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SHAPIRO’S UNCERTAINTY PRINCIPLE RELATED TO

THE WINDOWED FOURIER TRANSFORM ASSOCIATED

WITH THE RIEMANN–LIOUVILLE OPERATOR

AYMEN HAMMAMI

(Communicated by D. Han)

Abstract. Quantitative Shapiro’s dispersion uncertainty principle and umbrella theorem are proved
for the windowed Fourier transform associated with the Riemann-Liouville operator.

1. Introduction

In [1], the authors have defined the Riemann-Liouville operator Rα ; α � 0, by

Rα( f )(r,x) =

⎧⎪⎪⎨
⎪⎪⎩

α
π

∫ 1

−1

∫ 1

−1
f (rs

√
1− t2,x+ rt)(1− t2)α− 1

2 (1− s2)α−1dtds; if α > 0,

1
π

∫ 1

−1
f (r

√
1− t2,x+ rt)

dt√
1− t2

, if α = 0;

(1.1)

where f is any continuous function on R2 , even with respect to the first variable.
A convolution product ∗ and a Fourier transform Fα connectedwith the Riemann-

Liouville operator Rα have been defined and many harmonic analysis results have been
established [2, 18]. Also, many uncertainty principles related to the Fourier transform
Fα have been proved see for example [16, 17] and the references therein.

In [20], Shapiro has studied the localization for an orthonormal sequence (ϕk)k∈ N .
He showed that if the means and the dispersions of the orthonormal sequence (ϕk)k∈ N

and their Fourier transforms (ϕ̂k)k∈ N are uniformly bounded, then (ϕk)k∈ N is finite. In
[12], the authors gave a quantitative version of the Shapiro’s theorem, that is if (ϕk)k∈ N

is an orthonormal sequence in L2(R) , then for every n ∈ N ,

n

∑
k=0

(
||xϕk||22 + ||yϕ̂k||22

)
� (n+1)2. (1.2)
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Recently, in [15], the author obtains a quantitative multivariables version of Shapiro’s
theorem for generalized dispersion, in fact the author showed that if (ϕ̂k)k∈ N is an
orthonormal sequence in L2(Rd) ; then for every positive real number s and for every
n ∈ N∗

n

∑
k=1

(
|| |x|sϕk ||22 + || |y|sϕ̂k ||22

)
� C n1+ s

d , (1.3)

where C is a constant which does not depend on s . The author obtains also a strong un-
certainty principle of the above theorem by showing that if (ϕk)k∈ N is an orthonormal
sequence of L2(Rd) , then for every positive real number s ,

sup
k∈ N

(
|| |x|sϕk ||22 + || |y|sϕ̂k ||22

)
= +∞. (1.4)

Time frequency analysis [11] plays an important role in harmonic analysis, in par-
ticular in signal theory. In this context, Dennis Gabor [7] has introduced the Gabor
transform, in which he uses translation, convolution and modulation operators of a sin-
gle Gaussian to represent one dimensional signal. The Fourier transform gives no more
than what frequency components exist in the signal, to investigate the time localiza-
tion of the spectral components, one has needed to introduce a time-frequency repre-
sentation through many distribution as notably Weyl-Heisenberg transform, short time
Fourier transform and windowed Fourier transform. The uncertainty principles play
an important role in harmonic analysis. These principles state that a nonzero function
f and its Fourier transform f̂ can not be simultaneously and sharply localized at the
same time. Many mathematical formulations of this fact have been checked in the last
decades [3, 4, 8]. Recently, new uncertainty principles involving these representations
have been investigated with different approaches, we refer in particular to the papers of
Ghobber, Omri and Lamouchi [9, 10, 13], (see also [12, 15, 20]).

Motivated by their impact in real-life signals, we define in this paper the win-
dowed Fourier transform connected with the Riemann-Liouville operator, which was
introduced in [5, 7, 8]. For this, we define the modulation operator for any function g
in L2(dνα) by

M(ξ1,ξ2)(g) = F̃α

(√
τ(ξ1,ξ2)

(|F̃α(g)|2)); ∀(ξ1,ξ2) ∈ [0,+∞[×R, (1.5)

where

• dνα the product measure defined on [0,+∞[×R by dνα(r,x)=
r2α+1 dr dx

2αΓ(α+1)
√

2π
,

then, Lp(dνα); p ∈ [1,+∞], is the Lebesgue space on [0,+∞[×R with respect to the
measure dνα and with the Lp -norm denoted by ||.||p,να .

• F̃α is the so-called Fourier-Bessel transform defined on L1(dνα) by

∀(μ ,λ ) ∈ [0,+∞[×R; F̃α( f )(μ ,λ ) =
∫ ∞

0

∫
R

f (r,x) jα (rμ) e−iλ xdνα(r,x). (1.6)

• jα [22] is the modified Bessel function defined by

∀z ∈ C; jα(z) = Γ(α +1)
+∞

∑
k=0

(−1)k

k!Γ(α + k+1)

( z
2

)2k
. (1.7)
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• τ(ξ1,ξ2) is the translation operator associated with the Riemann-Liouville trans-
form that will be defined in the second section.

