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Abstract. Resonances of Schrödinger Hamiltonians with point interactions are considered. The
main object under the study is the resonance free region under the assumption that the centers,
where the point interactions are located, are known and the associated “strength” parameters are
unknown and allowed to bear additional dissipative effects. To this end we consider the boundary
of the resonance free region as a Pareto optimal frontier and study the corresponding optimiza-
tion problem for resonances. It is shown that upper logarithmic bound on resonances can be
made uniform with respect to the strength parameters. The necessary conditions on optimality
are obtained in terms of first principal minors of the characteristic determinant. We demonstrate
the applicability of these optimality conditions on the case of 4 equidistant centers by computing
explicitly the resonances of minimal decay for all frequencies. This example shows that a reso-
nance of minimal decay is not necessarily simple, and in some cases it is generated by an infinite
family of feasible resonators.

1. Introduction

1.1. Statement of problem, motivation, and related studies

In the present paper, we study resonance free regions and extremal resonances of
‘one particle, finitely many centers Hamiltonian’ Hα = −Δα ,Y associated with the for-
mal expression −Δu(x)+ ∑N

j=1 μ(α j)δ (x− y j)u(x), x ∈ R3, N ∈ N , where Δ is the

self-adjoint Laplacian acting in the complex Lebesgue space L 2(R3) , δ (·− y j) is the
Dirac measure at y j ∈ R3 , μ(α j) is a complex-valued function of the strength param-
eter α j , j = 1, . . . ,N (see [1, 2, 3, 6] and Section 2 for basic definitions). The question
of optimization of the principal eigenvalue of self-adjoint Schrödinger Hamiltonians
with δ -type or point interactions attracted recently considerable attention especially in
a quantum mechanics context [14, 17, 16, 18, 36]. This line of research was motivated
by the isoperimetric problem posed in [14].

In comparison with variational problems involving eigenvalues of self-adjoint op-
erators, the resonance spectral problem describes the dissipation of energy to the outer
medium and so it is of a non-Hermitian type. The facts that resonances move under
perturbations in two-dimensions of the complex plane and that degenerate (multiple)
resonances can split in non-differentiable branches lead to essentially new difficulties
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and effects for the application of variational techniques [23, 45, 10, 9, 25, 26, 27, 28].
In particular, the problem of optimization of an individual resonance takes the flavor
of Pareto optimization if one considers it as an R2 -valued objective function and the
boundary of the resonance free region as a Pareto frontier [27, 28]. Numerical opti-
mization of 1-D resonances produced by point interactions were initiated recently in
[40].

Estimates on poles of scattering matrices and resonances have being studied in
Mathematical Physics at least since the Lax-Phillips upper logarithmic bound on res-
onances’ imaginary parts [33] and constitute an active area of research [13, 19, 47].
Optimization of resonances may be seen as an attempt to obtain sharp estimates on
resonance free regions. This point of view and the study of resonances associated
with random Schrödinger operators were initial sources of the interest in this problem
[22, 23, 45].

The present growth of interest in numerical [21, 24, 25, 37, 41] and analytical
[26, 27, 28] aspects of resonance optimization is stimulated by a number of optical
engineering studies of resonators with high quality factor (high-Q cavities), see [12, 34,
37, 39] and references therein.

In this paper, we assume that the tuple of centers Y = (y j)N
1 ∈ (R3)N (locations

of the δ -interactions) is fixed and known, but the N-tuple α = (α j)N
1 of scalar free

’strength’ parameters α j of point interactions is unknown. The associated point inter-
actions Hamiltonians Hα = −Δα ,Y can be defined in several ways as densely defined
closed operators in the Hilbert space L 2(R3) [3, 5, 20], in particular, via a Krein-type
formula for the difference of the perturbed and unperturbed resolvents of operators Hα
and −Δ , respectively. Eigenvalues and (continuation) resonances k of the correspond-
ing operator Hα are connected with the special N ×N -matrix function Γα ,Y (z) which
appears naturally as a part of the expression for (−Δα ,Y − z2)−1 − (−Δ− z2)−1 , see
Section 2. If one denotes by Σ(α,Y ) the set of zeroes of detΓα ,Y (·) , then the set
Σres (α,Y ) of resonances k associated with Hα can be defined by

Σres (α,Y ) := Σ(α,Y )∩ (C− ∪R), see [3, 5], (1.1)

where C− is the lower half of the complex plane.
The functions detΓα ,Y (·) take the form of exponential polynomials, for those there

exists a well-developed theory with a number of applications in Analysis and connec-
tions to the studies of the Riemann zeta function [7, 35, 38]. Pólya’s results on posi-
tions and distribution of zeros of exponential polynomials were refined and generalized
in many works leading, in particular, to the Pólya-Dickson theorem [7]. This theorem
implies, for example, that the imaginary parts of resonances of Hα satisfy upper and
lower logarithmic bounds (see Lemma 2.1 and (5.1) below), in this way establishing
and strengthening for point interactions the Lax-Phillips result [33]. From this point
of view, the present work can be seen as an attempt to obtain more refined bounds on
zeros of special exponential polynomials employing Pareto optimization techniques of
[26, 27, 28].

While our main goal is to consider the resonance free regions in the case where
the α j run through the compactification R := R∪{∞} of the real line, our technique
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also leads us to the study of ‘dissipative point interactions’ corresponding to the case
α j ∈ C− := C−∪R∪{∞} . It is not difficult to see (see Section 2) that the correspond-
ing operators Hα are well-defined, closed, and maximal dissipative in the sense that
the iHα are maximal accretive (i.e., Re(iHαu,u) � 0 for all u in the domain domHα
of Hα and (iHα + λ )domHα = L 2(R3) for λ > 0). So Hα can be considered as
pseudo-Hamiltonians in the terminology of [15]. Following the logic of the resolvent
continuation it is natural to extend the definition of resonances given by formula (1.1)
to the case α ∈ (C−)N .

Assuming that each of the parameters α j , j = 1, . . . ,N , is allowed to run through
some set A ⊂ C− we consider the associated operators Hα as feasible points (see [8]
for basic notions of the optimization of vector-valued objective functions) and denote
the associated feasible set of operators by FA . The resonance free region for the fam-
ily FA is defined as C \Σres [FA] where Σres [FA] :=

⋃
Hα∈FA

Σres (α,Y ) is the set of
achievable resonances.

1.2. Main results and some examples

The main results of the present paper are:

• It is shown in Theorem 5.1 that upper logarithmic bounds on imaginary parts of
resonances can be modified to become uniform estimates over F

C− and F
R

.

• To achieve more detailed results on the resonance free region, we employ the
Pareto optimization approach and consider Hamiltonians Hα ∈ FA that produce
resonances on the boundary bdΣres [FA] of the set of achievable resonances.
When the set A of feasible strength parameters α j , j = 1, . . . , N , is closed in
the topology of the compactification C− , such extremal feasible operators Hα do
exist since the set Σres [FA] is closed (see Theorem 4.1). The function of minimal
decay rate r(·) [26] provides a convenient way to describe the part of bdΣres [FA]
closest to R (see Definition 3.1 and the discussions in Section 8). The associated
extremal resonances k and operators Hα are said to be of minimal decay for their
particular frequencies f = Rek .

