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Abstract. We characterize left symmetric linear operators on a finite dimensional strictly convex
and smooth real normed linear space X, which answers a question raised recently by one of the
authors in [7] [D. Sain, Birkhoff-James orthogonality of linear operators on finite dimensional
Banach spaces, J. Math. Anal. Appl. 447 (2017) 860–866 ]. We prove that T ∈ B(X) is left
symmetric if and only if T is the zero operator. If X is two-dimensional then the same charac-
terization can be obtained without the smoothness assumption. We also explore the properties of
right symmetric linear operators defined on a finite dimensional real Banach space. In particular,
we prove that smooth linear operators on a finite-dimensional strictly convex and smooth real
Banach space can not be right symmetric.

1. Introduction

The principal purpose of the present paper is to answer a question raised very
recently in [7], regarding Birkhoff-James orthogonality of linear operators. We also
explore other related questions in order to obtain a better description of the symme-
try of Birkhoff-James orthogonality of linear operators on finite-dimensional Banach
spaces. Let us now briefly establish the relevant notations and terminologies. For a
more detailed treatment of Birkhoff-James orthogonality, we refer the readers to the
classic works [1, 3, 4] and to some of the more recent works [2, 5, 9, 10].

Let (X,‖.‖) be a normed linear space. In this paper, we would always consider
X to be over R. For any two elements x,y in X , x is said to be orthogonal to y in the
sense of Birkhoff-James[1, 4], written as x⊥By, if and only if ‖x‖ � ‖x+ λy‖ for all
λ ∈ R . Birkhoff-James orthogonality is related to many important geometric properties
of normed linear spaces, including strict convexity, uniform convexity and smoothness.
Let B(X) denote the Banach algebra of all bounded linear operators from X to X .
T ∈ B(X) is said to attain norm at x ∈ SX if ‖Tx‖ = ‖T‖. Let MT denote the set of all
unit vectors in SX at which T attains norm, i.e., MT = {x ∈ SX : ‖Tx‖ = ‖T‖}.

James [3] proved that Birkhoff-James orthogonality is symmetric in a normed lin-
ear space X of three or more dimensions if and only if a compatible inner product can
be defined on X . Since B(X) is not an inner product space, it is interesting to study
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the symmetry of Birkhoff-James orthogonality of operators in B(X) . It is very easy
to observe that in B(X) , T⊥BA may not imply A �⊥B T or conversely. Consider T

=

(
1 0
0 1/2

)
and A =

(
0 0
0 1

)
on (R2,‖.‖2). Then it can be shown using elementary

arguments that T⊥BA but A �⊥B T .
In [7], Sain introduced the notion of left symmetric and right symmetric points in

Banach spaces, defined as follows:
Left symmetric point: An element x ∈ X is called left symmetric if x⊥By ⇒ y⊥Bx

for all y ∈ X .
Right symmetric point: An element x ∈ X is called right symmetric if y⊥Bx ⇒

x⊥By for all y ∈ X .
Let us say that an element x ∈ X is a symmetric point if x is both left symmetric

and right symmetric. The following two notions, introduced in the same paper [7], are
also relevant in context of our present work:

For any two elements x,y in a real normed linear space X, let us say that y ∈ x+

if ‖x+ λy‖ � ‖x‖ for all λ � 0. Accordingly, we say that y ∈ x− if ‖x+ λy‖ � ‖x‖
for all λ � 0.

In [2] we proved that if H is a real finite-dimensional Hilbert space, T ∈ B(H) is
right symmetric if and only if MT = SH and T ∈ B(H) is left symmetric if and only
if T is the zero operator. It should be noted that if H is a complex Hilbert space then
Theorem 2.5 of [11] gives a complete characterization of right symmetric bounded
linear operators in B(H), in terms of isometry and coisometry. However, these results
are no longer true in general if we allow the operators to be defined on a Banach space
instead of a Hilbert space. In fact, Example 1 in [7] suffices to validate our remark.
Sain proved in the same paper that a linear operator T defined on the two-dimensional
real lp(1 < p < ∞) space is left symmetric if and only if T is the zero operator. He also
remarked in [7] that it would be interesting to extend this result to higher dimensional
lp spaces, and more generally, to finite-dimensional strictly convex and smooth real
Banach spaces, if possible.