Then, for any non-zero window function g in L2(dνα) , the windowed Fourier
transform associated with the Riemann-Liouville operator (WFTRL) of any signal f ∈
L2(dνα) with respect to the window g is given by:

Vg( f )
(
(r,x),(ξ1,ξ2)

)
=

∫ ∞

0

∫
R

f (s,y) τ(r,x)
(
M(ξ1,ξ2)(g)

)
dνα(s,y). (1.8)

We prove for this transform the following Parseval’s formula

〈Vg( f )|Vg(h)〉να⊗να = ||g||22,να 〈 f |h〉να ; f ,h ∈ L2(dνα), (1.9)

where να ⊗να is the product measure on ([0,+∞[×R)2 defined by

d(να ⊗να)
(
(r,x),(s,y)

)
= dνα(r,x)⊗dνα(s,y),

then L2(dνα ⊗dνα) is the Hilbert space of square integrable functions on ([0,+∞[×R)2

with respect to the measure να ⊗να equipped with the inner product

〈 f |g〉να⊗να =
∫ ∫(

[0,+∞[×R

)2 f
(
(r,x),(s,y)

)
g
(
(r,x),(s,y)

)
dνα(r,x) dνα(s,y)

and the norm || f ||2,να⊗να =
√〈 f | f 〉να⊗να .

We conclude a resolution of identity when g is non-zero positive window, that is

〈 f |h〉να =
〈 1

||g||22,να

∫ ∫
([0,+∞[×R)2

Vg( f )((r,x),(ξ1,ξ2))τ(r,x) (1.10)

×(M(ξ1,ξ2)(g))(., .)dνα (r,x)dνα (ξ1,ξ2)|h
〉

να
.

Therefore, the signal f can be recovered from its the WFTRL by

f (., .) =
1

||g||22,να

∫ ∫
([0,+∞[×R)2

Vg( f )((r,x),(ξ1 ,ξ2))τ(r,x) (1.11)

×(M(ξ1,ξ2)(g))(., .)dνα (r,x)dνα (ξ1,ξ2),

in a weak sense.
In the second part of this work, based on the paper of Malinnikova [15], we will

prove a quantitative Shapiro’s dispersion uncertainty principle for the WFTRL. More
precisely, we show the following result:

If (ϕm,n)(m,n)∈ N2 be an orthonormal sequence in L2(dνα) , then for every positive

real number s and for every nonempty finite subset K ⊂ N2 , we have

∑
(m,n)∈ K

(|| |(r,x)|sVg(ϕm,n)||22,να⊗να + || |(ξ1,ξ2)|sVg(ϕm,n)||22,να⊗να ) (1.12)

� cs,α card(K )1+ s
2α+3 ,
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where the constant cs,α depends only on s and α .
Using the pervious inequality, we obtain the following strong uncertainty principle

for the WFTRL:

sup
(m,n)∈ N2

(|| |(r,x)|sVg(ϕm,n)||22,να⊗να + || |(ξ1,ξ2)|sVg(ϕm,n)||22,να⊗να

)
=+∞. (1.13)

Next, based on an idea of Malinnikova [15], we will show an analogue of Shapiro’s
Umbrella theorem for the WFTRL, we formulate the following theorem:

Let K ⊂ N
2 be a nonempty subset and (ϕm,n)(m,n)∈K be an orthonormal se-

quence in L2(dνα) , if there is a function ψ ∈ L2(dνα ⊗dνα) such that

| Vg(ϕm,n)
(
(r,x),(ξ1,ξ2)

) | � ψ
(
(r,x),(ξ1,ξ2)

)
,

for every (m,n) ∈ K and for almost every
(
(r,x),(ξ1,ξ2)

) ∈ (
[0,+∞[×R

)2
, then K

is finite.

2. Harmonic analysis results related to the Fourier transform associated
with the Riemann-Liouville operator

In this section, we recall some harmonic analysis results related to the Fourier
transform associated with the Riemann-Liouville operator (see [1, 2]).

Let Δ1 =
∂
∂x

and Δ2 be the singular partial differential operator defined by

Δ2 =
∂ 2

∂ r2 +
2α +1

r
∂
∂ r

− ∂ 2

∂x2 ; (r,x) ∈ ]0,+∞[×R, α � 0.

Then, for all (λ0,λ ) ∈ C2; the system⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Δ1u(r,x) = −iλu(r,x);

Δ2u(r,x) = −λ 2
0 u(r,x);

u(0,0) = 1,
∂u
∂ r

(0,x) = 0; ∀x ∈ R,

admits a unique solution ϕλ0,λ given by

∀(r,x) ∈ [0,+∞[×R; ϕλ0,λ (r,x) = jα
(
r
√

λ 2
0 + λ 2

)
e−iλ x, (2.1)

where jα is the modified Bessel function defined by

∀z ∈ C; jα (z) = 2α Γ(α +1)
Jα(z)
zα = Γ(α +1)

+∞

∑
k=0

(−1)k

k!Γ(α + k+1)

( z
2

)2k
, (2.2)

and Jα is the Bessel function of first kind and index α . The Bessel functions (Jα)α>− 1
2

have been studied by many authors and from many points of view [6, 14]. In particular,
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the modified Bessel function jα has the integral representation

jα (z) =
Γ(α +1)√
πΓ(α + 1

2 )

∫ 1

−1
(1− t2)α− 1

2 exp(−izt)dt. (2.3)

Consequently, for every k ∈ N and z ∈ C; we have
∣∣ j(k)α (z)

∣∣ � e|Im(z)|.
It is known that the eigenfunction ϕλ0,λ is bounded on R

2 if and only if (λ0,λ ) ∈
ϒ , where ϒ is the set given by

ϒ = R
2∪{

(iλ0,λ ); (λ0,λ ) ∈ R
2; |λ0| � |λ |}, (2.4)

and in this case, sup
(r,x)∈ R2

∣∣ϕλ0,λ (r,x)
∣∣ = 1.

