a), where

B′ =
1
2

[
0

(
(|a− c|2 + |b|2)1/2 + |b|)eiθ(

(|a− c|2 + |b|2)1/2 −|b|)eiθ 0

]
.

As w(B′) = (|a− c|2 + |b|2)1/2/2 from (1), our first assertion follows.
From Proposition 2.1 (b), we have that w(B) = w(B′) if and only if a+ c = 0 and

(a+ c)2 is in [0,−|a− c|2e2iθ ] . Since the latter condition follows obviously from the
former, we obtain the second assertion. �

There is a simpler geometric proof for Proposition 2.4. This is seen by noting that
the elliptic disc W (A) is contained in the circular disc {z ∈ C : |z| � w(A)} . Hence the
length (|a− c|2 + |b|2)1/2 of the major axis of the former is less than or equal to the
diameter 2w(A) of the latter. Moreover, their equality is equivalent to the coincidence
of their centers, that is, (a+ c)/2 = 0 or a+ c = 0.
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3. Lower bound and its attainment

We start by generalizing the inequality in Proposition 2.1 (a) to matrices of size n .

PROPOSITION 3.1. If A = [ai j]ni, j=1 (n � 2) and

A′ =

⎡⎢⎢⎢⎢⎢⎢⎣

0 a12

0 a23

0
. . .
. . . an−1,n

an1 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

then w(A) � w(A′) .

Proof. Let U be the n -by-n unitary matrix⎡⎢⎢⎢⎢⎢⎢⎣

0 1
0 1

0
. . .
. . . 1

1 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

Since A′ is equal to the Hadamard product A◦U of A and U , we have w(A′) = w(A◦
U) � w(A)‖U‖ = w(A) (cf. [4, p. 293]). �

Next we consider when the inequality w(A) � w(A′) in Proposition 3.1 becomes
an equality. If the size of A is odd, then there is a satisfactory answer.

THEOREM 3.2. Let A and A′ be as in Proposition 3.1. If n is odd and a12, . . . ,
an−1,n and an1 are all nonzero, then the following conditions are equivalent:

(a) W (A) = W (A′) ,

(b) w(A) = w(A′) , and

(c) A = A′ .

Note that the implication (b) ⇒ (c) here is not valid for even n as the 2-by-2

matrix A =
[

i
1

1−i

]
shows (cf. the paragraph after Proposition 2.1). If exactly one

of the entries a12, . . . ,an−1,n and an1 of A is zero, then the same conclusion holds
irrespective of the parity of n . This will be proven in Theorem 4.2. However, it cannot

be further relaxed to two zeros as seen by the n -by-n matrix (n � 3) A =
[
0
0

2
0

]
⊕

diag(a,0, . . . ,0︸ ︷︷ ︸
n−2

) with 0 < |a|� 1, in which case A′ =
[
0
0

2
0

]
⊕0n−2 and hence w(A) =

w(A′) = 1 but A 
= A′ .
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For the proof of Theorem 3.2, we need the following lemmas. The first one is a
standard result from the nonnegative matrix theory.

LEMMA 3.3. Let

A =

⎡⎢⎢⎢⎢⎢⎢⎣

0 a1

0 a2

0
. . .
. . . an−1

an 0

⎤⎥⎥⎥⎥⎥⎥⎦
with ak � 0 for all k .

(a) There is a unit vector x = [x1 . . . xn]T in Cn with xk � 0 for all k such that
〈Ax,x〉 = w(A) . Moreover, if ak > 0 for all k , then such an x is unique and
xk > 0 for all k .

(b) If ω j = exp(2π i j/n) and xω j = [x1 x2ω j x3ω2
j . . . xnωn−1

j ]T for 0 � j � n−1 ,
then 〈Axω j ,xω j 〉 = ω jw(A) for all j .