• In Section 6 we obtain various necessary conditions on Hα to be extremal over
F

R
and F

C
in terms of first minors of a regularized version of detΓα ,Y . This is

done with the use of the multi-parameter perturbations technique of [27].

• The effectiveness of the conditions of Section 6 can be seen in the equidistant
cases when |y j − y j′ | = L for all j �= j′ . Namely, we provide an explicit calcula-
tion of resonances of minimal decay and associated tuples α for the case where
{y j}4

1 constitute the vertices of a regular tetrahedron (see Section 7).

In the process of deriving the above results, we obtained several examples that are
of independent interest since they address the questions arising often in the study of
resonances and their optimization.

Namely, it occurs in the case of vertices of a regular tetrahedron that the optimal α
does not always consist of equal α j and that, for some of resonances of minimal decay,
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there exists an infinite family of optimizers Hα preserving only one of the symmetries
(see the discussion in Section 8). This gives a negative answer to the multidimensional
part of the question of uniqueness of optimizers for a given Rek , which was posed in
[27, Section 8] (see also [23, 29]).

The assumption that a resonance k is of multiplicity 1 essentially simplifies its
perturbation theory (see (4.4)), and therefore this assumption is often explicitly or im-
plicitly used in intuitive arguments. While it is known that generic resonances are
simple [13] (i.e., of multiplicity 1), there are no reasons to assume that resonances of
minimal decay are generic. Example 8.4 describes Hα ∈ F

R
that produce resonances

of minimal decay with multiplicity � 2.
Nonzero resonances on the real line are often assumed to be connected with eigen-

values embedded into the essential spectrum. Remark 3.1 provides a very simple ex-
ample of a dissipative Schrödinger Hamiltonian that generates a resonance k in R− ,
but has no embedded eigenvalue at k2 .

NOTATION. The following standard sets are used: the lower (− ) and upper (+ )
complex half-planes C± = {z :± Imz > 0} , CI , CII , CIII , and CIV are the open quad-
rants in C corresponding to the combinations of signs (+,+) , (−,+) , (−,−) , and
(+,−) for (Re z, Imz) , open half-lines R± = {x ∈ R : ±x > 0} , open discs Dε(ζ ) :=
{z ∈ C : |z− ζ | < ε} , and the boundary bdS of a subset S of a normed space U . For
u0 ∈U and z ∈ C , we write zS+u0 := {zu+u0 : u ∈ S} . The convex cone generated
by S (all nonnegative linear combinations of elements of S ) is denoted by ConeS . If a
certain map g is defined on S , g[S] is its image (when it is convenient, we write without
brackets, e.g. ReS for S ⊂ C .) The diameter of S is diam(S) := supu0,1∈S ‖u0−u1‖U .
By ∂z f , ∂α j f , etc., we denote (ordinary or partial) derivatives with respect to (w.r.t.)
z , α j , etc.; deg p stands for the degree of a polynomial p of one or several variables.
δi j is the Kronecker delta.

2. Nonconservative point interactions

Let us fix a set Y = {y j}N
j=1 consisting of N distinct points y1 , . . . , yN in R

3 . For

every tuple α = (α j)N
j=1 ∈ RN , there exists the self-adjoint Hamiltonian Hα = −Δα ,Y

in L 2(R3) with point interactions at the centers y j that has for all z ∈ CI the resolvent
(−Δα ,Y − z2)−1 with the integral kernel

(−Δα ,Y − z2)−1(x,x′) = Gz(x− x′)+
N

∑
j, j′=1

Gz(x− y j) [Γα ,Y ]−1
j, j′ Gz(x′ − y j′), (2.1)

where x,x′ ∈R3\Y and x �= x′ , see [3, Section II.1.1]. Here Gz(x−x′) := eiz|x−x′ |
4π |x−x′| is the

integral kernel associated the resolvent (−Δ− z2)−1 of the kinetic energy Hamiltonian
−Δ , and [Γα ,Y ]−1

j, j′ denotes the j, j′ -element of the inverse to the matrix

Γα ,Y (z) =
[(

α j − iz
4π

)
δ j j′ − G̃z(y j − y j′)

]N

j, j′=1
with G̃z(x) :=

{
Gz(x), x �= 0

0, x = 0
.
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In the case of one center (N = 1) and α1 ∈ C , the above definition leads to the
m-accretive operator iHα1 when α1 ∈C− , and the m-accretive operator (−i)Hα1 when
α1 ∈ C+ (see [4] and [3, Sections I.1.1 and I.2.1]).

The aim of this section is to extend the above definition to all tuples α ∈CN . Later
we will use the case α ∈ (C− ∪R)N as a technical tool for optimization of resonances
over α ∈ R

N .
Here and below deg p is the degree of the polynomial p of one or several variables

and diam(Y ) := max1� j, j′�N |y j − y j′ | is the diameter of Y .
As it was pointed out to us by the referee, the following lemma could be obtained

from the theory of zeroes of exponential polynomials [35, 7] which goes back to Pólya.
We provide here a short self-contained proof that while not using the general theory,
shows how one of Pólya’s arguments works.

LEMMA 2.1. For every α ∈ CN , there exist ci, j = ci, j(α,Y ) > 0 , i, j = 1,2 , such
that all zeros k of detΓα ,Y (·) satisfy

− c2,1 ln(|Rek|+1)− c2,2 � Imk � −c1,1 ln(|Rek|+1)+ c1,2. (2.2)

Proof. Consider detΓα ,Y (z) as a function in z only. Then there exists a unique
representation

detΓα ,Y (z) = (−4π)−ND(z), D(z) =
ν

∑
l=0

pl(z)eizql , (2.3)

where the numbers ν = ν(α,Y ) ∈ N∪{0} , ql = ql(α,Y ) � 0, and the nontrivial poly-
nomials pl(z) (i.e., pl �≡ 0) with coefficient depending on α and Y are such that

0 = q0 < q1 < .. . < qν � N diam(Y ).

Clearly, p0(z) = ∏N
j=1(iz−4πα j) and deg pl � N−2 for all 1 � l � ν.

If ν = 0, detΓα ,Y (z) = p0(z) and so the statement of the lemma is obvious.
Note that ν = 0 if and only if N = 1. Indeed, for N � 2 it is easy to see that

q1 = 2min j �= j′ |y j − y j′ | and the terms containing eizq1 do not cancel.
Let N � 2 and ν � 1. We prove (2.2) in several regions of C and then take the

largest of the corresponding constants ci, j . First, note that (2.2) is obvious in any disc
Dr(0) and also for z ∈ C+∪R (due to asymptotics of exponential terms in (2.3)).

Let z ∈ C− . Then there exists r1(α) > 0 and C1(α,Y ) > 0 so that

|D(z)| � |p0(z)|−C1|z|N−2|eizqν |� 2−1|z|N−2 [
(|z|+1)2−2C1e

−qν Im z] for |z| � r1 .