In this paper we completely characterize left symmetric linear operators defined
on a finite-dimensional strictly convex and smooth Banach space X. We prove that
T ∈ B(X) is left symmetric if and only if T is the zero operator. It should be noted that
if X is two-dimensional then we can do away with the smoothness assumption, since
only strict convexity is sufficient to obtain the desired characterization in this case. We
also explore the right symmetry of Birkhoff-James orthogonality of linear operators
defined on finite-dimensional Banach spaces. We show that if X is a finite-dimensional
strictly convex and smooth Banach space and T ∈ B(X) is a smooth point in B(X) then
T can not be right symmetric. Furthermore, when the underlying Banach space is not
necessarily strictly convex or smooth, we prove two results involving right symmetric
property of linear operators.

2. Main results

We begin this section with the promised characterization of left symmetric opera-
tor(s) defined on a two-dimensional strictly convex Banach space.
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THEOREM 2.1. Let X be a two-dimensional strictly convex Banach space. Then
T ∈ B(X) is left symmetric if and only if T is the zero operator.

Proof. If possible suppose that T is a non-zero left symmetric operator. Since X

is finite-dimensional, there exists x1 ∈ SX such that ‖Tx1‖ = ‖T‖ .
It follows from Theorem 2.3 of James [4] that there exists x2 ∈ SX such that

x2 ⊥B x1 . Furthermore, it follows from Theorem 2.5 of Sain [7] that Tx2 = 0.
We next claim that x1 ⊥B x2.
Once again, it follows from Theorem 2.3 of James [4] that there exists a real

number a such that ax2 + x1 ⊥B x2 . Since x2 ⊥B x1 and x1,x2 �= 0, {x1,x2} is linearly
independent and hence ax2 + x1 �= 0. Let z = ax2+x1

‖ax2+x1‖ . We note that if Tz = 0 then

T is the zero operator. Let Tz �= 0. Clearly, {x2,z} is a basis of X, since X is two-
dimensional.

Let ‖c1z+ c2x2‖ = 1, for some scalars c1,c2. Then we have, 1 = ‖c1z+ c2x2‖ �
|c1|. Since X is strictly convex, 1 >| c1 |, if c2 �= 0. We also have, ‖T (c1z+ c2x2)‖ =
‖c1Tz‖ =| c1 | ‖Tz‖ � ‖Tz‖ and ‖T (c1z+ c2x2)‖ = ‖Tz‖ if and only if c1 = ±1 and
c2 = 0. This proves that MT = {±z}. However, we have already assumed that x1 ∈MT .
Thus, we must have x1 = ±z. Since z ⊥B x2, our claim is proved. Thus, x1,x2 ∈ SX

are such that x1 ⊥B x2 and x2 ⊥B x1.
Let u ∈ SX such that Tx1 ⊥B u . By Theorem 2.4 of Sain [7], Tx1 is a left

symmetric point in X and so u ⊥B Tx1 . By strict convexity of X , we must have,
‖x1 + x2‖ = 2− δ for some 0 < δ < 1.

Choose 0 < ε < δ
3−δ .

Let v ∈ B(u,ε) be such that v = t0u+(1− t0)Tx1 , for some t0 ∈ (0,1) . We may
and do note that such a choice of v is always possible.

Define a linear operator A as follows:

Ax1 = u

Ax2 = v

It is easy to verify that T ⊥B A , as x1 ∈ MT and Tx1 ⊥B Ax1 .
Now, by virtue of our choice of ε, we have,

A
( x1 + x2

‖x1 + x2‖
)

=
‖u+ v‖
‖x1 + x2‖ >

2− ε
2− δ

> 1+ ε

Since ‖A‖ > 1, x1,x2 /∈ MA . Let z = −α1x1 + α2x2 ∈ SX be chosen arbitrarily, where
α1,α2 > 0. Since X is strictly convex, x1 ⊥B x2, x2 ⊥B x1, and z ∈ SX, it can be easily
verified that α1,α2 < 1.

