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Abstract. Some estimates for the dimension of the kernel of the singular integral operator I −
cUP+ : Ln

p(T) → Ln
p(T) , p ∈ (1,∞) , with a non-Carleman shift are obtained, where P+ is the

Cauchy projector, U is an isometric shift operator and c(t) is a continuous matrix function
on the unit circle T . It is supposed that the shift has a finite set of fixed points and all the
eigenvalues of the matrix c(t) at the fixed points, simultaneously belong either to the interior of
the unit circle T or to its exterior. The case of an operator with a general shift is also considered.
Some relations between those estimates and the resolvent set of the operator cU are pointed out.

1. Introduction

Let T denote the unit circle in the complex plane, T+ and T− denote the interior
and the exterior (∞ included) of T , respectively. We will also consider the domains
D+ = {z∈C : |z|< sin π

p} and D− = {z∈C : |z|> sin−1 π
p} ; here and bellow we always

assume p ∈ (1,∞) , in correspondence with the Lebesgue space Lp(T) . Evidently,
D± = T± , for p = 2. On Lp(T) we consider the singular integral operator (SIO) with
Cauchy kernel, defined almost everywhere on T by

(Sϕ)(t) = (π i)−1
∫

T

ϕ(τ)(τ − t)−1dτ,

where the integral is understood in the sense of its principal value. The operator S is a
bounded linear involutive operator (S2 = I , where I is the identity operator on Lp(T)).
Then it is possible to define in Lp(T) a pair of complementary projection operators,

P± =
1
2
(I±S),

and to decompose Lp(T) = L+
p (T)⊕

◦
L−

p (T) , with L+
p (T) = imP+ and

◦
L−

p (T) = imP− .

We also set L−
p (T) =

◦
L−

p (T)⊕C .
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As usual, L∞(T) denotes the space of all essentially bounded functions on T . Let
us introduce the concept of matrix function generalized factorization (see, for instance,
[3] and [21]). Let p,q ∈ (1,∞) , with p−1 + q−1 = 1; we say that a matrix function
c∈ Ln×n

∞ (T) admits a (right) generalized factorization in Lp(T) , if it can be represented
as

c = c−Λc+, (1)

where

c− ∈ [
L−

p (T)
]n×n

, c−1
− ∈ [

L−
q (T)

]n×n
, c+ ∈ [

L+
q (T)

]n×n
, c−1

+ ∈ [
L+

p (T)
]n×n

,

Λ(t) = diag{tκ j} , κ j ∈ Z , j = 1,n , with κ1 � κ2 � . . . � κn , and c−P+c−1
− I rep-

resents a bounded linear operator in Ln
p(T) . The number κ =

n
∑
j=1

κ j is called the

factorization index of the determinant of the matrix function c . The integers κ j are
uniquely defined by the matrix function c and are called its right partial indices.

Any non-singular continuous matrix function c ∈ Cn×n(T) admits a generalized
factorization (1) in Lp(T) (see, for instance, the above cited [3] and [21]); for our
purposes, it will be assumed that

c±1
± ∈Cn×n(T). (2)

For the particular scalar case we note that κ = indc if c ∈C(T) ; as usual, indϕ
denotes the Cauchy index of a continuous function ϕ ∈C(T) , i.e.,

indϕ =
1
2π

{argϕ(t)}t∈T.

Now let ω be a homeomorphism of T onto itself, which is differentiable on T

and whose derivative does not vanish there. The function ω : T → T is called a shift
function or simply a shift on T . By

ωk(t) ≡ ω [ωk−1(t)], ω1(t) ≡ ω(t), ω0(t) ≡ t, t ∈ T,

we denote the k-th iteration of the shift, k � 2, k ∈ N .
A shift ω is called a (generalized) Carleman shift of order n∈N\{1} if ωn(t)≡ t ,

but ωk(t) �≡ t for k = 1,n−1. Otherwise, if ω is not a Carleman shift, it is called a
non-Carleman shift. In what follows we will consider four different shifts, i.e., ω =
ζ ,η ,α,β : ζ and η are general shifts, in the sense Carleman or non-Carleman shifts;
α and β are non-Carleman shifts having a finite set of fixed points {τ1,τ2, . . . ,τs} ,
s � 1. Other properties of these shifts will be specified later on whenever necessary.

On Ln
p(T) , p ∈ (1,∞) , associated with a shift ω , we consider a shift operator Uω

defined by
(Uω ϕ)(t) = uω(t)ϕ [ω(t)], t ∈ T,

where the function uω is chosen in such way that the following properties hold 1:

1Given a shift ω , the property i) is always satisfied taking uω (t) = |ω ′(t)| 1
p . To verify the property ii)

the function uω has to be chosen depending on the concrete shift ω (see Section 3.2), which is not always
possible.
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i) Uω is isometric, i.e., ‖Uωϕ‖Ln
p
= ‖ϕ‖Ln

p
, ω = ζ ,η ,α,β .

ii) UωS = SUω , where S is the SIO with Cauchy kernel, ω = η ,β .
Let c ∈Cn×n(T) be a given continuous matrix function; in this paper, we consider

the SIO with shift Tω : Ln
p(T) → Ln

p(T) , p ∈ (1,∞) , ω = ζ ,η ,α,β , defined by

Tω = I− cUωP+. (3)