Assuming additionally z ∈ Ω1 = {Imz > −c1,1 ln(|Re z|+1)+ c1,2} , we see that

(|z|+1)2−2C1e
−qν Im z � (|z|+1)2− (|Rez|+1)qνc1,12C1e

−qνc1,2 > 0

whenever C1e−qνc1,2 � 1/4 and c1,1 � 2/qν . Hence, such a choice of c1,1,c1,2 ensures
the absence of zeros of D in (Ω1 ∩C−)\Dr1(0) .
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On the other hand, for certain r2(α) > 0, C3(α,Y ) > 0, and C4(α,Y ) > 0, it
follows from |z| � r2 that

|D(z)| � C3e
−qν Im z−C4|z|Ne−qν−1 Im z = C3e

−qν−1 Im z(e(qν−1−qν) Im z −|z|NC4/C3).

Thus, taking c2,1 � N/(qν −qν−1) it is easy to show the existence of c2,2 and r3(α,Y )>
r2 such that z ∈ Ω2 = {Imz < −c2,1 ln(|Re z|+ 1)− c2,2} and z ∈ C− \Dr3(0) imply
|D(z)| > 0. �

PROPOSITION 2.2. Let α ∈C
N . Then there exists a closed operator Hα =−Δα ,Y

in L 2(R3) with the spectrum σ(Hα) = [0,+∞)∪{z2 : z ∈ C+, detΓα ,Y (z) = 0} and
the resolvent (Hα − z2)−1 defined for {z ∈ C+ : z2 �∈ σ(Hα)} by the integral kernel
(2.1). If α ∈ (C−∪R)N , the operator iHα is m-accretive in the sense of [30].

Proof. The proof of the first statement can be obtained by modification of the
arguments of [3, Section II.1.1] with the use of Lemma 2.1 and the formula

(Γα ,Y (z))∗ = Γα,Y (−z), where α := (α j)∞
j=1 (2.4)

(here z is the complex conjugate of z ∈ C).
Let now α ∈ (C− ∪R)N . Then, it is easy to see that, for z ∈ iR+ the operator

iΓα ,Y (z) is accretive in the N -dimensional �2 -space. So, if additionally detΓα ,Y (z) �=
0, the operator (iHα − iz2)−1 and, in turn, iHα are accretive. Since the resolvent set of
Hα is nonempty, iHα is m-accretive. �

3. Resonances and related optimization problems

We will use the compactifications C = {∞}∪C , R = {∞}∪R , and C− := {∞}∪
R∪C− .

To carry over the above definitions of point interactions to the extended N -tuples

α ∈ C
N

, we put, following [3], Δα ,Y = Δα̃ ,Ỹ , where

α̃ and Ỹ are produced from α and Y , resp.,

by removing of the components with numbers j satisfying α̃ j = ∞. (3.1)

(It is assumed in the sequel that if all α j ∈ C , then α̃ := α , Ỹ := Y ). Using this rule

we can formally define the function detΓα ,Y (·) := detΓα̃ ,Ỹ (·) for arbitrary α ∈ C
N

.
Points k belonging to the set Σ(α,Y ) of zeroes of the determinant detΓα ,Y (z) will

be called Γ−1 -poles (or Γ−1
α ,Y -poles). The set of (continuation) resonances Σres (α,Y )

associated with Hα is defined by (1.1). (This definition is in agreement with the case of
real α j considered in [3, 5, 20], where also the connection of Γ−1

α ,Y -poles in C+ with
eigenvalues of Hα is addressed. For the origin of this and related approaches to the
understanding of resonances, we refer to [5, 13, 20, 43, 46] and the literature therein).

The multiplicity of a resonance or a Γ−1 -pole will be understood as the multiplic-
ity of a corresponding zero of the analytic function detΓα ,Y (·) (see [3]).
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For fixed Y , consider the set

F = {−Δα ,Y : α ∈ S} (3.2)

of operators Hα with N -tuples α belonging to a certain set S ⊂ C
N

. Let us introduce
the sets of all possible resonances Σres [F] and Γ−1 -poles Σ[F] generated by Hα ∈ F ,

Σ[F] :=
⋃

−Δα,Y∈F

Σ(α,Y ), Σres [F] :=
⋃

−Δα,Y∈F

Σres (α,Y ).

We consider F as a feasible set [8] of operators. The main attention will be paid to
the direct products S = AN of the sets A ⊂ C− of feasible dissipative α j -parameters.
For these direct products, we employ the notation FA := {Hα : α ∈ AN}.

Our main goal is to find resonances k which are extremal over F
R

or F
C− in

the framework of the Pareto optimization approach of [26, 27, 28]. In a wide sense,
resonances globally Pareto extremal over F can be understood as boundary points of
the set of achievable resonances Σres [F] . Depending on the applied background of
more narrow optimization problems, various parts of the boundary bdΣres [F] can be
perceived as optimal resonances (see the discussion in Section 8 and in [28, Section
A.2]). Note that our definitions are slightly different from those in [8]. In particular,
from our point of view, the use of positive cones for the definition of Pareto optimizers
is sometimes too restrictive for the needs of resonance optimization.

One of particular optimization problems can be stated in the following way. If k ∈
Σres (α,Y ) is interpreted as a resonance of the wave-type equation ∂ 2

t u−Δα ,Yu = 0 (cf.
[33]) with ‘singular potential term V = ∑N

j=1 μ(α j)δ (x− y j)u(x) ’, then f = Rek can
be understood as a (real) frequency of the associated resonant mode and r =− Imk � 0
is the corresponding exponential rate of decay (cf. [13, 26, 27]).

We say that f ∈ R is an achievable frequency if α ∈ ReΣres [F] . The properties of
the set ReΣres [F

R
] are discussed in Section 8.

DEFINITION 3.1. (see [26] for 1-D resonances) Let f ∈ ReΣres [F] . The minimal
decay rate rmin( f ) = rmin( f ;F) for the frequency f is defined by

rmin( f ;F) := inf{r ∈ [0,+∞) : f − ir ∈ Σres [F]}.

If k = f − irmin( f ) is a resonance of a certain feasible operator Hα ∈ F (i.e., the mini-
mum is achieved), we say that k , Hα , and α are of minimal decay for f .

EXAMPLE 3.1. Let N = 1 and Y = {y1} . Then Σ(α1,Y ) consists of one Γ−1 -
pole k = −i4πα1 of multiplicity 1 [4, 3].

(i) In the case A = R , one has Σ[FR] = iR := {it : t ∈ R} and Σres [FR] = i(−∞,0] .
The function rmin(·;R) is defined on the set of achievable frequencies consisting
of one point ReΣres [FR] = {0} and one has rmin(0;FR) = 0. The resonance
k = 0 and the operator H0 are of minimal decay for the frequency 0.
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(ii) Let A = C− . Then Σ[F
C− ] = iC+ ∪ iR . For each f ∈ (−∞,0] , we have

rmin( f ;F
C−) = 0, and see that k = f and Hi f (4π)−1 are the resonance and an

operator of minimal decay for f .