Proof. (a) is a consequence of [8, Proposition 3.3]. For the proof of (b), we have

〈Axω j ,xω j 〉 =
( n−1

∑
k=1

ak(xk+1ωk
j )(xkωk−1

j )
)

+anx1(xnωn−1
j )

= ω j

((n−1

∑
k=1

akxk+1xk
)
+anx1xn

)
= ω j〈Ax,x〉 = ω jw(A). �

LEMMA 3.4. Let A and A′ be as in Proposition 3.1. Then w(A) = w(A′) if and
only if 〈Axω j ,xω j 〉= eiψω jw(A) (equivalently,

(
Re (e−iψω jA)

)
xω j = w(A)xω j ) for all

j , 0 � j � n− 1 , where x,ω j and xω j are as in Lemma 3.3 (with A′ replacing A

there) and ψ =
(
(∑n−1

k=1 argak,k+1)+ argan1
)
/n.

Proof. Let θk = argak,k+1 for 1 � k � n−1 and θn = argan1 .

If U = diag
(

exp(iψ),exp
(
i(2ψ − θ1)

)
, . . . ,exp

(
i(nψ −∑n−1

k=1 θk)
))

, then U is

unitary and U∗AU is of the form

eiψ

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∗ |a12| ∗ · · · ∗
· ∗ |a23| . . .

...

· . . .
. . . ∗

· . . . |an−1,n|
|an1| · · · ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Hence we may assume without loss of generality that the ak,k+1 ’s and an1 are all non-
negative and ψ is zero. Let B = A−A′ .
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Assume first that w(A) = w(A′) . Since Re(ω j〈Axω j ,xω j 〉) � |〈Axω j ,xω j 〉|� w(A)
and Re(ω j〈A′xω j ,xω j 〉) = w(A′) by Lemma 3.3 (b), we have Re(ω j〈Bxω j ,xω j 〉) � 0

for all j . Let Bk , −(n−1) � k � n−1, denote the matrix [b(k)
i j ]ni, j=1 , where

b(k)
i j =

{
ai j if j− i = k,
0 otherwise,

and let bk = 〈Bkx,x〉 . We have

Re(ω j〈Bxω j ,xω j 〉) =
n−1

∑
k=−(n−2)

k 
=1

Re(ω j〈Bkxω j ,xω j 〉)

=
n−1

∑
k=−(n−2)

k 
=1

Re(ω j〈Bkx,x〉ωk
j ) =

n−1

∑
k=−(n−2)

k 
=1

Re (bkωk−1
j )

for all j . Adding these together yields

n−1

∑
j=0

Re (ω j〈Bxω j ,xω j 〉) =
n−1

∑
k=−(n−2)

k 
=1

Re (bk

n−1

∑
j=0

ωk−1
j ) = 0. (2)

Since Re(ω j〈Bxω j ,xω j 〉) � 0 for all j , their sum being zero implies that they are all
zero. Hence

Re(ω j〈Axω j ,xω j 〉) = Re(ω j〈A′xω j ,xω j 〉) = w(A′) = w(A), 0 � j � n−1.

This together with |ω j〈Axω j ,xω j 〉| � w(A) yields that 〈Axω j ,xω j 〉 = ω jw(A) . Hence
w
(
Re (ω jA)

)
�

〈(
Re(ω jA)

)
xω j ,xω j

〉
= w(A) � w

(
Re (ω jA)

)
and thus the resulted

equalities yield Re(ω jA)xω j = w(A)xω j . The implication from Re (ω jA)xω j = w(A)xω j

to 〈Axω j ,xω j 〉 = ω jw(A) also follows from above.
Conversely, assume that our asserted condition holds. Since Re(ω j〈Axω j ,xω j 〉) =

w(A) and Re(ω j〈A′xω j ,xω j 〉) � w(A′) , we have Re(ω j〈Bxω j ,xω j 〉) � 0 for all j ,
0 � j � n − 1, by Proposition 3.1. Inferring from the identity in (2), we obtain
Re(ω j〈Bxω j ,xω j 〉)= 0 for all j . In particular, the case j = 0 yields w(A)= Re〈Ax,x〉=
Re〈A′x,x〉 � w(A′) . By Proposition 3.1 again, we have w(A) = w(A′) . �

We remark that the preceding lemma can also be proven by using the condition for
the equality case of the Hadamard product in [4, Theorem 3.2].