• The function ϕλ0,λ has the following Mehler integral representation

ϕλ0,λ (r,x)

=

⎧⎪⎪⎨
⎪⎪⎩

α
π

∫ 1

−1

∫ 1

−1
cos

(
λ0rs

√
1− t2

)
e−iλ (x+rt)(1− t2)α− 1

2 (1− s2)α−1dtds; if α > 0,

1
π

∫ 1

−1
cos

(
rλ0

√
1− t2

)
e−iλ (x+rt) dt√

1− t2
, if α = 0.

(2.5)

• From the definition of the operator Rα given in the first section and the relation
(2.5), we deduce that ϕλ0,λ (r,x) = Rα

(
cos(λ0·)e−iλ ·)(r,x) which gives the mutual

connexion between the functions ϕλ0,λ and cos(λ0·)e−iλ · . For this reason, the operator
Rα is called the Riemann-Liouville transform associated with the operators Δ1 and Δ2 .

The eigenfunction ϕλ0,λ satisfies the product formula

ϕλ0,λ (r,x)ϕλ0,λ (s,y) =
Γ(α +1)√
πΓ(α + 1

2)

∫ π

0
ϕλ0,λ

(√
r2 + s2 +2rscosθ ,x+ y

)
sin2α θdθ .

(2.6)

This formula allows us to define the translation operators and the convolution product.

DEFINITION 2.1. (i) For every (r,x) ∈ [0,+∞[×R, the translation operator τ(r,x)
with the Riemann-Liouville operator is defined on Lp(dνα) ; p ∈ [1,+∞] by

τ(r,x)( f )(s,y) =
Γ(α +1)√
πΓ(α + 1

2 )

∫ π

0
f
(√

r2 + s2 +2rscosθ ,x+ y
)
sin2α(θ )dθ . (2.7)

(ii) The convolution product of f ,g ∈ L1(dνα ) is defined for every (r,x) ∈
[0,+∞[×R , by

f ∗ g(r,x) =
∫ +∞

o

∫
R

τ(r,−x)( f̌ )(s,y)g(s,y)dνα (s,y), (2.8)

whenever the integral exists, where f̌ (s,y) = f (s,−y).
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Moreover, we have the following properties:
• The translation operator satisfies the following product formula

τ(r,x)(ϕλ0,λ )(s,y) = ϕλ0,λ (r,x)ϕλ0,λ (s,y). (2.9)

• For all (r,x) ∈ [0,+∞[; f ∈ L1(dνα) ,∫ +∞

0

∫
R

τ(r,x)( f )(s,y)dνα (s,y) =
∫ +∞

0

∫
R

f (s,y)dνα (s,y). (2.10)

• For every (r,x) ∈ [0,+∞[×R,τ(r,x) is a positive bounded operator on Lp(dνα );
p ∈ [1,+∞], and for ever f ∈ Lp(dνα),∣∣∣∣τ(r,x)( f )

∣∣∣∣
p,να

� || f ||p,να . (2.11)

• If p,q,r ∈ [1,+∞] such that
1
p

+
1
q

= 1+
1
r
, then for every f ∈ Lp(dνα) and

g ∈ Lq(dνα) , the function f ∗ g belongs to the space Lr(dνα) and we have

|| f ∗ g||r,να � || f ||p,να ||g||q,να . (2.12)

Now, using the eigenfunction ϕλ0,λ given by the relation (2.1), we can define the
Fourier transform.

DEFINITION 2.2. For every f ∈ L1(dνα) , the Fourier transform of f is defined
by

∀(λ0,λ ) ∈ ϒ, Fα( f )(λ0,λ ) =
∫ +∞

0

∫
R

f (r,x)ϕλ0,λ (r,x)dνα (r,x). (2.13)

In the following, we give some properties of this transform (see [22, 23]):
• For every f ∈ L1(dνα ) , the function Fα( f ) is bounded on the set ϒ and for

every (λ0,λ ) ∈ ϒ,
∣∣Fα( f )(λ0,λ )

∣∣ � || f ||1,να .

• For every f ∈ L1(dνα) and (r,x) ∈ [0,+∞[×R, the function τ(r,x)( f ) belongs
to L1(dνα) and we have

∀(λ0,λ ) ∈ ϒ, Fα
(
τ(r,x)( f )

)
(λ0,λ ) = ϕλ0,λ (r,x)Fα ( f )(λ0,λ ). (2.14)

• For all f ,g ∈ L1(dνα ), the function f ∗ g belongs to L1(dνα) and

∀(λ0,λ ) ∈ ϒ, Fα( f ∗ g)(λ0,λ ) = Fα( f )(λ0,λ )Fα(g)(λ0,λ ). (2.15)

• For every f ∈ L1(dνα ) ; Fα( f )(λ0,λ ) = F̃α( f )
(√

λ 2
0 + λ 2,λ

)
, where F̃α is

the mapping defined on L1(dνα) by the relation (1.6).
• (Inversion formula) For every f ∈ L1(dνα) , such that F̃α( f ) belongs to

L1(dνα) and for almost every (r,x) ∈ [0,+∞[×R , we have

f (r,x) =
∫ ∞

0

∫
R

F̃α( f )(μ ,λ ) jα (rμ) eiλ x dνα (μ ,λ )

= F̃α
(
F̃α ( f )

)
(r,−x). (2.16)
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• (Plancherel theorem) The transform F̃α can be extended to an isometric iso-
morphism from L2(dνα) onto itself and for every f ∈ L2(dνα) ,

F̃−1
α ( f ) = F̃α( f̆ ) = ˘

F̃α ( f ). (2.17)

• For every f ∈ L1(dνα); g ∈ Lp(dνα); p ∈ {1,2} , the function f ∗g belongs to
Lp(dνα) and we have

F̃α ( f ∗ g) = F̃α( f ) F̃α (g). (2.18)

• For all f ,g ∈ L2(dνα) , the function f ∗ g belongs to C0,e(R2) (the space of
continuous functions f on R2 , even with respect to the first variable and such that

lim
r2+x2→+∞

f (r,x) = 0) and we have

f ∗ g = F̃−1
α

(
F̃α( f ) F̃α(g)

)
= F̃α

( ˘
F̃α( f ) F̃α(g)

)
. (2.19)

• For all f ,g ∈ L2(dνα) , the function f ∗ g belongs to L2(dνα) if and only if
F̃α( f ) F̃α(g) ∈ L2(dνα) and in this case;

F̃α ( f ∗ g) = F̃α( f ) F̃α (g). (2.20)

3. The windowed Fourier transform associated
with the Riemann-Liouville operator

In the sequel, we introduce the windowed Fourier transform associated with the
Riemann-Liouville operator and we give some properties, the main references are given
in [4, 5, 7, 8].