Now

‖Az‖ = ‖(α2 −α1)u+ α2(v−u)‖< |α2 −α1|+ |α2|‖v−u‖< 1+ ε < A
( x1 + x2

‖x1 + x2‖
)

and so z = (−α1x1 + α2x2) /∈ MA, where α1,α2 > 0 and z ∈ SX .
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By taking the symmetry of SX about the origin into consideration, this effectively
proves the following: “Let z∈MA . Then z must be of the form z = α1x1 +α2x2 , where
α1,α2 are of same sign.”

We further note that α1,α2 �= 0, since x1,x2 /∈ MA.
Let us first assume that α1,α2 > 0. We have, Az = α1u+ α2v and Tz = α1Tx1.
We claim that Tz /∈ (Az)− .
From Proposition 2.1 of Sain [7], it is easy to observe that it is sufficient to show:

Tx1 /∈ (α1u+ α2v)− .
Now,

α1u+ α2v = α1u+ α2(t0u+(1− t0)Tx1) = (α1 + α2t0)u+ α2(1− t0)Tx1.

So,

‖α1u+ α2v−α2(1− t0)Tx1‖ = ‖(α1 + α2t0)u‖ < ‖(α1 + α2t0)u+ α2(1− t0)Tx1‖
= ‖α1u+ α1v‖

⇒ Tx1 /∈ (α1u+ α2v)− , as claimed.
Similarly, if α1,α2 < 0, we can show that Tz /∈ (Az)− .
Since for all z∈MA , Tz /∈ (Az)− , using Theorem 2.2 of Sain [7], we conclude that

A �⊥B T , which contradicts our initial assumption that T is a non-zero left symmetric
operator. �

For the corresponding result on higher dimensional Banach spaces, we first need
the following lemma. We would also like to remark this gives an alternative proof to
the last part of Theorem 2.2 in [8].

LEMMA 2.1. Let X be a Banach space, T ∈ B(X) and x ∈ MT . If in addition,
both x and Tx are smooth points in X then for any y ∈ X, we have, x ⊥B y ⇒ Tx ⊥B

Ty.

Proof. Without any loss of generality we can assume that ‖T‖ = 1. Since x is a
smooth point, there exists a unique linear functional f ∈ SX∗ such that f (x) = ‖x‖= 1.

Again since Tx is a smooth point, there exists a unique linear functional g ∈ SX∗
such that g(Tx) = ‖Tx‖ = ‖T‖‖x‖ = 1.

Now g ◦ T is a linear functional on X and ‖g ◦ T‖ � ‖g‖‖T‖ = ‖T‖ = 1. So
‖g ◦T‖ = 1. From the uniqueness of f we get, f = g ◦T.

As x ⊥B y , we have f (y) = 0, i.e., g(Ty) = 0. However, this is equivalent to
Tx ⊥B Ty, which completes the proof of the lemma. �

When the dimension of X is strictly greater than 2, we have the following theorem
regarding left symmetric linear operator(s) in B(X). In this case we need the additional
assumption of smoothness on X.

THEOREM 2.2. Let X be an n-dimensional strictly convex and smooth Banach
space. T ∈ B(X) is left symmetric if and only if T is the zero operator.
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Proof. If possible suppose that T is a non-zero left symmetric operator. Since X

is finite-dimensional, there exists x1 ∈ SX such that ‖Tx1‖ = ‖T‖ .
We first claim that x1 is right symmetric.
If possible suppose that x1 is not right symmetric, i.e., there exists y ∈ SX such

that y ⊥B x1 , but x1 �⊥B y .
Let H be the hyperplane of codimension 1 such that y⊥B H . Then any w∈ X can

be written as w = ay+h for some scalar a and h∈H. Define a linear operator A on X

such that Aw = aTx1 . Clearly, MA = ±{y} . Since X is smooth and y ⊥B x1, we have
x1 ∈ H , so Ax1 = 0, from which it follows that Tx1 ⊥B Ax1 . As x1 ∈ MT , T ⊥B A .
Now x1 �⊥B y, and x1 ∈ MT , so by Proposition 2.1 of Sain [8], we get Tx1 �⊥B Ty , i.e.,
Ay �⊥B Ty. Since MA = ±{y} , by Theorem 2.1 of Sain [9], it follows that A �⊥B T ,
which contradicts that T is left symmetric. Hence x1 must be right symmetric.