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. We need only prove (b) ⇒ (c). As before, we may assume
that a12, . . . ,an−1,n and an1 are all strictly positive. Let x,ω j and xω j be as in Lemma
3.3 (with A′ replacing A there) and let B = A−A′ . Under the assumption w(A) =
w(A′) , we have

(
Re (ω jB)

)
xω j = 0 as in the proof of Lemma 3.4 or Bxω j =−ω2

j B
∗xω j

for all j , 0 � j � n−1. If 0 � j 
= k � n−1, then

〈Bxω j ,xωk〉 = −ω2
j 〈B∗xω j ,xωk〉 = −ω2

j 〈xω j ,Bxωk〉
=

(ω j

ωk

)2〈xω j ,B
∗xωk〉 =

(ω j

ωk

)2〈Bxω j ,xωk 〉.
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Since n is odd, we have ω2
j 
= ω2

k . Hence 〈Bxω j ,xωk 〉 = 0 for all j 
= k . On the other
hand, we also have

〈Bxω j ,xω j 〉 = 〈Axω j ,xω j 〉− 〈A′xω j ,xω j 〉 = ω jw(A)−ω jw(A′) = 0

for all j . Since the vectors xωk , 0 � k � n−1, form a basis of Cn , we infer from above
that Bxω j = 0 for all j and hence B = 0n . This proves (c). �

We next consider the case of even n . The following theorem generalizes Proposi-
tion 2.1 (d) for n = 2.

THEOREM 3.5. Let A and A′ be as in Proposition 3.1 with n even and a12, . . . ,
an−1,n and an1 nonzero. Then W (A) = W (A′) if and only if A = A′ .

The proof is an elaboration of the one for odd n , for which we need the following
lemma.

LEMMA 3.6. Let A be as in Lemma 3.3 with ak > 0 for all k . Let θ be in
[0,2π) \ {(2 j+ 1)π/n : 0 � j � n− 1} , r be the maximum eigenvalue of Re (e−iθ A) ,
and y = [y1 . . . yn]T be a unit vector satisfying

(
Re(e−iθ A)

)
y = ry.

(a) We have yk 
= 0 for all k . In particular, the eigenspace ker
(
rIn−Re(e−iθ A)

)
is

one dimensional.

(b) If ω j = exp(2π i j/n) and yω j = [y1 y2ω j y3ω2
j . . . ynωn−1

j ]T for 0 � j � n−1 ,

then
(
Re (e−iθ ω jA)

)
yω j = ryω j .

Proof. (a) Assume otherwise that yk = 0 for some k , 1 � k � n . Let Â be the
(n−1)-by-(n−1) principal submatrix of A obtained by deleting the k th row and k th
column of A , and let ŷ be the unit vector [y1 . . . yk−1 yk+1 . . . yn]T in Cn−1 . From
our assumptions on r and y , we infer that λ ≡ 〈Ay,y〉 is in the boundary ∂W (A) of
W (A) . On the other hand, W (Â) is contained in W (A) and is a circular disc centered
at the origin (cf. [11, Proposition 3 (3)]). Hence 〈Âŷ, ŷ〉= 〈Ay,y〉 = λ is also in ∂W (Â)
and therefore λ = reiθ is in ∂W (A)∩ ∂W (Â) . However, by [11, Proposition 3 (4)],
∂W (A) intersects ∂W (Â) at exactly the n points rexp

(
(2 j +1)π i/n

)
, 0 � j � n−1,

which contradicts our assumption on θ . Hence yk 
= 0 for all k as asserted. Moreover,
if ker

(
rIn −Re(e−iθ A)

)
has dimension bigger than one, then a suitable linear combi-

nation of two linearly independent vectors in it would result in a nonzero vector with,
say, its first component equal to zero, which contradicts to what has just been proved.
Thus ker

(
rIn−Re(e−iθ A)

)
must be of dimension one.