For every g∈ L2(dνα) and (ξ1,ξ2)∈ [0,+∞[×R ; the modulation of g by (ξ1,ξ2)
is defined by

M(ξ1,ξ2)(g) = F̃α

(√
τ(ξ1,ξ2)

(|F̃α (g)|2)) = g(ξ1,ξ2). (3.1)

From the Plancherel theorem for F̃α and the relations (2.10) and (2.16), we have

||M(ξ1,ξ2)(g)||2,να = ||g||2,να . (3.2)

For a non-zero window function g in L2(dνα) ; and all (r,x), (ξ1,ξ2) ∈ [0,+∞[×R;
we define the function g(r,x),(ξ1,ξ2) by

g(r,x),(ξ1,ξ2) = τ(r,x)
(
M(ξ1,ξ2)(g)

)
. (3.3)

For every f ∈ L2(dνα) , we define the windowed Fourier transform associated with the
Riemann-Liouville operator (WFTRL) by

Vg( f )
(
(r,x),(ξ1,ξ2)

)
=

∫ ∞

0

∫
R

f (s,y) g(r,x),(ξ1,ξ2)(s,y) dνα(s,y), (3.4)
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which can be also written in the form

Vg( f )
(
(r,x),(ξ1,ξ2)

)
= 〈 f |g(r,x),(ξ1,ξ2)〉να = f ∗ g(ξ1,ξ2)(r,−x) (3.5)

Moreover, from Cauchy-Schwarz’s inequality and relation (3.2), we get

||Vg( f )||∞,να⊗να � || f ||2,να ||g||2,να . (3.6)

The WFTRL possesses the following properties

PROPOSITION 3.1. Let g be a non-zero window function g in L2(dνα) .
i. For every f ∈ L2(dνα ) , we have the Plancherel-type theorem for Vg

||Vg( f )||2,να⊗να = || f ||2,να ||g||2,να . (3.7)

ii. For all f ,h ∈ L2(dνα) , we have the orthogonality-type relation for Vg

〈Vg( f )|Vg(h)〉να⊗να = ||g||22,να 〈 f |h〉να . (3.8)

Proof. i) From the relations (2.16), (2.20), (3.1), (3.5) and Fubini’s theorem, we
have

||Vg( f )||22,να⊗να =
∫ ∫(

[0,+∞[×R

)2

∣∣ f ∗ g(ξ1,ξ2)(r,x)
∣∣2 dνα(r,x) dνα(ξ1,ξ2)

=
∫ ∞

0

∫
R

(∫ ∞

0

∫
R

∣∣F̃α( f )(u,v)
∣∣2 τ(ξ1,ξ2)

(∣∣F̃α (g)
∣∣2)(u,−v) dνα (u,v)

)
dνα(ξ1,ξ2)

=
∫ ∞

0

∫
R

∣∣F̃α ( f )(u,v)
∣∣2(∫ ∞

0

∫
R

τ(u,−v)
(∣∣F̃α(g)

∣∣2)(ξ1,ξ2) dνα (ξ1,ξ2)
)
dνα(u,v)

=
∫ ∞

0

∫
R

∣∣F̃α ( f )(u,v)
∣∣2dνα(u,v)

∫ ∞

0

∫
R

∣∣F̃α(g)(ξ1,ξ2)
∣∣2dνα(ξ1,ξ2)

= || f ||22,να ||g||22,να .

ii) Follows from i) by polarization. �
From the relations (3.6), (3.7) and the Riesz-Thorin interpolation theorem [21], we

have

THEOREM 3.2. For every non-zero window function g in L2(dνα) and
f ∈ L2(dνα) , the function Vg( f ) belongs to Lq(dνα ⊗dνα); 2 � q � ∞ , with

||Vg( f )||q,να⊗να � || f ||2,να ||g||2,να . (3.9)

In the following, we establish a reconstruction formula for Vg .

THEOREM 3.3. (Reconstruction formula) Let g∈L2(dνα) be a non-zero window
function. Then, for every f in L2(dνα) , such that Vg( f ) ∈ L1(dνα ⊗dνα) , we have

f (s,y) =
1

||g||22,να

∫∫
([0,+∞[×R)2

Vg( f )((r,x),(ξ1,ξ2))g(r,x),(ξ1,ξ2)(s,y)dνα (r,x)dνα (ξ1,ξ2),

(3.10)

weakly in L2(dνα) .
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Proof. From relations (3.4), (3.8) and by Fubini’s theorem, we have for all h in
L2(dνα)

〈 f |h〉να =
1

||g||22,να

〈Vg( f )|Vg(h)〉να⊗να

=
1

||g||22,να

∫ ∫
([0,+∞[×R)2

Vg( f )((r,x),(ξ1 ,ξ2))Vg(h)((r,x),(ξ1,ξ2))dνα(r,x)dνα (ξ1,ξ2)

