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SOME PROPERTIES OF G-FRAMES FOR HILBERT SPACE OPERATORS

DONGWETI LI, JINSONG LENG AND TINGZHU HUANG

(Communicated by D. R. Farenick)

Abstract. In this paper, we present some new characterizations of g-frames for a bounded op-
erator. We discuss the g-frame for an operator K which has closed range and give a necessary
and sufficient conditions for a family of bounded operators to be a K -g-frame. We also give a
characterization of the dual for a K-g-frame. Moreover, We use quotient operators to charac-
terize K -g-frames and find that the results on K-g-frames can be proved by theory of quotient
operators.

1. Introduction

Frames were first introduced by Duffin and Schaeffer [7] in the study of nonhar-
monic Fourier series, and reintroduced in 1986 by Daubechies, et al. [5] and popular-
ized from then on. Frames have established themselves by now as a standard notion in
applied mathematics and engineering. Nice properties of frames have made them useful
in filter bank theory [14], compressed sensing [3], coding theory [15, 16], probability
statistics [8, 18], and signal and image processing [11].

Sun in [2 1] introduced the concept of g-frame in Hilbert space. G-frames are natu-
ral generalizations of frames which cover many other recent generalizations of frames,
such as bounded quasi-projections [9], fusion frames [2] and pseudo-frames [17]. The
author in [1] gave the notion of K-g-frame. It shows that K-g-frames possess higher
generality than g-frames in the sense that the lower frame bound condition holds only
for the elements in the range of K. Hence K -g-frames provide more flexibility and thus
make the study of them interesting.

There are some important results on K-frames which have established by [10]. It
shows that may properties for ordinary frames may not hold for K -frames, such as the
corresponding synthesis operator for K -frames is not surjective, the frame operator for
K -frames is not invertible and so on. We refer reader to [19, 20, 22] for more details
about the results of K -frames. Since the structure of g-frame is more complicated than
that of ordinary frame, it is necessary to generalize some of the known results in K-
frames to K -g-frames. Moreover, we give some new characterizations of K-g-frames
by the range of K.

Throughout the paper, # and % are two Hilbert spaces and {7 ;}ics is a
sequence of closed subspaces of %~ where I is a subset of Z and £ ( , 5 ;) is the
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collection of all bounded linear operators from .7 into % ;. For T € £ (), we
denote Z(T), #(T) and .4 (T) for domain, range and ker of 7', respectively. And
we denote by I+ the identity operator on J7 .

We need recall some basic definitions and results of g-frames and K -g-frames in
Hilbert space.

We call a sequence {A;}ics a generalized frame, or simply a g-frame, for .7 with
respect to {7 ; }ie; if there are two positive constants A and B such that

AP < ZIAAIP < BIAIP, Vf e
iel

We call A and B the lower and upper frame bounds, respectively. If {A;};c; possesses
an upper frame bound, but not necessarily a lower bound, we call it a Bessel g-sequence
with Bessel bound B.

We say {A;}icr a g-frame sequence, if it is a g-frame for Span{A; (7 ;) }ier.

Now define
(Z@a‘ﬁ) = {{fi}ielfi e, |{fitierlls =2 fl1? < w} ;
i€l Y2 i€l

with pointwise operators and inner product as
({fitier {gitier) = X (fi.8i) -
icl

In [21], Sun showed that every g-frame can be considered as a frame. More pre-
cisely, let {A;}ics be a g-frame for 77 and {e; ;} jcs. be an orthonormal basis for J#;,
then there exists a frame {u; j}ics jes, of # such that

uij=Ajeij, (1)
and
Aif = X (fouij)eij, VfeH.
JEJi

We call {u;}icr jes, the frame induced by {A;}ic; with respect to {e; ;}ics jes;. The
next lemma is a characterization of g-frame by a frame.

LEMMA 1. [21] Let {A;}ier be a family of linear operators and u; j be defined as
in (1). Then {A;}ics is a g-frame for 7 if and only if {u; j}icr jey; is a frame for H .