(b) Deriving as in the proof of Lemma 3.3 (b), we have 〈Ayω j ,yω j 〉 = ω j〈Ay,y〉 .
Hence 〈(

Re(e−iθ ω jA)
)
yω j ,yω j

〉
= Re(e−iθ ω j〈Ayω j ,yω j 〉) = Re (e−iθ 〈Ay,y〉)
=

〈(
Re(e−iθ A)

)
y,y

〉
= 〈ry,y〉 = r.
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Since A is unitarily similar to ω jA by [11, Lemma 2 (2)], r is also the maximum
eigenvalue of Re(e−iθ ω jA) . Thus

(
Re (e−iθ ω jA)

)
yω j = ryω j follows. �

Proof of Theorem 3.5. As before, we may assume that a12, . . . ,an−1,n and
an1 are all strictly positive. Assume that W (A) = W (A′) . Let θ be in (0,π/n) , r
be the maximum eigenvalue of Re(e−iθ A′) , and y = [y1 . . .yn]T be a unit vector such
that

(
Re(e−iθ A′)

)
y = ry . Then, by Lemma 3.6, we have yk 
= 0 for all k , 1 � k � n ,

and
(
Re(e−iθ ω jA′)

)
yω j = ryω j for all j , 0 � j � n− 1, where ω j and yω j are

as before. On the other hand, since r is also the maximum eigenvalue of
Re(e−iθ ω jA′) (cf. the proof of Lemma 3.6 (b)), it is equal to maxRe

(
e−iθ ω jW (A′)

)
(= maxRe

(
e−iθ ω jW (A)

)
). As Re (e−iθ ω j〈Ayω j ,yω j 〉) is in Re

(
e−iθ ω jW (A)

)
, we

obtain that Re(e−iθ ω j〈Ayω j ,yω j 〉) � r = Re(e−iθ ω j〈A′yω j ,yω j 〉) . Thus if B = A−A′ ,
then Re (e−iθ ω j〈Byω j ,yω j 〉) � 0 for all j . As the identity in (2) shows, their sum is
equal to zero. It follows that Re (e−iθ ω j〈Byω j ,yω j 〉) = 0 or Re(e−iθ ω j〈Ayω j ,yω j 〉) = r
for all j . As r = maxRe

(
e−iθ ω jW (A)

)
, we conclude that

(
Re(e−iθ ω jA)

)
yω j = ryω j .

Together with
(
Re(e−iθ ω jA′)

)
yω j = ryω j , this yields

(
Re (e−iθ ω jB)

)
yω j = 0. Hence

yω j is in ker
(
Re(e−iθ ω jB)

)
for each j .

We now check that ker
(
Re(e−iθ ω jB)

)
is equal to ker

(
Re(e−iθ B)

)
for all j .

Indeed, let x = [x1 . . . xn]T be a unit vector in Cn with xk > 0 for all k such that
〈A′x,x〉 = w(A′) , and let xω j be as before. Then, as in the proof of Theorem 3.2,
we have Bxω j = −ω2

j B
∗xω j for all j , and 〈Bxω j ,xωk 〉 = 0 for 0 � j,k � n− 1 with

| j− k| 
= n/2. Let

b j =

{ 〈Bxω j ,xω j+(n/2)〉 if 0 � j � n
2 −1,

〈Bxω j ,xω j−(n/2)〉 if n
2 � j � n−1,

and let X be the n -by-n matrix [xω0 xω1 . . . xωn−1 ] . Then

X∗BX =
[

0n/2 B2

B1 0n/2

]
,

where B1 = diag(b0,b1, . . . ,b(n/2)−1) and B2 = diag(bn/2,b(n/2)+1, . . . ,bn−1) . Note
that the b j ’s are related in the following way:

b j+(n/2) = 〈Bxω j+(n/2) ,xω j 〉 = −ω2
j+(n/2)〈B∗xω j+(n/2) ,xω j 〉

= −ω2
j 〈xω j+(n/2) ,Bxω j 〉 = −ω2

j 〈Bxω j ,xω j+(n/2)〉 = −ω2
j b j, 0 � j � n

2
−1.