REMARK 3.1. It follows from Example 3.1 (ii) that, in the dissipative case, nonzero
real resonances are not necessarily associated with embedded eigenvalues of Hα . In-
deed, taking N = 1 and α1 ∈ iR− , we see that there exists a real resonance k0 < 0. The
fact that k2

0 is not an eigenvalue of Hα follows easily from the proof of [3, Theorem
I.1.1.4].

4. Existence of optimizers and perturbation theory

For every a = (a1, . . . ,aN) ∈ C
N

, let us denote

by n(a) the number of parameters a j, j = 1, . . . ,N, that are not equal to ∞, (4.1)

and, for k ∈ Σ[FA], by nmin(k;FA) := min{n(a) : k ∈ Σ(a,Y ) and a ∈ A
N} (4.2)

the minimal number of centers needed to generate k over FA .
Let us introduce on the compactification C of C a metric ρ

C
(z1,z2) generated

by the stereographic projection and, e.g., the �2 -distance on the unit sphere S2 ⊂ R3 .

The direct product C
N

will be considered as a compact metric space with the distance
ρ

C
N (α,α ′) generated by the �2 -distance on S

N
2 ⊂ R

3N .

Recall that, for S ⊂ C
N

, the feasible set F of operators is defined by (3.2), and
that Σ[F] =

⋃
α∈S Σ(α,Y ) is the corresponding set of achievable Γ−1 -poles.

THEOREM 4.1. Let the set S be closed in the metric space
(

C
N
,ρ

C
N

)
. Then Σ[F]

is a closed set and, for every achievable frequency, there exists an operator Hα ∈ F of
minimal decay (in the sense of Definition 3.1).

This theorem easily follows from the following lemma and the compactness argu-
ment. Recall that α̃ and Ỹ are defined by (3.1).

LEMMA 4.2. For every a ∈ C
N

there exists an open neighborhood W ⊂C
N

of a

(in the topology of (CN
,ρ

C
N )), an open set B ⊂ CN , a homeomorphism β : W → B ,

and an analytic function Da : B ×C → C such that, for every α ∈ W , the sets of
zeroes of the function detΓα̃ ,Ỹ (·) : C→C coincide with the sets of zeroes of the function
Da(β (α); ·) : C → C taking multiplicities into account.

Proof. When n(a) = N (see (4.1)), the lemma is obvious with β (α) ≡ α and
Da(β (α);z) ≡ detΓα ,Y (z) . Now, let us prove the lemma for the case n := n(a) < N .
Without loss of generality, we can assume that a j ∈ C for 1 � j � n(a) and a j = ∞
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for j > n(a) . Put β j = α j for 1 � j � n(a) . For n(a)+1 � j � N and α j �= 0, let us
define β j = −1/α j (assuming 1/∞ = 0). Then the following regularized determinant

Da = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

iz
4π

−β1 ... Gz(y1 − yn) Gz(y1 − yn+1) ... Gz(y1 − yN)
... ... ... ... ... ...

Gz(yn − y1) ...
iz
4π

−βn Gz(yn − yn+1) ... Gz(yn − yN)

βn+1Gz(yn+1 − y1) ... βn+1Gz(yn+1 − yN)
izβn+1

4π
+1 ... βn+1Gz(yn+1 − yN )

... ... ... ... ... ...

βNGz(yN − y1) ... βNGz(yN − yn) βNGz(yN − yn+1) ...
izβN

4π
+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(4.3)

satisfies the conditions of the lemma. �

Lemma 4.2 allows one to consider the corrections of resonances and eigenvalues

of Hα under small perturbations of a ∈ C
N

. The first correction terms under one-
parameter perturbations can be described in the following way.

Let k be an m-fold zero of the determinant Da(b; ·) defined by (4.3) at
b = (a1, . . . ,an,0, . . . ,0) and considered as an analytic function of the variables z ∈ C

and β ∈ CN . Then, for every analytic function γ(ζ ) that maps Dr(0) ⊂ C to CN and
satisfy γ(0) = b , there exist ε > 0, δ > 0, and continuous on [0,ε) functions κ j(ζ ) ,
j = 1, . . . ,m , with the asymptotics

κ j(ζ ) = k+(Cγ,1ζ )1/m +o(ζ 1/m) as ζ → 0 , Cγ,1 := −m!∂ζ Da(γ(ζ ),k) |ζ=0

∂m
z Da(b,k)

,

(4.4)
such that all the zeros of Da(γ(ζ ), ·) , ζ ∈ [0,ε) , lying in Dδ (k) are given by {κ j(ζ )}m

1
taking multiplicities into account. In the case Cγ,1 �= 0, each branch of [·]1/m corre-
sponds to exactly one of functions κ j , and so, all m values of functions κ j(ζ ) for
small enough ζ > 0 are distinct zeros of Da(γ(ζ ), ·) of multiplicity 1.

Perturbations of b in the directions of modified parameters β j play a special role.
Note that Da(β1, . . .βn,bn+1, . . . ,bN ;z) = Da(α1, . . .αn,0, . . . ,0;z) = detΓα̃ ,Ỹ (z) . Let
k ∈ Σ(a,Y ) . If ai ∈ C (and so i � n(a) and βi = αi , under the convention of Lemma
4.2), then the term ∂ζ Da(γ(0),k) corresponding to the perturbation of one of the β j

takes the form of the first principal minor

∂βi
Da(b;k) = ∂αi detΓã,Ỹ (k) = detΓ[i]

α̃ ,Ỹ
(k), (4.5)

where Γ[i]
α̃ ,Ỹ

(k) :=
[(

α j − ik
4π

)
δ j j′ − G̃z(y j − y j′)

]
j, j′=1,...,n

j, j′ �=i

.

If ai = ∞ (and so i > n , bi = 0, and βi = −1/αi ), one has

∂βi
Da(b,k) = (−1)n

∣∣∣∣∣∣∣∣
ik
4π −β1 ... Gk(y1 − yn) Gk(y1 − yi)

... ... ... ...

Gk(yn − y1) ...
ik
4π −βn Gk(yn − yi)

Gk(yi − y1) ... Gk(yi − yn) c

∣∣∣∣∣∣∣∣
(4.6)
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with arbitrary c ∈ C . With c = ik
4π the latter equality is obvious from (4.3). To prove it

for arbitrary c ∈ C , note that the first minor in the left upper corner of the determinant
in (4.6) is equal to detΓα̃ ,Ỹ (k) = 0.

Note that when z ∈C is fixed, Da(·;z) is a polynomial in the variables β j and that
∂ l

β j
Da(β ,z) = 0 for all l � 2. This implies the following lemma.

LEMMA 4.3. If k ∈ Σ(a;Y ) and ∂β j
Da(b;k) = 0 for certain 1 � j � N , then

k ∈ Σ(α;Y ) for all α obtained from a by the change of the j -th coordinate a j to an
arbitrary number in C .