=
1

||g||22,να

∫ ∫
[0,+∞[×R

(∫ ∫(
[0,+∞[×R

)2 Vg( f )((r,x),(ξ1,ξ2)) g(r,x),(ξ1,ξ2)(s,y)

×dνα(r,x)dνα (ξ1,ξ2)
)
h(s,y)dνα(s,y)

=
〈 1

||g||22,να

∫ ∫
([0,+∞[×R)2

Vg( f )((r,x),(ξ1,ξ2))g(r,x),(ξ1,ξ2)(., .)dνα (r,x)dνα (ξ1,ξ2)|h
〉

να

which gives the result. �

4. Mean dispersion theorem for the WFTRL

In this section, g will be a fixed nonzero window function in L2(dνα ) with ||g||2,να

= 1 and Σ be a subset of the time-frequency set
(
[0,+∞[×R

)2
of finite measure 0 <

να ⊗να(Σ) < ∞ . We introduce a pair of orthogonal projections on L2(dνα ⊗dνα) . The
first, denoted Pg , is the orthogonal projection from L2(dνα ⊗dνα) onto Vg(L2(dνα ))
and the second is the time-frequency limiting operator defined by:

PΣ(F) = F 1Σ; F ∈ L2(dνα ⊗dνα). (4.1)

We begin this section by the following useful lemma which shows that, for a given
window function g, the Hilbert space Vg(L2(dνα)) has a reproducing kernel. This
allows to express the orthogonal projection operator over Vg(L2(dνα)) .

LEMMA 4.1. (Reproducing kernel Hilbert space) The space Vg(L2(dνα)) poss-
eses a reproducing kernel [19] given by

Kg
(
(r,x),(ξ1,ξ2),(s,y),(μ ,λ )

)
=

1

||g||22,να

Vg
(
τ(s,y)(g(μ,λ ))

)(
(r,x),(ξ1,ξ2)

)
. (4.2)

Furthermore, the kernel Kg is pointwise bounded, that is

|Kg
(
(r,x),(ξ1,ξ2),(s,y),(μ ,λ )

)| � 1, ∀(r,x),(ξ1,ξ2),(s,y),(μ ,λ ) ∈ [0,+∞[×R.
(4.3)

Proof. For every
(
(s,y),(μ ,λ )

) ∈ (
[0,+∞[×R

)2
; the function τ(s,y)(g(μ,λ )) be-

longs to L2(dνα ) , consequently, for every
(
(s,y),(μ ,λ )

) ∈ (
[0,+∞[×R

)2
; the func-

tion Kg
(
(., .),(., .),(s,y),(μ ,λ )

)
belongs to Vg(L2(dνα )) . Moreover, from Plancherel
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theorem, the relations (2.11) and (3.2),

||Kg
(
(., .),(., .),(s,y),(μ ,λ )

)||22,να⊗να =
1

||g||42,να

||Vg
(
τ(s,y)(g(μ,λ ))

)||22,να⊗να

=
1

||g||22,να

||τ(s,y)(g(μ,λ ))||22,να � 1. (4.4)

(Reproducing property)Let F ∈ Vg(L2(dνα)); F = Vg( f ); f ∈ L2(dνα ) . For every(
(s,y),(μ ,λ )

) ∈ (
[0,+∞[×R

)2
and applying orthogonality property, we get

〈F |Kg
(
(., .),(., .),(s,y),(μ ,λ )

)〉να⊗να =
1

||g||22,να

〈Vg( f )|Vg
(
τ(s,y)(g(μ,λ ))

)〉να⊗να

= 〈 f |τ(s,y)(g(μ,λ ))〉να = Vg( f )
(
(s,y),(μ ,λ )

)
= F

(
(s,y),(μ ,λ )

)
. (4.5)

Now, by the relations (2.11), (3.2), (3.3) and (3.5), we deduce that

|Kg
(
(r,x),(ξ1,ξ2),(s,y),(μ ,λ )

)| =
1

||g||22,να

|〈τ(s,y)(g(μ,λ ))|g(r,x),(ξ1,ξ2)〉να |

� 1

||g||22,να

||τ(s,y)(g(μ,λ ))||2,να ||g(r,x),(ξ1,ξ2)||2,να

� 1.

This achieves the proof. �
The following proposition shows that the WFTRL cannot be concentrated inside a

set with finite measure arbitrary small.

PROPOSITION 4.2. Let Σ ⊂ (
[0,+∞[×R

)2
such that 0 < να ⊗να(Σ) < 1 . Then,

for every f ∈ L2(dνα) ,

||1ΣcVg( f )||2,να⊗να �
√

1−να ⊗να(Σ) || f ||2,να ||g||2,να . (4.6)

Proof. From (3.6), we get

||1ΣVg( f )||22,να⊗να � || f ||22,να ||g||22,να να ⊗να(Σ).

Now since

||1ΣcVg( f )||22,να⊗να = ||Vg( f )||22,να⊗να −||1ΣVg( f )||22,να⊗να ,

from relation (3.7), we obtain

||1ΣcVg( f )||22,να⊗να � || f ||22,να ||g||22,να (1−να ⊗να(Σ)).