DEFINITION 1. Let K € £ (2). We call a sequence {A,}ic; a K-g-frame for
S with respect to {7 }ier if there are two positive constants A and B such that
AllKf? < zlllAif\P <B|fI?, Vfex.
We call A and B the lower and u}laeper frame bounds, respectively.
We call {A;}ies atight K-g-frame if A||K* f||> = X,/ [|Aif]|?, for every f € .

If we have only the second inequality, we call it a K-Bessel g-sequence. In [1], the
synthesis operator of {A;}ic; is defined by

Ty : (2@%1) — I, Ty {fl l€I ZA*fH
02

icl icl
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and the K -g-frame operator S, is defined as follows
SAf=TATf =D AN, Ve
icl
The following theorem is a characterization of K -g-frames in [1].
THEOREM 1. Let K € £ (). Then the following statements are equivalent:

1. {A}ier is a K-g-frame;

2. {Aj}icr is a Bessel g-sequence for 7 and there exists a Bessel g-sequence
{Ti}ier for H such that

Kf=YNTif, Vfe.

icl
The following lemmas are fundamental results in the study of the K -g-frames.
LEMMA 2. [0] Let U, V € £ (). The following statements are equivalent:
(i) 2(U)cz (V).
(ii) UU* < AVV™ for some A > 0.
(iii) There exists Q € £ () such that U =V Q.

Moreover; if (i), (ii) and (iii) are valid, then there exists a unique operator Q such
that

1. ||Q|]? = inf{u : UU* < uVVv*},
2. ¥/ (U)=A(0Q), and

3. R(Q)CZ(V).

LEMMA 3. [4] Let S be a Hilbert space, and suppose that T € £ () has a
closed range. Then there exists an operator TT € & () for which

N (TY=2(T):, Z(T"Y =¥ (T):, TT' f=f, feR(T).

We call the operator T' the pseudo-inverse of T .

2. Characterizations of K -g-frames

In this section, we give some equivalent characterizations of K -g-frames. First we
need the following lemma which is a generalization of Theorem 3.5 in [22].

LEMMA 4. Let {A;}icr be a Bessel g-sequence for F€ with frame operator Sy.
Then {A;}icr is a K-g-frame if and only if there exists A > 0 such that Sy > AKK*.
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Proof. {Ai}ier is K-g-frame with frame bounds A,B and frame operator Sy if
and only if

AIK*FIP < D IAf 1P = (Saf. f) < BIfI?, Vfest,
el
that is,
(AKK*f, f) < (SAf.f) < (Bf.f), VfeA.

So the conclusion holds. [

The following theorem shows that every Bessel g-sequence can be a K -g-frame.

THEOREM 2. Let {A;}ic; be a Bessel g-sequence for S with frame operator
Sa. Then {A;}ier is a K-g-frame for ¢ if and only if K = S}\/ZT, for some T €

Proof. By Lemmad4, {A;}ics is a K -g-frame if and only if there exists A > 0 such
that
AKK" < Sy = SY2(sV/?)".

Therefore by Lemma 2 the conclusion hold. [J

COROLLARY 1. Let {A;}ic; be a sequence of bounded operators for 7 and u;;
be defined as in (1). Let K € £ (), then {A;}icr is a K-g-frame if and only if
{ui j}ier jes; is a K-frame for 7€ .

The following proposition gives a condition for a Bessel g-sequence to be a K -g-
frame as well as other operator 7.

PROPOSITION 1. Let K € £ () and {A;}ic; be a K-g-frame for 7€ . Let
T € L) with Z(T) C % (K), then {Ai}icr is a T -g-frame for .