(3)

Let {e1, . . . ,en} be the standard basis of Cn . We check that ker
(
Re(e−iθ ω jX∗BX)

)
is

spanned by those vectors ek for which bk = 0. Indeed, since

Re(e−iθ ω jX
∗BX) =

1
2

[
0n/2 C∗

j
Cj 0n/2

]
,
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where Cj = e−iθ ω jB1 + eiθ ω jB∗
2 = diag(e−iθ ω jb0 + eiθ ω jbn/2, . . . ,e

−iθ ω jb(n/2)−1 +
eiθ ω jbn−1) , we obtain from (3) that

e−iθ ω jbk + eiθ ω jbk+(n/2) = e−iθ ω jbk + eiθ ω j(−ω2
k bk)

= e−iθ ω jbk
(
1− (eiθω jωk)2)

for 0 � j � n−1 and 0 � k � (n/2)−1. As 0 < θ < π/n , (eiθ ω jωk)2 is never equal
to 1. Hence e−iθ ω jbk + eiθ ω jbk+(n/2) = 0 if and only if bk = 0. Our assertion on the
kernel of Re (e−iθ ω jX∗BX) follows. In particular, we have ker

(
Re(e−iθ ω jX∗BX)

)
=

ker
(
Re (e−iθ X∗BX)

)
or ker

(
X∗(Re(e−iθ ω jB)

)
X

)
= ker

(
X∗(Re (e−iθ B)

)
X

)
for

all j . Since X is invertible, the latter equality yields that ker
(
Re (e−iθ ω jB)

)
=

ker
(
Re (e−iθ B)

)
for all j as asserted.

From what were proven in the preceding two paragraphs, we obtain that yω j is in
ker

(
Re (e−iθ B)

)
for all j . Since the components of y are all nonzero, the yω j ’s form a

basis of Cn . Hence ker
(
Re(e−iθ B)

)
= Cn . As this kernel is spanned by those ek ’s for

which bk = 0, we infer that bk = 0 for all k . Hence B1 = B2 = 0n/2 , X∗BX = 0n , or
B = 0n . This proves A = A′ as required. �

4. Ramifications

In this section, we discuss some results which are related to the main theorems
in Section 3. We start with one class of matrices A for which w(A) = w(A′) implies
A = A′ irrespective of the parity of its size. It is also a strengthening of [5, Theorem
3.11].

THEOREM 4.1. Let A be the n-by-n companion matrix⎡⎢⎢⎢⎢⎢⎣
0 1

0 1
. . .

. . .
0 1

−an −an−1 · · · −a2 −a1

⎤⎥⎥⎥⎥⎥⎦ ,

and let

A′ =

⎡⎢⎢⎢⎢⎢⎣
0 1

0 1
. . .

. . .
0 1

−an 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎦ .

Then (a) w(A) � w(A′) , and (b) w(A) = w(A′) if and only if a1 = a2 = · · ·= an−1 = 0 .
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Proof. (a) is by Proposition 3.1. To prove (b), assume that w(A) = w(A′) . If
an = 0, then w(A) = w(A′) = cos

(
π/(n+1)

)
and hence A = A′ by [5, Theorem 3.11].

Therefore, we may assume that an 
= 0. Let

B = A−A′ =

⎡⎢⎢⎢⎢⎢⎣
0 0

0
. . .

0
0 −an−1 · · · −a2 −a1

⎤⎥⎥⎥⎥⎥⎦ .

We may assume that an < 0. Let x,ω j and xω j be as in Lemma 3.3 (with A′ replacing
A there). By Lemmas 3.3 (b) and 3.4, we have

〈A′xω j ,xω j 〉 = ω jw(A′) = ω jw(A) = 〈Axω j ,xω j 〉

for all j , 0 � j � n−1. Thus

0 = 〈Bxω j ,xω j 〉 = −xnωn−1
j (an−1x2ω j +an−2x3ω2

j + · · ·+a1xnωn−1
j )

= −(an−1x2xnωn−2
j +an−2x3xnωn−3

j + · · ·+a2xn−1xnω j +a1x
2
n).

This shows that the degree-(n− 2) polynomial p(z) ≡ ∑n
k=2 an−k+1xkxnzn−k has ω j ,

0 � j � n−1, as zeros. Hence p must be the zero polynomial. Since xk > 0 for all k ,
we obtain a1 = a2 = · · · = an−1 = 0 as asserted. �

Another example of the equality of the numerical radii implying the equality of
the matrices is given in the next theorem.