We next claim that x1 is left symmetric.
If possible suppose that x1 is not left symmetric, i.e., there exists z ∈ SX such that

x1 ⊥B z , but z �⊥B x1 .
We now prove that Tz = 0.
If possible suppose that Tz �= 0. Let Hz be the hyperplane of codimension 1 such

that z ⊥B Hz . Now, any w ∈ X can be written as w = az + h for some scalar a and
h ∈ Hz. Define a linear operator A on X such that Aw = aTz . Since X is strictly
convex, MA = ±{z} . As Az �⊥B Tz , applying Theorem 2.1 of [9], we conclude that
A �⊥B T . Since X is smooth and x1 ⊥B z, applying Lemma 2.1 we get, Tx1 ⊥B Tz . It
is easy to check that Ax1 = Tz . So Tx1 ⊥B Ax1 . Since x1 ∈ MT , we have, T ⊥B A .
Thus we have, T ⊥B A but A �⊥B T, which contradicts our assumption that T is left
symmetric. This completes the proof of our claim.

Now, from Theorem 2.3 of James [4], it follows that there exists a scalar k such
that kx1 + z ⊥B x1 . As T is left symmetric, by Theorem 2.5 of Sain [7], we get
T (kx1 + z) = 0. Since Tz = 0 and Tx1 �= 0, it now follows that k = 0. So z ⊥B x1 , a
contradiction to our choice of z. Therefore x1 is left symmetric. Thus, combining these
two observations, we conclude that x1 is a symmetric point in X.

Let H1 be the subspace of codimension one such that x1 ⊥B H1 . Since x1 is
symmetric, H1 ⊥B x1 and by Theorem 2.5 of Sain [7], T (H1) = 0. Suppose that
{x2,x3, . . . ,xn} is a basis of H1 such that x2 ⊥B span{x3,x4, . . . ,xn} . Since X is
smooth, using Theorem 4.2 of [4], we conclude that x2 ⊥B span{x1,x3, . . . ,xn} .

Let u∈ SX such that Tx1 ⊥B u . By Theorem 2.4 of Sain [7], Tx1 is left symmetric
and so u⊥B Tx1 . As in the proof of Theorem 2.1, by strict convexity of X , ‖x1+x2‖=
2− δ for some 0 < δ < 1.

As before, choose 0 < ε < δ
3−δ and let v∈ B(u,ε) such that v = t0u+(1−t0)Tx1 ,

for some t0 ∈ (0,1) .
Define a linear operator A on X in the following way:

Ax1 = u

Ax2 = v

Axi = 0, n � i � 3

It is easy to verify that T ⊥B A , as x1 ∈ MT and Tx1 ⊥B Ax1 .
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Now following the same arguments as in the Theorem 2.1, we get,

A
( x1 + x2

‖x1 + x2‖
)

> 1+ ε

Since ‖A‖ > 1, xi /∈ MA for all n � i � 1. Let z = −α1x1 + α2x2 + . . . + αnxn ∈
SX , where α1,α2 > 0. Since X is strictly convex, x1 ⊥B span{x2,x3, . . . ,xn}, x2 ⊥B

span{x1,x3, . . . ,xn}, and z ∈ SX, it can be easily verified that α1,α2 < 1.
Since

‖Az‖ = ‖(α2−α1)u+α2(v−u)‖ < |α2−α1|+ |α2|‖v−u‖ < 1+ ε < A
( x1 + x2

‖x1 + x2‖
)
,

we may conclude that, z = (−α1x1 + α2x2 + . . .+ αnxn) /∈ MA , where α1,α2 > 0 and
z ∈ SX.

Similar to the proof of Theorem 2.1, we thus have the following conclusion:
Let z ∈ MA . Then z must be of the form z = (α1x1 + α2x2 + . . .+ αnxn) , where

α1,α2 are of same sign. We further note that α1,α2 �= 0, since x1,x2 /∈ MA.
Next we may proceed in the same way as in Theorem 2.1, to show that Tz /∈ (Az)− .

This, along with Theorem 2.2 of Sain [7], lead to the conclusion that A �⊥B T. This
proves that T is not a left symmetric point in B(X) and completes the proof of the
theorem. �

In the next theorem we prove that smooth linear operators defined on a finite-
dimensional strictly convex and smooth Banach space can not be right symmetric.