5. Uniform logarithmic bound on resonances

Let N � 2 and α ∈CN . Then Lemma 2.1 and its proof imply the following 2-side
bound on all resonances k ∈ Σres (α,Y ) :

− N
qν−qν−1

ln(|Rek|+1)− c2,2 � Imk � − 2
qν

ln(|Rek|+1)+ c1,2, (5.1)

where qν , qν−1 , c2,2 , c2,1 are positive constants the depending on α and Y defined
in the proof of Lemma 2.1. The following theorem shows that the upper bound can be

modified in such a way that it becomes uniform with respect to α ∈ R
N

or α ∈ C
N
− .

THEOREM 5.1. Let N � 2 and A ⊂ C− . Then there exist c1 = c1(Y ) > 0 such
that

rmin( f ;FA) � 2
N diam(Y )

ln(| f |+1)− c1 (5.2)

for all frequencies f > 0 achievable over FA .

Proof. Step 1. As a function in z and α ∈ CN , detΓα ,Y (z) has the following
representation

detΓα ,Y (z) = (−4π)−ND̃(α,z), D̃(α,z) =
η

∑
l=0

Pl(α,z)eizQl , (5.3)

which is unique if we assume that the numbers η = η(Y ) ∈ N∪{0} , Ql = Ql(Y ) , and
the nontrivial polynomials Pl in z and α j (with coefficient depending on Y ) are such
that 0 = Q0 < Q1 < .. . < Qη . In this case, one sees that P0(α,z) = ∏N

j=1(iz−4πα j)
and

degPl � N−2 for all 1 � l � η . (5.4)

In the same way as in the proof of Lemma 2.1, the assumption N � 2 implies η � 1.
Step 2. Consider the case A = A0 := C−∪R and α ∈ AN

0 . Then all α j are finite
and we can use (5.3). Denote Pmin(α,z) := min j �= j′ |(iz−4πα j)(iz−4πα j′)| . It is easy
to see that there exists C5 = C5(Qη ) > 0 such that for any c1 � C5 in the region

Ω3 := { Imz � 0, Re z > 0 , Imz > − 2
Qη

ln(Re z+1)+ c1}
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the inequalities
|iz−4πα j| � |z|+1

4 + |α j| � 1
4 (5.5)

hold for all α j ∈ A0 . Hence, for all (z,α) ∈ Ω3×A0 , we have

P0(α,z) �= 0, Pmin(z,α) > (|z|+1)2/16, and (5.6)

|D̃|Pmin

|P0| � Pmin−
η

∑
l=1

Pmin|Pl|
|P0| e−Qη Im z � (|z|+1)2

16
−4N−2(N!−1)e−Qη Im z.

The last inequality follows from (5.5), (5.4), and the Leibniz formula for the determi-
nant detΓα ,Y . Choosing c1 large enough, one can ensure that |D̃|Pmin

|P0| (and so D̃) have

no zeros in Ω3×AN
0 .

Step 3. From Step 2, the perturbation formula (4.4), and Lemma 4.2, one sees that
detΓα ,Y (z) has no zeros in the larger set Ω3 ×A

N with A = C− . Now, the statement
of theorem follows from the obvious estimate Qη � N diam(Y ) . �

REMARK 5.1. When A = R , the estimate (5.2) is valid for all frequencies f that
are achievable over F

R
. Indeed, (2.4) and Example 3.1 imply that

Σ(α,Y ) is symmetric w.r.t. iR for α ∈ R
N

(including multiplicities), (5.7)

rmin( f ;F
R
) is an even function, and rmin(0;F

R
) = 0. (5.8)

Note also that it follows from (5.7) that Σ[F
R
] and Σres [F

R
] are symmetric w.r.t.

iR , and that Σ[F
R
] = Σres [F

R
]∪ i[0,+∞) . To see the last equality, it suffices to notice

that the m-accretivity statement of Proposition 2.2 implies

∅ = CI ∩Σ[F
C− ] = (CI ∪CII)∩Σ[F

R
] (5.9)

and that Σ[F
R
] contains the set iR produced by the case N = 1 of Example 3.1 (i).

Similarly, Σ[F
C− ] contains the set iC+∪ iR of Example 3.1 (ii). For the minimal decay

function rmin over F
C− one has rmin( f ;F

C−) = 0 for all f � 0.

6. Extremal resonances over A = R and A = C−

We study first the boundary bdΣ[F
C− ] , and then from this study obtain results

on resonances of minimal decay over F
R

. The idea behind this is that there are more

possible perturbations of the parameter tuple a inside of C
N
− , than in the case a ∈ R

N
.

So the restrictions on the possible perturbations of k over F
C− are stronger. However,

it occurs that for every k ∈ bdΣ[F
C− ] , there exists a∈ R

N
that generates k in the sense

that k ∈ Σres (a,Y ) . As a result the resonances of minimal decay over F
R

inherit the
stronger necessary conditions of extremity derived for A = C− .

In the simplest form, our main abstract result states that if a ∈ RN generates the
resonance k of minimal decay over F

R
, then there exists ξ ∈ [−π ,π) such that

the ray eiξ [0,+∞) contains all first minors detΓ[i]
a,Y (k) (see Theorem 6.3). (6.1)
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(Note that the ray eiξ [0,+∞) ⊂ C includes its vertex at 0 .)
To formulate the result in the general form that includes the possibility of a j = ∞

for some j and the case A = C− , we take the convention of Section 4, which assumes
that the centers y j are enumerated in such a way that a j �= ∞ for 1 � j � n and a j =
∞ for n < j � N , and use the regularized determinant D = Da defined by (4.3) and
depending on the modified parameters β j .

THEOREM 6.1. Assume that a∈C
N
− and k∈Σ(a,Y ) are such that k∈ bdΣ[F

C− ] .
Then the following statements hold:

(i) There exists ξ ∈ [−π ,π) such that

∂β j
D(b;k) belongs to the ray eiξ [0,+∞) for all j = 1, . . . ,N . (6.2)

(ii) If ai ∈ C− for some i, then ∂βi
D(b;k) = 0 and

k ∈ Σ(a′,Y ) for a′ defined by a′j =
{

c, j = i
a j, j �= i

with arbitrary c ∈ C− . (6.3)

(iii) There exists a′ ∈ R
N

such that k ∈ Σ(a′,Y ) and n(a′) = nmin(k;FC−) . (Recall
that nmin is defined by (4.2).)

The proof is given in Section 6.1. Note that Statement (iii) and Theorem 4.1 imply

bdΣ[F
C− ] ⊂ bdΣ[F

R
] ⊂ Σ[F

R
] ⊂ Σ[F

C− ]. (6.4)

On the other hand, the m-accretivity statement of Proposition 2.2 implies CI∩Σ[F
C− ] =

∅ . Combining this with (6.4), we obtain the next corollary.

COROLLARY 6.2. Let f � 0 . Then the frequency f is achievable over F
C− ex-

actly when it is achievable over F
R

. For such frequencies f , one has rmin( f ;R) =
rmin( f ;C−).

With the use of Corollary 6.2 and Theorem 6.1 we will prove in Section 6.1 the
following necessary conditions over F

R
.