Proof. Suppose that {A;}icr is a K-g-frame for 77 . Then there exist 0 < A <
B < oo such that

AIKfI? < X NAcf I < BISIP, vf et 2)
iel
Since # (T) C #(K), by Lemma 4, there exists A > 0 such that 77* < AKK*. Then
1T FI? < |K*f||*. From (2), we have

A *
TIT A2 <A < X IAf|* <BISIP, Vf e
icl
Hence {A;}ier is a T-g-frame for 2. O

Let K =1, we have the following corollary.

COROLLARY 2. Let {A;}icr be a g-frame for 7€ . Let K € L (), then {A;}icr
is a K -g-frame for 7 .
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Proof. In fact, {A;}ic; can be viewed as an I -g-frame for .# . Since Z (K) C
2 (L), by proposition 1, the conclusion is hold. I

The Corollary 2 is equivalent to Theorem 2.3 in [1].
Now we characterize K -g-frame in terms of range of K.

THEOREM 3. Let K € £ () with closed range and span{ A} (€ ;) }ic1 C # (K).
Then {A;}icr is a K-g-frame for 7 if and only if {A;}icr is a g-frame on Z (K).

Proof. Suppose that {A;}icr is a K -g-frame for .77, then there exist 0 <A < B <
oo such that
AIK AP < D IINif P < BIAIP, vfesn.
icl
Thus for all f € 77, we have

IK*£11* < ZHAJ‘H2

lEI
Since % (K) is closed, by Lemma 3, there exists K’ of K such that f = KK'f, Vf €
2% (K). And then for all f € Z(K),

. 1
A1t = 1(KKTf ) P = (KK F) P < KT FIPIE £ < (1K) IIfH2 Sl
l€I
Hence

A
AP < SIASIP <BISIP, v € (K).
KT ic1
Therefore, {A;}ics is a g-frame on Z (K).

Conversely, suppose that {A;}ie is a g-frame on Z (K), then there exist 0 < C <
D < o such that

ClIfIP < S IIAf|I> < D|fIP, VfeZ(K).
icl
Clearly, {A;}ier is a Bessel g-sequence for 72 . Now we prove that {A;}ics is a K-g-
frame for 7 . We show that {A;};c; has a lower bound for all f € 2 . Suppose that
|K*|| = |IK]|| #0, for f €5, we have
K £ < IKA = NI AL

and then || f]| > %HK*fH for all f € 5. Since Z(K) is closed, we have J7 =

%(K)@%(K)L. For any f € 57, let f = fi+ f>, where fi € Z(K) and f; €
Z(K)*. So

SIAfilP = ClAIR = 5 IK fill*
icl K|
Since f> € Z(K)*, K*f2 =0 and
S

And since span{A} () }iecs C % (K), for any f € 5, we have
IK*£I? < ClAP < X Aifl?. O

icl

IK]1?
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REMARK 1. If Z(K) =, then {A;}ics is a K-g-frame for .7 as well as a
g-frame for J7 .

Let {A;}ier be a K-g-frame, we know that the frame operator of {A;};c; may be
not invertible, so there is no classical canonical dual for {A;};c;. Next, we will give a
characterization of duals for a K -g-frame.

DEFINITION 2. Suppose K € .Z () and {A,}ics is a K-frame for 57 . A g-
Bessel sequence {T';}ies for .7 is called a K -dual g-frame of {A,}ics if

Kf =Y ANTif, Yfe.
icl

The following theorem provides a necessary and sufficient conditions for a Bessel
g-sequence to be a K-dual g-frame. Note that {&;}ic; denotes the canonical basis
of /2(I). Let {eij}ic1,jes. be an orthonormal basis for 7 ;, then roughly speaking
{eijs }ier,jes; is an orthonormal basis of (X,c;©7;),2, because for any {fi}ier €

(et ® i)
fi=206=Y Y (fireij)eijdi.

icl il jel;

THEOREM 4. Suppose that K € £ () and {Ai}ier is a K-g-frame for
with the synthesis operator Ty. Then the dual {T;}icr is a K -dual g-frame of {A;}ier
if and only if there exists a bounded operator ® : (Y;c;®H ;) — H such that K* =
DTS and TFe;j = D(e;jd;), j € Ji, i € I. Moreover, K-dual g-frame {T}icr is a
K* -g-frame.