THEOREM 2.3. Let X be a finite-dimensional strictly convex and smooth Banach
space. Let T ∈ B(X) be smooth. Then T is not right symmetric.

Proof. If possible suppose that T is a right symmetric operator on X and T is a
smooth point in B(X). We first note that since T is smooth, it follows from Theorem
4.2 of [6] that MT = {±x}, for some x ∈ SX. We claim that x is left symmetric.

If possible, suppose that x is not left symmetric. Then there exists y such that
x ⊥B y but y �⊥B x . Let Hy be the hyperplane of codimension one such that y ⊥B Hy .
Clearly, any z ∈ X can be written as z = αy+h for some h ∈ Hy .

Define a linear operator A on X such that A(αy+h) = αTx .
It is easy to show that MA = ±{y} . Clearly, A ⊥B T , since Ay ⊥B Ty .
Since y �⊥B x , by Proposition 2.1 of Sain [8] we have Ay �⊥B Ax , i.e., Tx �⊥B Ax .

Since MT = {±x}, it follows from Theorem 2.1 of [9], that T �⊥B A, which contradicts
that T is right symmetric. Therefore we must have that x is left symmetric.

Let Hx be the hyperplane of codimension one such that x ⊥B Hx . Since x is
left symmetric, Hx ⊥B x . Consider the point z = x + h0 , where h0 ∈ Hx such that
‖Th0‖ > ‖T‖ . Take z′ = z

‖z‖ . Since X is strictly convex, by Theorem 4.3 of James
[4], Birkhoff-James orthogonality is left unique. Since h0 ⊥B x , z �⊥B x .

Now, there exists a scalar d such that (dTz′ +Th0) ⊥B Tz′ .
We next claim that d �= 0.
If d = 0, then Th0 ⊥B Tz′ , from which it follows that Th0 ⊥B (Tx+Th0) .
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But
‖Th0− (Tx+Th0)‖ = ‖Tx‖ = ‖T‖ < ‖Th0‖,

which contradicts that Th0 ⊥B (Tx+Th0) . So d �= 0.
Let Hz be the hyperplane of codimension one such that z′ ⊥B Hz . Then any w ∈X

can be written as w = αz′ +h′ for some h′ ∈ Hz .
Define a linear operator A on X such that

A(αz′ +h′) = α(dTz′ +Th0).

It is easy to show that MA = ±{z′} . Clearly, A ⊥B T , since Az′ ⊥B Tz′ .
We prove that T �⊥B A .
If T ⊥B A , using Theorem 2.1 of Sain and Paul [9] it follows that Tx ⊥B Ax .
Now x = αz′ +h′ for some h′ ∈ Hz . It is easy to check that α �= 0.
So Ax = αAz′ = α(dTz′ +Th0) .
As Tx ⊥B (dTz′ +Th0) and x ∈ MT , by Proposition 2.1 of [8], we have, x ⊥B

(dz′ +h0) . Now x ⊥B h0 and X is smooth. So x ⊥B z′ . Also since x is left symmetric
and Birkhoff-James orthogonality is homogeneous, we have z ⊥B x , which contradicts
that z �⊥B x .

Hence T �⊥B A . This proves that T is not a right symmetric operator. �
When X is not necessarily strictly convex or smooth, we have the following two

theorems regarding right symmetric operators.

THEOREM 2.4. Let X be an n-dimensional Banach space. Let x0 ∈ SX be a left
symmetric point. Let T ∈ B(X) be such that MT = {±x0} and x0 is an eigenvector of
T. Then either of the following is true:

(i) rank T � n−1.
(ii) T is not a right symmetric point in B(X).

Proof. We first note that the theorem is trivially true if n � 2. Let n > 2. Since x0

is an eigenvector of T, there exists a scalar λ0 such that Tx0 = λ0x0. We also note that
since MT = {±x0},λ0 �= 0. If rank T � n−1 then we are done. Let rank T < n−1.
Then ker T is a subspace of X of dimension at least 2. Let x0 ⊥B H0, where H0 is
a hyperplane of codimension 1 in X. Since dim ker T � 2, there exists a unit vector
u0 ∈ SX such that u0 ∈H0∩ker T. Since x0 is a left symmetric point and x0 ⊥B u0, we
have u0 ⊥B x0. There exists a hyperplane H1 of codimension 1 in X such that u0 ⊥B H1

and x0 ∈ H1. Let {x0,yi : i = 1,2, . . . ,n− 2} be a basis of H1. Then {u0,x0,yi : i =
1,2, . . . ,n−2} is basis of X such that u0 ⊥B span{x0,yi : i = 1,2, . . . ,n−2}. Define a
linear operator A ∈ B(X) as follows:

Au0 = u0,Ax0 =
1
2
x0,Ayi =

1
2
yi.