THEOREM 6.3.

(i) If k and a ∈ R
N

are of minimal decay (over F
R

) for the frequency Rek , then
there exists ξ ∈ [−π ,π) such that (6.2) hold.

(ii) If a ∈ R
N

and k ∈ Σres (a,Y ) are such that k ∈ bdΣres [F
R
] , then there exists

ξ ∈ [−π ,π) such that ∂β j
D(b;k) belongs to the line eiξ R for all j = 1, . . . ,N .
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6.1. Proofs of Theorems 6.1 and 6.3

Recall that by ConeW we denote the nonnegative convex cone generated by a

subset W of a linear space. Let S = C
N
− or S = R

N
, and let F be defined by (3.2).

Let D(β ;z) = Da(β ;z) and b ∈ CN be defined as in Section 4. The change from
α -coordinates to β -coordinates of Section 4 maps S onto S . Let S̃ := S∩CN (this
excludes all infinite points). We would like to consider β ∈ S̃ and the sets ΣD(β ) of
zeroes of D(β , ·) generated by such β . Obviously,

the set of all such zeros, ΣD[S̃] :=
⋃
β∈S̃

ΣD(β ) , is a subset of Σ[F] . (6.5)

For v ∈ CN , let us consider the directional derivatives ∂D(b;z)
∂β (v) := ∂ζ D(b +

vζ ;z) , where ζ ∈ R . Put ∂D(b;k)
∂β [S̃− b] := { ∂D(b;z)

∂β (v) : v ∈ S̃− b} . When v be-

longs to the convex set S̃− b , the linear perturbations b+ vζ for ζ ∈ [0,1] remain in

S̃ . Hence, [27, Theorem 4.1 and Proposition 4.2] imply that if Cone ∂D(b;k)
∂β [S̃−b] = C ,

then k is an interior point of ΣD[S̃] . Taking (6.5) into account we obtain our main
technical lemma.

LEMMA 6.4. If k ∈ bdΣ[F] , then there exists a closed half-plane eiξ (C+ ∪R)
that contains Cone ∂D(b;k)

∂β [S̃−b] .

Let us prove statement (ii) of Theorem 6.1. Assume that k ∈ bdΣ[F
C− ] and ai ∈

C− . So bi = ai ∈ C− . Then every v ∈ C
N such that v j = 0 for j �= i belongs to S̃−b

for small enough vi ∈ C . Note that ∂D(b;k)
∂β (v) = vi∂βi

D(b;k) . Lemma 6.4 implies

that there exists a half-plane eiξ (C+ ∪R) that contains ∂D(b;k)
∂β (v) for all vi ∈ C . This

implies ∂βi
D(b;k) = 0 and, in turn, due to Lemma 4.3, implies (6.3).

Now, statement (iii) of Theorem 6.1 follows from statement (ii).
Let us prove statement (i) of Theorem 6.1. For all j such that b j ∈ C− , state-

ment (ii) implies (6.2) with arbitrary ξ . For j such that b j ∈ R , it is easy to see that
v = (cδ ji)N

i=1 is contained in S̃− b for arbitrary c ∈ C− \ {∞} . The corresponding

derivatives ∂D(b;k)
∂β (v) = c∂β j

D(b;k) are contained in one complex half-plane only if
(6.2) holds. Thus, (i) follows from Lemma 6.4. This completes the proof of Theorem
6.1.

The above arguments and Lemma 6.4 allows one to obtain easily Theorem 6.3 (ii).
Theorem 6.3 (i) follows immediately from Theorem 6.1 (iii), Corollary 6.2, and (5.7).

7. Equidistant case

In this section an example where the configuration of location of the interactions
is symmetric is studied in order to obtain explicit formulas for optimizers. Namely, we
consider the case where N = 4 and y j are vertices of a regular tetrahedron with edges
of length L . We denote nmin(k) := nmin(k;FR

) (see (4.2)).
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THEOREM 7.1. Let N = 4 . Assume that |y j − y j′ | = L for all j �= j′ . Then a
frequency f is achievable over F

R
exactly when f �= ±lπ/L, l ∈ N . The minimal

decay function r( f ) = r( f ;F
R
) is given by the following explicit formulas:

r(0) = 0, r( f ) = 1
L ln L f

sin(L f ) for f ∈ ±⋃∞
l=0

(
2lπ
L , (2l+1)π

L

)
,

and r( f ) = 1
L ln −L f

3sin(L f ) for f ∈ ±⋃
l∈N

(
(2l−1)π

L , 2lπ
L

)
.

Figure 1: Resonances k = f − ir( f ) of minimal decay over F
R

in the equidistant case L = π ,
N = 4 ; - - - marks the case nmin(k) = 4 , · · · marks the case nmin(k) = 2 (see Lemmas 7.2 and
7.4).

The rest of this subsection is devoted to the proof of Theorem 7.1.
Let n(a) = 4, Aj := 4πLa j and κ := Lz (for the definition of n(a) see (4.1)).

Then for arbitrary z and a ∈ R4 ,

(−4πL)4 detΓa,Y (z) =
4

∏
j=1

(iκ−Aj − eiκ)+ eiκ
4

∑
j=1

∏
1� j′�4

j′ �= j

(iκ−Aj′ − eiκ) and (7.1)

(−4πL)4 detΓa,Y (z) = (−4πL)3(iκ−Ai− eiκ)∂αi detΓa,Y (z)+ eiκ ∏
j′ �=i

(iκ−Aj′ − eiκ).

(7.2)

Assume now that z = k ∈ Σres (a,Y ) . Then detΓa,Y (k) = 0, and so, (7.1) implies

0 =
4

∏
j=1

(iκ−Aj − eiκ)+ eiκ
4

∑
j=1

∏
j′ �= j

(iκ−Aj′ − eiκ). (7.3)

LEMMA 7.2. Assume that n(a) = nmin(k) = 4 and k ∈ Σres (a,Y ) is of minimal
decay for f ∈R . Then f ∈±⋃

l∈N((2l−1)π/L,2lπ/L) , all a j are equal to each other,
and

a1 = . . . = a4 =
1

4πL
ln

−L f
3sin(L f )

− f cot(L f )
4π

, k = f + i
1
L

ln
3sin(L f )
−L f

. (7.4)
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Proof. Since n(a)= 4, we see that a j ∈R , β j = α j , for j = 1, . . . ,4, and Da(α;z)
= detΓα ,Y (z) . By Example 3.1, nmin(k) = 1 for all k ∈ iR . So nmin(k) = 4 yields that
f = Rek �= 0. Formula (7.2) implies that for each i either iκ−Ai− eiκ = 0, or

(−4πL)3∂αi detΓα ,Y (k) = −eiκ ∏ j′ �=i(iκ−Aj′ − eiκ)
(iκ−Ai− eiκ)

. (7.5)

Let us show that in the case nmin(k) = 4, one has

iκ−Ai− eiκ �= 0 for all i . (7.6)