Proof. Suppose that {T;}cs is a K-dual g-frame of {A;};c;. Then the synthesis
operator for {T';};c; satisfies the conditions. In fact, {T';};c; is a Bessel g-sequence and
forall f € 57 , we have

K*'f=YTiAif.
icl
Let @ be the synthesis operator of {I';};cs, then
d)(e,-j&) = 21—‘?61‘./5,‘ = Zu,-j& = 2 Uij = 2 <€,‘j,€,‘j> Uij = F;‘e,-j.
iel iel JEJ; ieJ;
So a calculation as above shows that
K'f =X TiAS =Y T (X (fouij)eif) = DY (Aif s eij) eijdi) = PTLf.
iel i€l JEJ; i,j
So K* = @T} .
Conversely, if {f;}icr € (Zier®Hi),2, then we have
{fitier =2 fi6:=2. Y, (fi.eij)eij6i.
icl icl jel;

Roughly speaking {e; ;&;}icr, jes, is an orthonormal basis of (¥;c; ®5 ;)2 . Let u; j be
defined as in (1). If K* = ®T; and I'e; j = D(e;;0;), j € Ji, i €I then forall f € 57
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we have
K*f:q)T/tf_q)(z<Afaeu>ezj Zz<f7A elj> elj 5i)
icl jeJ
= 22 <f,u,,>F*e,, = EF* 2 <f, u,-j>el-j) = EFTA,f
icl jeJ iel JEJ; iel

Consequently, Kf =Y,;c; AiT;f, meaning that {I';};c; is a K-dual g-frame of {A;}ic;.
Moreover, let B and D be the Bessel bounds for {A;}ie; and {T’; }ier, respectively.
For any f € 77, we have

1K) £IP = IKFIP = 1 Ta®@ £ < I TAlP19° 17 < BYITif 11> < DIFIP,
icl

thus,
[
SIE) P < XN < ||fH27 Vfe .

iel

Hence, K -dual g-frame {T’;};cs is a K*-g-frame. O

REMARK 2. WhenK = [, the K-g-frame is exactly g-frame, in this case, the
K -dual is exactly the canonical dual g-frame.

We end this section by giving the following results concerning the constructions
of new K -frames.

THEOREM 5. Let K € £ () and let {A;}icr be a K-g-frame. For T € £ ()
with TK* = K*T, then \iT is a K -g-frame for € .

Proof. Suppose that {A;}ics is a K-g-frame with bounds A and B. Now for any
f €, wehave

S IATFI? = AK*TfI1? = A|TK f|> = A|T|| | K* £,
iel
and

S IATFII> < B|TFI1> < B|| T £

icl

Hence, A;T is a K-g-frame for 7. [

COROLLARY 3. Let K € £ () and let {A;}ic1 be a K-g-frame. For T €
L(A), then NiT* is a TK -g-frame for .

COROLLARY 4. Let {A;}ic; be a g-frame. For K € £ (), then NiK* is a
K -g-frame for ¢ .
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3. K-g-frames with operator quotient
In this section, we characterize K -g-frame by operator quotient.

DEFINITION 3. [12] Let U and V be bounded (linear) operators on a Hilbert
space ¢ with the kernel condition
N (V) A (U).
Then the quotient [U/V] is a map from Z (V) to % (U) defined by Vf — U f for all
fen.

We note that W = [U/V] is a linear operator on ¢ if and only if 4" (V) C
A (U). Inthiscase Z(W) =% V), Z (W) C % (U) and WV = U. The quotient
[U/V] is called a semiclosed operator and its collection is closed under sum and product
[13]. The authors of [20] fined that there is a relationship between K -frames and oper-
ator quotient operator. So we present few results on K -g-frame techniques on quotients
of bounded operators. These results are inspired by the results in [20]. But there are
some different properties in our results because g-frames are more complicated than
ordinary frames.