It is routine to check that u0 ∈ MA . Since Au0 ⊥B Tu0, A ⊥B T. However, since
λ0 �= 0,Tx0 = λ0x0 �⊥B

1
2x0 = Ax0. This, coupled with the fact that MT = {±x0}, im-

plies that T �⊥B A and thus T is not a right symmetric point in B(X). �
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THEOREM 2.5. Let X be an n-dimensional Banach space. Let T ∈B(X) be such
that MT = {±x0} and ker T contains a non-zero left symmetric point. Then either of
the following is true:

(i) I ⊥B T and T ⊥B I, where I ∈ B(X) is the identity operator on X.

(ii) T is not a right symmetric point in B(X).

Proof. Let u0 ∈ ker T be a non-zero left symmetric point. Without loss of gen-
erality let us assume that ‖u0‖ = 1. We have, ‖I + λT‖ � ‖(I + λT )u0‖ = 1 � ‖I‖,
which proves that I ⊥B T. If T ⊥B I then we are done. If possible suppose that T �⊥B I.
Since MT = {±x0}, it follows that Tx0 �⊥B Ix0 = x0. Let H0 be a hyperplane of codi-
mension 1 in X such that u0 ⊥B H0. Let {u1,u2, . . . ,un−1} be a basis of H0. Then
{u0,u1, . . . ,un−1} is a basis of X such that u0 ⊥B span{u1,u2, . . . ,un−1}.

Clearly, we have u0 ⊥B α1u1 + . . .+αn−1un−1. Since u0 is a left symmetric point
in X, α1u1 + . . .+ αn−1un−1 ⊥B u0.

We claim that α0 = 0. We have, 1 = ‖x0‖ = ‖α0u0 +(α1u1 + . . .+αn−1un−1)‖ =
‖(α1u1 + . . .+ αn−1un−1)+ α0u0‖ � ‖(α1u1 + . . .+ αn−1un−1)‖.

We also have, ‖T (α1u1 + . . .+αn−1un−1)‖= ‖T (α0u0 +α1u1 + . . .+αn−1un−1)‖
= ‖Tx0‖ = ‖T‖ . This proves that (α1u1 + . . .+αn−1un−1) ∈ MT . Since MT = ±{x0},
we must have x0 = (α1u1 + . . .+αn−1un−1) or x0 = −(α1u1 + . . .+αn−1un−1). Since
x0 = α0u0 +α1u1 + . . .+αn−1un−1 ∈ SX, this shows that x0 = (α1u1 + . . .+αn−1un−1)
and α0 = 0.

Thus we have, x0 = α1u1+ . . .+αn−1un−1 and u0 ⊥B x0. Let {x0,yi : i = 3,4, . . . ,n}
be a basis of H0 . Then {u0,x0,yi : i = 3,4, . . . ,n} is a basis of X such that u0 ⊥B

span{x0,yi : i = 3,4, . . . ,n} . Define a linear operator A ∈ B(X) as follows:

Au0 = u0,Ax0 =
1
2
x0,Ayi =

1
2
yi.

As before, it is easy to check that u0 ∈MA. Clearly, A⊥B T, since Au0 ⊥B Tu0 = 0. We
also note that since MT = {±x0} and Tx0 �⊥B Ax0 = 1

2x0, we must have that T �⊥B A.
This proves that T is not a right symmetric point in B(X) and completes the proof of
the theorem. �

In view of the results obtained in the present paper, we would like to end it with
the remark that obtaining a characterization of right symmetric linear operators defined
on a finite-dimensional strictly convex and smooth Banach space, seems to be a very
interesting problem. It should be noted that for complex Hilbert spaces, right symmetric
bounded linear operators are characterized by isometries or coisometries [11].
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