Assume that iκ − Ai − eiκ = 0 holds for certain i . Then (7.3) yields that there ex-
ists i′ �= i such that iκ − Ai′ − eiκ = 0. Hence, Ai′ = Ai and, for a′ defined by

a′j =
{

a j, j = i, i′
∞, j �= i, i′ , we have (taking into account the convention of Section 3)

detΓa′,Y (k) = detΓã′,Ỹ (k) = (−4πL)−2(iκ−Ai− eiκ)(iκ−Ai + eiκ) = 0. (7.7)

This means nmin(k) � 2, a contradiction.
Thus, we see that (7.5) and ∂αi detΓα ,Y (z) �= 0 hold for all i = 1, . . . ,4. To combine

these conditions with Theorem 6.3 (i), assume now that k is of minimal decay for the
frequency Rek . Then (6.2) and (7.5) imply that for arbitrary i �= j ,

∂αi detΓα ,Y (k)
∂α j detΓα ,Y (k)

=
(iκ−Aj − eiκ)2

(iκ−Ai− eiκ)2 ∈ R+. (7.8)

Let us show that a j = a j′ for all j, j′ = 1, . . . ,4. Assume that the converse is true.

Then Ai �= Ai′ for certain i and i′ . However, (7.8) implies that
iκ−Aj−eiκ

iκ−Aj′−eiκ ∈ R\{0} for

all j and j′ . So there exists ξ̃ ∈ R such that iκ−Aj − eiκ = c jeiξ̃ with c j ∈ R\ {0}
for all j . Since Ai,Ai′ ∈ R and 0 �= Ai−Ai′ = (ci′ −ci)eiξ̃ , we see that eiξ̃ ∈ R , and, in
turn, iκ− eiκ ∈ R . Combining this with (7.3) and (7.6), one gets eiκ ∈ R , and in turn,
gets iκ ∈ R from iκ− eiκ ∈ R . Finally, note that iκ ∈ R contradicts Rek �= 0.

Summarizing, we have proved that if k is of minimal decay and nmin(k) = 4, then
all Aj are equal to the same number, which we denote by c . Due to (7.6), equality (7.3)
turns into c = iκ +3eiκ . Since c ∈ R , taking Re(·) and Im(·) of the last equality we
can derive an explicit relation between κ1 := Reκ �= 0, κ2 := Imκ � 0, and c using
the arguments similar to that of the example in [3, Section II.1.1] (see also [5, 44]).
Indeed, taking Im(·) one obtains κ1 +3e−κ2 sinκ1 = 0 and, in turn, that κ1 ∈ ±∪l∈N

((2l−1)π ,2lπ) and κ2 = ln 3sinκ1
−κ1

. This gives the second part of (7.4). The value of
c = 4πLa j is found by taking Re(·) . �

LEMMA 7.3. Assume that k ∈ Σres (a,Y ) is of minimal decay for f ∈ R , a ∈ R
4
,

and n(a) = 3 . Then nmin(k) � 2 .
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Proof. Assume that n(a)= nmin(k) = 3. Let us enumerate y j such that a j ∈R and
β j = α j for j = 1,2,3. Then a4 = ∞ and β4 = −1/α4 . Since Da((β1,β2,β3,0);z) =
detΓα̃ ,Ỹ (z) , we obtain analogously to (7.3) and (7.2) that for i = 1,2,3,

0 = ∏3
j=1(iκ−Aj − eiκ)+ eiκ ∑3

j=1 ∏1� j�3
j′ �= j

(iκ−Aj′ − eiκ) and (7.9)

0 = (−4πL)2(iκ−Ai− eiκ)∂βi
Da(k)+ eiκ ∏1� j′�3

j′ �=i

(iκ−Aj′ − eiκ).

In the same way as in the proof of Lemma 7.2, one can show that n(a) = nmin(k) =
3 implies iκ−Aj − eiκ �= 0 and for j = 1,2,3,

(−4πL)2∂β j
Da(k) = −

eiκ ∏1� j′�3
j′ �= j

(iκ−Aj′ − eiκ)

(iκ−Aj − eiκ)
�= 0 (7.10)

For j = 4, (4.6) with c = (4πL)−1eiκ implies

−(4πL)4∂β4
Da(k) = eiκ

3

∏
j=1

(iκ−Aj − eiκ) �= 0. (7.11)

Since k is of minimal decay, we obtain from Theorem 6.3 (i) that for j = 1,2,3,

(4πL)2 ∂β4
Da(k)

∂β j
Da(k)

= (iκ−Aj − eiκ)2 ∈ R+ and so iκ−Aj − eiκ ∈ R\ {0}.

Hence, iκ − eiκ ∈ R and, like in Lemma 7.2, one obtains from (7.9) that eiκ and iκ
are real. The latter implies k ∈ iR and, in turn, nmin(k) = 1, a contradiction. �

LEMMA 7.4. (i) Assume that k ∈ Σres (a,Y ) is of minimal decay for f ∈ R , a ∈
R

4
, and n(a) = nmin(k) = 2 . Then:

(i.a) f ∈ ±⋃∞
l=0(

2lπ
L , (2l+1)π

L ) and k = f + i
L ln sin(L f )

L f ;

(i.b) it is possible to enumerate y j so that a1 = a2 = 1
4πL ln L f

sin(L f ) − f
4π cot(L f ) and

a3 = a4 = ∞ .
(ii) If f , k , and a satisfy (i.a)-(i.b), then k and a are of minimal decay for f .

Proof. (i) As before, let us enumerate y j such that a j ∈ R , j = 1,2. Using the
fact that nmin(k) = 1 for k ∈ iR , one shows in a way similar to the proof of Lemma
7.3, that iκ �∈ R , A1 = A2 , iκ−A1− eiκ ∈ R , and that iκ−A1 + eiκ �= 0. Then (7.7)
implies that iκ−A1− eiκ = 0. Taking imaginary and real parts of A1 = iκ− eiκ in a
way similar to the proof of Lemma 7.2, one gets (i.a-b).

(ii) Suppose (i.a) and (i.b). It is obvious that k ∈ Σ(a,Y ) and so f is an achievable
frequency. By Theorem 4.1, there exists resonance k0 of minimal decay for f . The
facts that nmin(k0) �= 1,3,4 follow, resp., from f �= 0, Lemma 7.3, and the facts that f
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is not in the frequency range of Lemma 7.2. Thus, nmin(k0) = 2, and statement (i) of
the lemma implies k0 = k . �

Combining arguments of the proof of Lemma 7.4 (ii) with Lemmas 7.2, 7.3 and
7.4 (i), it is easy to show that R\ReΣres [F

R
] = π

L (Z\ {0}) and the fact that

if f , k , and a are as in Lemma 7.2, then k and a are of minimal decay for f .
(7.12)

This completes the proof of Theorem 7.1.

8. Additional remarks and discussion

Achievable frequencies. Generically, if N � 2, the set of achievable frequencies
ReΣres [F

R
] takes the whole line R . More precisely, the example with two centers

at the end of [3, Section II.1.1] easily implies the following statement.