Hence, the proof is complete. �
The following proposition shows that the operator norm ||PΣPg|| can be estimated

by Hilbert-Schmidt norm ||PΣPg||HS .
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PROPOSITION 4.3. The operator PΣPg is an Hilbert-Shmidt operator such that

||PΣPg|| � ||PΣPg||HS �
√

να ⊗να(Σ). (4.7)

where ||.|| denotes here the classical operator norm and ||.||HS denotes the Hilbert-
Schmidt norm. Moreover, if ||PΣPg|| < 1 , then for every f ∈ L2(dνα) ,

||1ΣcVg( f )||2,να⊗να �
√

1−||PS Pg||2 || f ||2,να ||g||2,να . (4.8)

Proof. Let F ∈ L2(dνα ⊗dνα) ; F = Pg(F)+G ; G⊥Vg(L2(dνα)) . For all (s,y) ,
(μ ,λ )∈ [0,+∞[×R ; the function Kg

(
(., .),(., .),(s,y),(μ ,λ )

)
belongs to Vg(L2(dνα )) ;

so

〈F |Kg
(
(., .),(., .),(s,y),(μ ,λ )

)〉να⊗να = 〈Pg(F)|Kg
(
(., .),(., .),(s,y),(μ ,λ )

)〉να⊗να

= Pg(F)
(
(s,y),(μ ,λ )

)
, (4.9)

because Kg is a reproducing Kernel of Vg(L2(dνα)) .
Hence, for every F ∈ L2(dνα ⊗dνα) ,

PΣ Pg(F)
(
(s,y),(μ ,λ )

)
=

∫
([0,+∞[×R)2

Hg
(
(s,y),(μ ,λ ),(r,x),(ξ1 ,ξ2)

)
F

(
(r,x),(ξ1,ξ2)

)
dνα(r,x)dνα (ξ1,ξ2),

(4.10)

where the Kernel Hg is given by

Hg
(
(s,y),(μ ,λ ),(r,x),(ξ1,ξ2)

)
= 1Σ

(
(s,y),(μ ,λ )

)
Kg

(
(r,x),(ξ1,ξ2),(s,y),(μ ,λ )

)
.

Now, by Fubini’s theorem and the relation (4.4),∫ ∫
([0,+∞[×R)4

|Hg((s,y),(μ ,λ ),(r,x),(ξ1,ξ2))|2dνα(s,y)dνα (μ ,λ )dνα(r,x)dνα (ξ1,ξ2)

=
∫ ∫

([0,+∞[×R)2
1Σ((s,y),(μ ,λ ))||Kg((., .),(., .),(s,y),(μ ,λ ))||22,να ⊗να dνα(s,y)dνα (μ ,λ )

� να ⊗να(Σ). (4.11)

The relations (4.10) and (4.11) show that PΣPg is an Hilbert-Shmidt operator and that

||PΣPg||2HS

=
∫

([0,+∞[×R)4
|Hg((s,y),(μ ,λ ),(r,x),(ξ1,ξ2))|2dνα (s,y)dνα(μ ,λ )dνα (r,x)dνα (ξ1,ξ2)

� να ⊗να(Σ).

This involves that

||PΣPg|| � ||PΣPg||HS �
√

να ⊗να(Σ). (4.12)
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On other hand, for every f ∈ L2(dνα)

||1ΣcVg( f )||22,να⊗να = ||Vg( f )||22,να⊗να −||1ΣVg( f )||22,να⊗να .

Now since
1ΣVg( f ) = PΣPg(Vg( f )),

and then from the relation (3.6), we get

||1ΣcVg( f )||22,να⊗να � (1−||PΣPg||2) ||Vg( f )||22,να⊗να

= (1−||PΣ Pg||2) || f ||22,να ||g||22,να . (4.13)

Hence, the proof is complete. �

THEOREM 4.4. Let K be a finite subset of N2 and let (ϕm,n)(m,n)∈ K be an
orthonormal sequence in L2(dνα). Then, for every nonempty finite subset K ⊂ N2 ,
we have

∑
(m,n)∈ K

(
1−||1ΣcVg(ϕm,n)||2,να⊗να

)
� να ⊗να(Σ). (4.14)

Proof. Let (hn,m)(n,m)∈N2 be an orthonormal basis of L2(dνα ⊗dνα) , since PΣPg

is a Hilbert Schmidt operator satisfying relation (4.7), we deduce that the positive op-
erator PgPΣPg satisfies

∑
(m,n)∈N2

〈PgPΣPghm,n | hm,n〉να⊗να = ||PΣPg||2HS � να ⊗να(Σ) < ∞, (4.15)

which means according to [24, Theorems 2.6 and 2.7], that PΣPgPΣ is a trace class
operator, with

tr(PgPΣPg) = ||PΣPg||2HS � να ⊗να(Σ). (4.16)

Actually, since (ϕm,n)(m,n)∈ K be an orthonormal sequence in L2(dνα) , then by rela-
tion (3.8) we deduce that (Vg(ϕm,n))(m,n)∈ K be an orthonormal sequence in L2(dνα ⊗
dνα) , hence

∑
(m,n)∈ K

〈PΣVg(ϕm,n) | Vg(ϕm,n)〉να⊗να = ∑
(m,n)∈ K

〈PgPΣPgVg(ϕm,n) | Vg(ϕm,n)〉να⊗να

� tr(PgPΣPg). (4.17)

Then by (4.16) we obtain

∑
(m,n)∈ K

〈PΣVg(ϕm,n) | Vg(ϕm,n)〉να⊗να � να ⊗να(Σ). (4.18)

Then by Cauchy-Schwartz’s inequality,

〈PΣVg(ϕm,n) | Vg(ϕm,n)〉να⊗να = 1−〈PΣcVg(ϕm,n) | Vg(ϕm,n)〉να⊗να

� 1−||1ΣcVg(ϕm,n)||2,να⊗να . (4.19)

Therefore by (4.18), we deduce the desired result. �
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DEFINITION 4.5. Let ε be a positive real number. We say that Vg( f ) is ε -time-
concentrated on Σ , if

||1ΣcVg( f )||2,να⊗να � ε|| f ||2,να ||g||2,να . (4.20)

Then by Theorem 4.4, we shall deduce the following proposition which show that,
if the WFTRL of an othornormal sequence are ε - time-frequency concentrated in a
given centred ball of

(
[0,+∞[×R

)2 , then such sequence is necessary finite.