THEOREM 4.2. Let A = [ai j]ni, j=1 (n � 2) and

A′′ =

⎡⎢⎢⎢⎢⎢⎢⎣

0 a12

0 a23

0
. . .
. . . an−1,n

0

⎤⎥⎥⎥⎥⎥⎥⎦ .

Then (a) w(A) � w(A′′) , and (b) if a12, . . . ,an−1,n are all nonzero, then the following
conditions are equivalent:

(i) W (A) = W (A′′) ,

(ii) w(A) = w(A′′) , and

(iii) A = A′′ .

The following corollary of it is another generalization of [5, Theorem 3.11].
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COROLLARY 4.3. Let A = [ai j]ni, j=1 with ai,i+1 = 1 for all i , 1 � i � n−1 . Then

(a) w(A) � cos
(
π/(n+1)

)
and (b) w(A) = cos

(
π/(n+1)

)
if and only if A = Jn , the

n-by-n Jordan block ⎡⎢⎢⎢⎢⎣
0 1

0
. . .
. . . 1

0

⎤⎥⎥⎥⎥⎦ .

Proof. This is an easy consequence of the preceding theorem and the fact that
w(Jn) = cos

(
π/(n+1)

)
. �

For the proof of Theorem 4.2, we need the following lemma, which may have
some independent interest.

LEMMA 4.4. Let A and B be n-by-n matrices. Then A = B if and only if there
is a vector x = [x1 . . . xn]T in Cn with xk 
= 0 for all k such that

(
Re(e−iθ A)

)
xθ =(

Re(e−iθ B)
)
xθ , where xθ = [x1 x2eiθ x3e2iθ . . . xne(n−1)iθ ]T , for at least n + 2

distinct values of θ in [0,2π) .

Proof. To prove the sufficiency, we may assume that B = 0n and A = [ai j]ni, j=1 .

Our assumption on A yields that Axθ + e2iθ A∗xθ = 0 for n+2 values of θ in [0,2π)
and hence, for z equal to such eiθ ’s and 1 � j � n ,

p j(z) ≡
n

∑
k=1

a jkxkz
k−1 +

n

∑
k=1

ak jxkz
k+1

= (a j1x1+a j2x2z)+
( n−1

∑
k=2

(a j,k+1xk+1+ak−1, jxk−1)zk
)
+(an−1, jxn−1z

n+an jxnz
n+1)

= 0.

It follows that a j1 = a j2 = an−1, j = an j = 0 and

a j,k+1xk+1 +ak−1, jxk−1 = 0 (4)

for all j , 1 � j � n , and all k , 2 � k � n−1. In particular, for j = 1 and 2 � k � n−1,
we have a1,k+1xk+1 +ak−1,1xk−1 = a1,k+1xk+1 = 0 and thus a1,k+1 = 0. Similarly, for
j = 2 and 2 � k � n−1, we obtain a2,k+1 = 0. In a similar fashion, we infer from (4)
that ak−1,n−1 = 0 (resp., ak−1,n = 0) for j = n− 1 (resp., j = n ) and 2 � k � n− 1.
This shows that the j th row and k th column of A are all zeros for j,k = 1,2,n−1 and
n . Continuing this process, we deduce successively from (4) that the remaining rows
and columns of A are also zeros. Hence A = 0n as required. �

Note that, in the preceding lemma, the number “n + 2” is sharp as seen by the
following example.
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EXAMPLE 4.5. Let θ1, . . . ,θn−1 be any n−1 distinct numbers in [0,2π) which
are also distinct from π/2 and 3π/2, and let xθ j = [1 eiθ j e2iθ j . . . e(n−1)iθ j ]T for
1 � j � n−1. Since the xθ j ’s are linearly independent, there is a nonzero vector y in
Cn such that 〈y,xθ j 〉 = 0 for all j . Let A = yy∗ , B = 0n and x = [1 . . . 1]T . Then

(
Re(e−iθ j A)

)
xθ j =

1
2
(e−iθ j A+ eiθ jA∗)xθ j = (cosθ j)yy∗xθ j = 0, 1 � j � n−1.

These together with Re (±iA) = 0n show that
(
Re (e−iθ A)

)
xθ = 0 for n + 1 distinct

values of θ in [0,2π) does not guarantee that A = 0n .