THEOREM 6. Let K € 5 and {A;}ic; be a Bessel g-sequence in S with the
frame operator Sp.Then {A;}icr is a K-g-frame if and only if the quotient operator

[K*/ Sll\/ 2] is bounded.

Proof. = Since {A;}icr is a K-g-frame for J# , there exists a constant A > 0
such that
AlIK*FIP < DNNFIP = (Saf ), Vfe .

icl
That is, A[|K* f||> < ||S}/*f|? forall f € .7 . Define W : Z(S\/*) — 2% (K*) by
W(S\2f)=K*f, Vfe .
Then W is well-defined because .4 (S,l\/ 2) cN (K*) Forall f € 7, we have

1/2
1Sx 11
\/_
So W is bounded. From the notion of quotient of bounded operators, W can be ex-
« al/2

pressed as [K*/S,/"].

<—=: Suppose that the quotient operator [K*/ Sjl\/ 2] is bounded. Then there exists
A > 0 such that

1/2 %
WSy fl = 1K <

K FI < AISYFI2, Viesr.
Thus
V2P = Safo ) = S

iel

1 2
—|IK* <||S
/IH A<l

forall f € 2 . Hence {A,}ics is a K-g-frame for 27 . 0O

Let K =1, , we get the following corollary.
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COROLLARY 5. Let {A;}ics be a Bessel g-sequence for 7 with the frame oper-
ator Sx.Then {A;}icr is a g-frame if and only if the frame operator Sy is bounded.

THEOREM 7. Let {A;}icr be a K-g-frame with the frame operator Sy and T €
L (). Then the following are equivalent:

(1) {AT"}ier is a TK -g-frame;
(2) [(TK)*/SY*T*] is bounded;

(3) [(TK)*/(TSAT*)'/?] is bounded.

Proof. (1)=-(2); Suppose that {A;T };cs is a TK -g-frame. Then there exist A > 0
such that

TR FIP < S INT FIP = (SAT £, 7" 1) = S °T*FI|2, vf e .
i€l
Hence [(TK)*/SII\/ZT*} is bounded.
(2)=(3); Suppose [(TK)*/SII\/zT*] is bounded. Then there exists ¢ > 0 such that

ITK) FI? <wlsyY>Tf|2, vfesn.
Since
I(TSAT*) A2 = ((TSAT) 2EATSAT) 2 f ) = (TSAT)1. )
= (SAT*£,T" ) = |SX>T* 1),
forall f € 57 , we have

1
EII(TK)*J‘H2 < |(TSAT*) 211

Therefore [(TK)*/(TSAT*)"/?] is bounded.
(3)=(1); Suppose [(TK)*/(TSAT*)'/?] is bounded. Then there exists u > 0
such that
I(TK)" fIP < ul(TSAT*)' 2 FI?, Vf et
Consider
DINTLIP = (SAT" 1 Tf) = (TSATf.£),
icl

So TSAT* is positive and self-adjoint, its square root exists, and it is denoted by
(TSAT*)'/?. Hence

SNATfIP = (TSAT) 1)) > ”H(TK) fIP, vfen.

i€l
Hence {A;T}ics is a TK-g-frame. [0

COROLLARY 6. Let K € L () and {A;}icr be a g-frame for 7 . Then the
following are equivalent:
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1.
2.

Then
1.
2.

D. L1, J. LENG AND T. HUANG

{AiK*}icr is a K -g-frame for 4 ;
[K*/S'/?] is bounded.

COROLLARY 7. Let K € £ () and {®;}ic1 be a g-orthonormal basis for .

the following are equivalent:
{©;K*} is a K-g-frame for 7 ;
[K*/L,z] is bounded.

REMARK 3. The Theorem 7 proofs the conclusions in Corollary 3 and Corollary
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