PROPOSITION 8.1. Let N � 2 . If f0 ∈ R\ReΣres [F
R
] , then for all 1 � j, j′ � N ,

j �= j′ , there exist nonzero integers l j, j′ such that f0 =
π l j, j′

|y j − y j′ |
. In particular, the set

R\ReΣres [F
R
] either consists of isolated points, or is empty.

Minimization of the resonance width ε . The interpretation of resonances k from
the point of view of the Schrödinger equation i∂t u = Hαu is usually done in another
system of parameters. Namely, E = Rek2 is interpreted as the energy of the resonance
k and ε = 2| Imk2| is the width of the resonance (see e.g. [43]). For nonnegative
potentials with constraints on their L p -norms and compact supports, the problem of
finding local and global minimizers of ε was considered in [23, 45].

The results of previous sections can be easily adapted to the problem of minimiza-
tion of resonance width. The analogue of the problem of [23] for point interactions can
be addressed in the following way.

COROLLARY 8.2. Let 0 � E1 � E2 � +∞ and N � 2 . Then:

(i) There exists a∈R
N

and k0 ∈Σres (a,Y ) such that | Imk2
0|= inf k∈Σres [F

R
]

E1�Rek2�E2

| Imk2| .

(ii) For any a and k0 satisfying (i), the necessary condition (i) of Theorem 6.1 holds.

Proof of statement (i). It follows from Example 3.1 and the example in [3, Section

II.1.1] that for any E � 0 and any two-point set Y ′ = {y′1,y′2} there exist a tuple α ′ ∈R
2

and a resonance k ∈ Σres (α ′,Y ′) such that E = Rek2 (see also Section 7). So, when
N � 2, the existence of minimizer follows in the case E2 < +∞ from Theorem 4.1, and
in the case E2 = +∞ from Theorem 4.1 and the uniform bound (5.2). �

The statement (ii) of Corollary 8.2 follows immediately from the following strength-
ened version of Theorem 6.3 (i).
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THEOREM 8.3. Denote by Ω+ the path-connected components of the open set

C\Σres [F
R
] that contain C+ . If k ∈ bdΩ+ and a ∈ R

N
are such that k ∈ Σres (a,Y ) ,

then there exists ξ ∈ [−π ,π) such that (6.2) holds.

The proof of Theorem 8.3 follows the same lines as that of Theorem 6.3 (i).

Symmetries and non-uniqueness of extremizers. If there exists a unique operator
H that generates an extremal (in any sense) resonance, then H preserves all the sym-
metries of this optimization problem.

This obvious principle can be illustrated by the tetrahedron equidistant case of
Theorem 7.1 if we consider a frequency f ∈±⋃

l∈N((2l−1)π/L,2lπ/L) and operators
Ha ∈ F

R
of minimal decay for f . Indeed, the tuple a found in Lemma 7.2 is the unique

tuple of minimal decay for f . The corresponding optimal operator Ha possesses all the
symmetries of the symmetry group Td of a regular tetrahedron. The corresponding
resonance of minimal decay is simple (i.e., of multiplicity 1).

EXAMPLE 8.4. In the case f ∈±⋃∞
l=0(

2lπ
L , (2l+1)π

L ) (with N = 4 and |y j−y j′ |=
L for all j �= j′ ), the situation is different since an infinite family of generic Hα of
minimal decay preserves only one of the symmetries. Let us consider in more details
operators Ha that generate the resonance k of minimal decay over F

R
for such f (this

k is calculated in Lemma 7.4).
It is easy to see that a 4-tuple a ∈ R

4
is of minimal decay for f if and only if

two of the parameters a1 , . . . , a4 are equal to a∗ := 1
4πL ln L f

sin(L f ) − f
4π cot(L f ) .

(8.1)
Indeed, in the case (8.1), one can see that at least two of the numbers Aj satisfy

iκ−Aj − eiκ = 0. So (7.1) and Lemma 4.2 imply k ∈ Σres (a,Y ) . On the other hand,
assume that a does not satisfy (8.1). Then (7.3), (7.9), and (7.7) imply iκ−Aj−eiκ �= 0
for all j = 1, . . . ,4. Applying the arguments of Lemmas 7.2 - 7.4 (i), it is not difficult
to see that n(a) �= 4,3,2,1, a contradiction.

We see that, in the case of vertices of a regular tetrahedron and F = F
R

,

(a) each operator Ha of minimal decay has at least one of the symmetries (of the
symmetry group) of F ,

(b) there exists one Ha of minimal decay that possesses all the symmetries of F .

The question to what extent the above observations (a) and (b) remain true for other
feasible sets F and other resonance optimization problems [10, 9, 25] seems to be
natural. We would like to note that related questions often appear in numerical and
engineering studies [25, 34, 39].

REMARK 8.1. It worth to note that an example of a 1-D resonance optimization
problem that possesses two different optimizers generating the same resonance of min-
imal decay has been constructed recently in [29]. This example involves the equation
of an inhomogeneous string and uses essentially the specific effects for its resonances
on iR− .
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Multiple resonances of minimal decay. In many reasonable settings generic reso-
nances are simple [13]. Resonances of minimal decay are very specific ones. Section 7
shows that they can be multiple (i.e., of multiplicity � 2).

EXAMPLE 8.5. In the settings of Example 8.4, formula (7.1) implies that the res-
onance of minimal decay k for f ∈ ±⋃∞

l=0(
2lπ
L , (2l+1)π

L ) is

(i) of multiplicity 2 for Ha if and only if exactly three of parameters a1 , . . . , a4 are
equal to a∗ ;

(ii) of multiplicity 3 for Ha exactly when a1 = . . . = a4 = a∗ .

It seems that the above effect with existence of multiple resonances of minimal
decay is new. The explicitly computed 1-D resonances of minimal decay in [27, 29]
are simple. However, it was noticed in numerical optimization experiments of [25]
that, in the 2-D case with upper and lower constraints on the index of refraction, the
gradient ascent iterative procedure stopped when it encountered a multiple resonance
because it was not able to determine which resonance branch to follow. In our opinion
the Schrödinger operators with a finite number of point interactions is a good choice of
a model for the study of the phenomena behind this numerical difficulty.

REMARK 8.2. As it was pointed out by the referee, the optimization technique of
this paper can be applied to other types of non-selfadjoint spectral problems, e.g., to
resonances of non-compact quantum graphs with finitely many edges [11, 31, 32, 42].
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4, 2017) with a series of lectures based on these results was supported by Volkswagen-
Stiftung.



1116 S. ALBEVERIO AND I. M. KARABASH

RE F ER EN C ES

[1] S. ALBEVERIO, J. E. FENSTAD, R. HØEGH-KROHN, Singular perturbations and nonstandard anal-
ysis, Trans. Amer. Math. Soc. 252 (1979), 275–295.

[2] S. ALBEVERIO, F. GESZTESY, R. HØEGH-KROHN,The low energy expansion in nonrelativistic scat-
tering theory, in Annales de l’IHP Physique théorique, vol. 37, no. 1, 1982, 1–28.
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