We remark that Lemma 4.4 is not applicable in the proofs of Theorems 3.2 and 3.5
since in each case we have only had n values of θ to satisfy the required condition.

Proof of Theorem 4.2. (a) As before, we may assume that a12, . . . ,an−1,n and an1

are all nonnegative. If

A′ =

⎡⎢⎢⎢⎢⎢⎢⎣

0 a12

0 a23

0
. . .
. . . an−1,n

an1 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

then 0n � A′′ � A′ , which implies that w(A′′) � w(A′) by [8, Corollary 3.6]. Together
with w(A′) � w(A) from Proposition 3.1, this yields w(A′′) � w(A) .

(b) Assume that a12, . . . ,an−1,n are all strictly positive and that w(A) = w(A′′) .
Let x = [x1 . . . xn]T be a unit vector in Cn with xk > 0 for all k such that 〈A′′x,x〉 =
w(A′′) , and, for any real θ , let xθ = [x1 x2eiθ x3e2iθ . . . xne(n−1)iθ ]T . As in the
proof of Lemma 3.3 (b), we can easily verify that 〈A′′xθ ,xθ 〉 = eiθ w(A′′) and hence
Re(e−iθ 〈A′′xθ ,xθ 〉) = w(A′′) . On the other hand, we also have

Re(e−iθ 〈Axθ ,xθ 〉) � |〈Axθ ,xθ 〉| � w(A) = w(A′′).

Thus if B = A−A′′ , then Re(e−iθ 〈Bxθ ,xθ 〉) � 0 for all θ . For each k , −(n− 1) �
k � n−1 and k 
= 1, let Ak be the n -by-n matrix whose (i, j)-entry is ai j if j− i = k ,
and 0 if otherwise. Then

〈Bxθ ,xθ 〉 =
n−1

∑
k=−(n−1)

k 
=1

〈Akxθ ,xθ 〉 =
n−1

∑
k=−(n−1)

k 
=1

ekiθ 〈Akx,x〉.

This shows that

−Re(e−iθ 〈Bxθ ,xθ 〉) = −Re
( n−1

∑
k=−(n−1)

k 
=1

e(k−1)iθ 〈Akx,x〉
)

is a trigonometric polynomial of degree at most n which has no constant term and
assumes only nonnegative values for all θ . By the Riesz–Fejér theorem [10, p. 77,
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Problem 40], there is a polynomial p(z) = ∑n
j=0 b jz j of degree at most n such that

−Re(e−iθ 〈Bxθ ,xθ 〉) = |p(eiθ )|2 for all θ . Since the constant term of the latter is given
by ∑n

j=0 |b j|2 , we obtain b j = 0 for all j , 0 � j � n . Thus Re (e−iθ 〈Bxθ ,xθ 〉) = 0 for
all θ . It follows that

Re(e−iθ 〈Axθ ,xθ 〉) = Re (e−iθ 〈A′′xθ ,xθ 〉) = w(A′′) = w(A).

Thus (
Re(e−iθ A)

)
xθ = w(A)xθ = w(A′′)xθ =

(
Re(e−iθ A′′)

)
xθ

for all θ . It then follows from Lemma 4.4 that A = A′′ . �

The inequalities in Proposition 3.1 and Theorem 4.2 (a) can be further generalized
as follows.

Let A = [ai j]ni, j=1 . For any permutation σ on the integers 1,2, . . . ,n given by
σ(�) = k� for 1 � � � n , and for any m , 1 � m � n , let Aσm be the n -by-n matrix
[a′i j]

n
i, j=1 , where

a′i j =
{

ai j if (i, j) = (k�,k�+1) for 1 � � � m (kn+1 ≡ k1),
0 otherwise.

COROLLARY 4.6. If A and Aσm are as above, then w(A) � w(Aσm) .

Proof. For any permutation σ as above, it is easily seen that A is unitarily similar
to a matrix B = [bi j]ni, j=1 of the form⎡⎢⎢⎢⎢⎢⎢⎢⎣

∗ ak1,k2 ∗ · · · ∗
... ∗ ak2,k3

. . .
...

...
. . .