PROPOSITION 4.6. Let 0 < ε < 1 and let K ⊂ N2 be a nonempty subset and
let (ϕm,n)(m,n)∈ K be an orthonormal sequence in L2(dνα) . If Vg(ϕm,n) is ε -time-

concentrated on B+
ρ =

{(
(r,x),(s,y)

) ∈ (
[0,+∞[×R

)2; r2 +x2 + s2 +y2 � ρ2
}

, then,

the subset K is finite and

card(K ) � ρ4α+6

22α+3 Γ(2α +4)(1− ε)
. (4.21)

Proof. Let K1 ⊂ K be a nonempty finite subset, then by Theorem 4.4, it follows
that

∑
(m,n)∈ K1

(
1−||1(B+

ρ )cVg(ϕm,n)||2,να⊗να

)
� να ⊗να(B+

ρ ). (4.22)

However for every (m,n) ∈ K1 , ||1(B+
ρ )cVg(ϕm,n)||2,να⊗να � ε, and we have

να ⊗να
(
B+

ρ
)

=
ρ4α+6

22α+3 Γ(2α +4)
. (4.23)

This involves that for every finite subset K1 of K , we have

card(K1) � ρ4α+6

(1− ε) 22α+3 Γ(2α +4)
.

which means that K is a finite subset and satisfies relation (4.21). �
Therefore if the generalized dispersion of the elements of an orthonormal sequence

is uniformly bounded then this sequence is finite and we can give a bound on the number
of elements in that sequence. More precisely:

COROLLARY 4.7. Fix A > 0 . Let K be a nonempty subset of N2 and let
(ϕm,n)(m,n)∈ K be an orthonormal sequence in L2(dνα) that satisfies

|| |((r,x),(ξ1,ξ2))|sVg(ϕm,n)||1/s
2,να⊗να

� A. (4.24)

Then K is a finite subset and

card(K ) � 2(2α+3)(2/s−1)+1

Γ(2α +4)
A4α+6. (4.25)
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Proof. Since

||1(B+
ρ )cVg(ϕm,n)||2,να⊗να � ρ−s|| |((r,x),(ξ1,ξ2))|sVg(ϕm,n)||2,να⊗να ,

then if we choose ρ = A 21/s , we deduce that for every (m,n) ∈ K ; Vg(ϕm,n) is 1
2 -

time-concentrated in the ball B+
ρ . Therefore from Proposition 4.6 we obtain the desired

result. �

LEMMA 4.8. Let s > 0 and let (ϕm,n)(m,n)∈ N2 be an orthonormal sequence in

L2(dνα) . Then, there exists j0 ∈ Z such that

∀(m,n) ∈ N
2, || |((r,x),(ξ1,ξ2))|sVg(ϕm,n)||1/s

2,να⊗να
� 2 j0 . (4.26)

Proof. For every j ∈ Z , let

Pj =
{
(m,n) ∈ N

2; 2 j−1 � || |((r,x),(ξ1,ξ2))|sVg(ϕm,n)||1/s
2,να⊗να

< 2 j
}

.

Then, N2 =
⋃
j∈ Z

Pj , Pj1 ∩Pj2 = /0 if j1 �= j2 and for every (m,n) ∈ Pj ,

|| |((r,x),(ξ1,ξ2))|sVg(ϕm,n)||1/s
2,να⊗να

� 2 j. (4.27)

Applying Corollary 4.7, we deduce that Pj is finite and

card(Pj) � 2(2α+3)( 2
s −1)+1(2 j)4α+6

Γ(2α +4)
. (4.28)

Thus, for j negative and | j| sufficiently large, we get card(Pj) = 0 or Pj = /0 . This
means that there exists j0 ∈ Z such that ∀ j < j0 , Pj = /0 . So,

N
2 =

⋃
j∈ Z

Pj =
+∞⋃
j= j0

Pj. � (4.29)

Then we have an analogue of Shapiro’s uncertainty principle for the WFTRL and
the proof of this Theorem is inspired from the paper of Malinnikova [15], who proved
a similar result for the usual Fourier transform (1.3).

THEOREM 4.9. (Shapiro’s uncertainty principle for the WFTRL)
Let (ϕm,n)(m,n)∈ N2 be an orthonormal sequence in L2(dνα) , then for every positive

real number s and for every nonempty finite subset K ⊂ N2 , we have

∑
(m,n)∈ K

(|| |(r,x)|sVg(ϕm,n)||22,να⊗να + || |(ξ1,ξ2)|sVg(ϕm,n)||22,να⊗να ) (4.30)

� cs,α card(K )1+ s
4α+6 .

where cs,α =
(

(24α+6−1)Γ(2α +4)

2(2α+3)(4+ 3
s )+2

) s
2α+3

.
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Proof. Let j0 be defined in Lemma 4.8. For every k � j0 , we put Qk =
k⋃

j= j0

Pj .

From the relation (4.28),

card(Qk) =
k

∑
j= j0

card(Pj) � as,α 2(4α+6)(k+1), (4.31)

where as,α =
2(2α+3)(2/s−1)+1

(24α+6−1)Γ(2α +4)
.

i) If card(K ) > 2 as,α 2(4α+6)( j0+1); let k > j0 such that

2 as,α 2(4α+6)k � card(K ) < 2 as,α 2(4α+6)(k+1). (4.32)

From the relations (4.31) and (4.32), we have

card(Qk−1) � card(K )
2

. (4.33)

On the other hand,

∑
(m,n)∈ K

|||((r,x),(ξ1,ξ2))|sVg(ϕm,n)||22,να⊗να

= ∑
(m,n)∈ K ∩Qk−1

|| |((r,x),(ξ1,ξ2))|sVg(ϕm,n)||22,να⊗να

+ ∑
(m,n)∈ K \Qk−1

|| |((r,x),(ξ1,ξ2))|sVg(ϕm,n)||22,να⊗να

� ∑
(m,n)∈ K \Qk−1

|| |((r,x),(ξ1,ξ2))|sVg(ϕm,n)||22,να⊗να .

But, for every (m,n) ∈ K \Qk−1 ,

|| |((r,x),(ξ1,ξ2))|sVg(ϕm,n)||22,να⊗να � 4(k−1)s

Then, from the relations (4.32) and (4.33), we deduce that

∑
(m,n)∈ K

|| |((r,x),(ξ1,ξ2))|sVg(ϕm,n)||22,να⊗να

� 4(k−1)s card(K \Qk−1) � 4(k−1)s card(K )
2

�
(

(24α+6−1)Γ(2α +4)

2(2α+3)(3+ 3
s )+2

) s
2α+3

card(K )1+ s
2α+3 .

Thus,

∑
(m,n)∈ K

(|| |(r,x)|sVg(ϕm,n)||22,να⊗να + || |(ξ1,ξ2)|sVg(ϕm,n)||22,να⊗να )

� cs,αcard(K )1+ s
2α+3 .
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ii) If card(K ) � 2 as,α 2(4α+6)( j0+1). By Lemma 4.8, we have

∑
(m,n)∈ K

|| |((r,x),(ξ1,ξ2))|sVg(ϕm,n)||22,να⊗να

� card(K ) 4( j0−1)s �
(

(24α+6−1)Γ(2α +4)

2(2α+3)(3+ 3
s )+2

) s
2α+3

card(K )1+ s
2α+3 . (4.34)

Then,

∑
(m,n)∈ K

(|| |(r,x)|sVg(ϕm,n)||22,να⊗να + || |(ξ1,ξ2)|sVg(ϕm,n)||22,να⊗να )

� cs,αcard(K )1+ s
2α+3 .

This complete the proof. �
The last dispersion inequality implies in particular that, there does not exist an

infinite sequence (ϕm,n)(m,n)∈N2 of L2(dνα) such that the two sequences

(|| |(r,x)|sVg(ϕm,n)||22,να⊗να )(m,n)∈N2

and
(|| |(ξ1,ξ2)|sVg(ϕm,n)||22,να⊗να )(m,n)∈N2

are simultaneously bounded. More precisely:

COROLLARY 4.10. Let (ϕm,n)(m,n)∈ N2 be an orthonormal sequence in L2(dνα ) ,
then for every positive real number s and for every nonempty finite subset K ⊂ N2 ,
we have

sup
(m,n)∈ K

{|| |(r,x)|sVg(ϕm,n)||22,να⊗να + || |(ξ1,ξ2)|sVg(ϕm,n)||22,να⊗να } (4.35)

� cs,α card(K )
s

2α+3 .

In particular, we obtain the following strong uncertainty principle for the WFTRL who
proved a similar result for the usual Fourier transform (1.4):

sup
(m,n)∈ N2

(|| |(r,x)|sVg(ϕm,n)||22,να⊗να + || |(ξ1,ξ2)|sVg(ϕm,n)||22,να⊗να

)
= +∞. (4.36)

Next, we shall prove an analogue of Shapiro’s umbrella theorem for the WFTRL.
More precisely:

THEOREM 4.11. (Shapiro’s umbrella theorem for the WFTRL) Let K ⊂ N2 be
a nonempty subset and (ϕm,n)(m,n)∈ K be an orthonormal sequence in L2(dνα ) , if
there is a function ψ ∈ L2(dνα ⊗dνα) such that

| Vg(ϕm,n)
(
(r,x),(ξ1,ξ2)

) | � ψ
(
(r,x),(ξ1,ξ2)

)
,

for every (m,n) ∈ K and for almost every
(
(r,x),(ξ1,ξ2)

) ∈ (
[0,+∞[×R

)2
, then K

is finite.
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Proof. Following the idea of Malinnikova [15, Corollary 2], for every positive real
number 0 < ε < 1, there is a subset Δψ,ε ⊂

(
[0,+∞[×R

)2
such that

να ⊗να(Δψ,ε ) = inf
{

να ⊗να(Σ); || 1Σcψ ||2,να⊗να � ε
}
,

and ∫ ∫
([0,+∞[×R)2\Δψ,ε

| ψ
(
(r,x),(ξ1,ξ2)

) |2 dνα(r,x)dνα (ξ1,ξ2) = ε2.

Hence, according to the hypothesis, for every (m,n) ∈ K , we have∫ ∫
([0,+∞[×R)2\Δψ,ε

| Vg(ϕm,n)
(
(r,x),(ξ1,ξ2)

) |2 dνα(r,x)dνα (ξ1,ξ2) � ε2. (4.37)

Let K1 ⊂ K be a nonempty finite subset, then by Theorem 4.4, it follows that

∑
(m,n)∈ K1

(
1−||1(Δψ,ε)cVg(ϕm,n)||2,να⊗να

)
� να ⊗να(Δψ,ε ).

Therefore, by (4.37), we can conclude that for every finite subset K1 of K , we have

card(K1) � 1
1− ε

να ⊗να(Δψ,ε).

which means that K is a finite subset and

card(K ) � 1
1− ε

να ⊗να(Δψ,ε). � (4.38)
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