. . . ∗
∗ . . . akn−1,kn

akn,k1 ∗ · · · · · · ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Let Bσm = [b′i j]ni, j=1 be given by

b′i j =
{

aki,ki+1 if (i, j) = (�,�+1) for 1 � � � m (kn+1 ≡ k1),
0 otherwise.

Then Bσm is also unitarily similar to Aσm . In particular, we have w(A) = w(B) �
w(Bσn) = w(Aσn) by Proposition 3.1. To prove our assertion for general Aσm , we may
assume that ak�,k�+1 � 0 for all � . Then Bσn � Bσm yields that w(Bσn) � w(Bσm) by
[8, Corollary 3.6]. Therefore, w(A) � w(Bσn) � w(Bσm) = w(Aσm) as asserted. �

We conclude this paper with an example showing that for a matrix A of even size
the equality of w(A) and w(A′) does not imply that W (A) contains W (A′) . This is in
contrast to the case of A of size two (cf. Proposition 2.1 (c)).
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EXAMPLE 4.7. If

A =

⎡⎢⎢⎣
1 2 −1/2 0
0 −2/5 4 2/5

−1/2 0 1/4 4
2 2/5 0 −2/5

⎤⎥⎥⎦ and A′ =

⎡⎢⎢⎣
0 2 0 0
0 0 4 0
0 0 0 4
2 0 0 0

⎤⎥⎥⎦ ,

then w(A) = w(A′) =
√

10, but W (A) � W (A′) . Indeed, the characteristic polynomials
of Re(eiθ A) and Re(eiθ A′) for θ in [0,2π) can be computed to be

pθ (z) ≡ det
(
zI4 −Re(eiθ A)

)
= z4−

( 9
20

cosθ
)
z3 − (cos2 θ +10)z2 +

(9
2

cosθ
)
z

+
(
5cos2 θ +5cos2 θ · cos(2θ )−8cos(4θ )+8

)
and

qθ (z) ≡ det
(
zI4−Re(eiθ A′)

)
= z4−10z2 +

(
8−8cos(4θ )

)
,

respectively. Since q0(z) = z4−10z2 has zeros 0 and ±√
10, p0(

√
10) = 0,

pθ (
√

10) = 100− 9
2

√
10cosθ − (cos2 θ +10)10+

9
2

√
10cosθ

+
(
5cos2 θ +5cos2 θ · cos(2θ )−8cos(4θ )+8

)
= −5cos2 θ +5cos2 θ · cos(2θ )−8cos(4θ )+8

=
27
2

sin2(2θ ) � 0,

and pθ (z) is strictly increasing on [
√

10,∞) for any θ in [0,2π) (because

p′θ (z) = 4z3−
(27

20
cosθ

)
z2 −2(cos2 θ +10)z+

9
2

cosθ

� 4z
(
z2 − 27

80
z− 11

2

)
− 9

2

= 4z
(
z− 27+

√
141529

160

)(
z− 27−√

141529
160

)
− 9

2
> 0

for z �
√

10), we conclude that the maximum eigenvalue of Re(eiθ A) is at most
√

10
for any θ and hence w(A) =

√
10. On the other hand, we also have q0(

√
10) = 0,

qθ (
√

10) = 16sin2(2θ ) � 0

and qθ (z) is strictly increasing on [
√

10,∞) for θ in [0,2π) (because

q′θ (z) = 4z3−20z = 4z(z2 −5) > 0

for z �
√

10). Hence w(A′) =
√

10.
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Finally, we check that W (A) �W (A′) . Since the zeros of qπ/4(z) = z4−10z2 +16

are ±√
2 and ±2

√
2, the maximum eigenvalue of Re (e(π/4)iA′) is 2

√
2. On the other

hand, we have

pπ/4(z) = z4 − 9
√

2
40

z3 − 21
2

z2 +
9
√

2
4

z+
37
2

.

Hence pπ/4(2
√

2) = 3/10 > 0 and pπ/4(z) is strictly increasing on [2
√

2,∞) as above.

Thus the maximum eigenvalue of Re (e(π/4)iA) is less than 2
√

2. This shows that
W (A) � W (A′) as asserted.
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