We note that for the SIO with shift of the form

T (A1,A2) = A1P+ +A2P−, (4)

where A1 and A2 are the functional operators

A1 = a1I +b1Uω , A2 = a2I +b2Uω ,

and a1,a2,b1,b2 ∈ Cn×n(T) , the Fredholmness conditions and the index formulas are
known [13]. The Fredholm criterion can be formulated as follows: the SIO with shift
T (A1,A2) is Fredholm in Ln

p(T) , p ∈ (1,∞) , if and only if the functional operators A1

and A2 are continuously invertible in Ln
p(T) . The solvability theory (calculation of the

defect numbers, construction of bases for the defect subspaces, spectral properties) of
the operator T (A1,A2) has been less studied (see [4], [10], [11], and [12]), even for the
case of a Carleman shift. For the case of a non-Carleman shift, the question remains
open (see [1], [9], [14], [15], and [16]).

We can also write the operator Tω defined by (3) in the form

Tω = (I− cUω)P+ +P−.

So the question of Fredholmness of the SIO with shift Tω leads to the question of
continuous invertibility of the operator I − cUω ; on the other hand, the invertibility of
the operator I − cUω is connected with the description of the resolvent set, and the
spectrum, of the operator cUω . We also can say that the essential spectrum of the
operator cUωP+ is related with the spectrum of the operator cUω .

We must say that, in general, in the case of a non-Carleman shift having a finite
set of fixed points {τ1,τ2, . . . ,τs} , s � 1, the shift α and the corresponding shift oper-
ator Uα considered in this paper, the necessary and sufficient conditions of invertibility
for the operator I − cUα , can not be expressed in an explicit form. A specificity of
the conditions is expressed by a particular choice of a, so-called, α -solutions of the
homogeneous functional equation associated with the operator I − cUα (see Sections
3.4.1–3.4.11, pp. 118–142, in [13], and the Remark 1.1 below). Let us recall some re-
lated key concepts. Let σ(g) , ρ(g) and ‖g‖2 , denote the spectrum, the spectral radius
and the spectral norm of a matrix g ∈ Cn×n , respectively. Recall that ρ(g)≡ max{|λ | :
λ is an eigenvalue of g} ; we also denote θ (g) ≡ min{|λ | : λ is an eigenvalue of g} .
Given a bounded linear operator A : Ln

p(T) → Ln
p(T) , σ(A) and ρ(A) , denote the

spectrum and the resolvent set of the operator A , respectively; σ(A)∪ρ(A) = C . By
σess(A) ⊂ σ(A) we denote the essential spectrum of A , i.e., the set of those λ ∈ C for
which A−λ I is not a Fredholm operator in Ln

p(T) .
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DEFINITION 1.1. A continuous matrix function d ∈ Cn×n(T) is called a matrix
of normal form on T if

d(t) =
(

d1(t) Om×k

Ok×m d2(t)

)
, (5)

where d1 ∈Cm×m(T) , d2 ∈Ck×k(T) , k+m = n , Or×s is a r× s zero matrix, and

σ [d1(τ j)] ⊂ T+, σ [d2(τ j)] ⊂ T−, j = 1,s, detd2(t) �= 0, ∀t ∈ T.

DEFINITION 1.2. A continuousmatrix function c∈Cn×n(T) is called α -reducible
to the normal on T if there exists a continuous non-singular matrix function b(t) such
that

b−1(t)c(t)b[α(t)] = d(t), (6)

where d(t) is a matrix of normal form on T .

The following invertibility criterion for the matrix operator I− cUα takes place in
the general case.

THEOREM 1.1. [13] The operator I − cUα is continuously invertible in Ln
p(T) ,

p ∈ (1,∞) , if and only if the matrix c(t) is α -reducible to the normal form on T .

LEMMA 1.1. [13] The block triangular matrix a ∈Cn×n(T) ,

a(t) =
(

d1(t) Om×k

f (t) d2(t)

)
, (7)

where d1 and d2 satisfy the conditions of Definition 1.1, and f ∈ Ck×m(T) , is α -
reducible to the normal on T .

REMARK 1.1. The α -reducibility of the matrix c(t) to the normal form, i.e., the
construction of the non-singular matrix b(t) in (6), is connected with the existence of
a certain class of solutions, the α -solutions, of the homogeneous functional equation
ϕ(t) = c(t)ϕ [α(t)] . It is clear apriori that the α -solutions don’t belong to the space
Ln

p(T) , otherwise the operator I− cUα would not be invertible in Ln
p(T) .

For convenience, we emphasize four cases of explicit sufficient conditions of in-
vertibility for the operator I− cUα :

Case 1. The matrix c satisfies the property σ [c(τ j)] ⊂ T+ , j = 1,s ;
Case 2. The matrix c satisfies the properties σ [c(τ j)]⊂ T− , j = 1,s , and detc(t)

�= 0 for all t ∈ T ;
Case 3. The matrix c is a block diagonal matrix of normal form (5).
Case 4. The matrix c is a block triangular matrix of the form (7).
We note that if n = 1, the scalar case, then the conditions of case 1 and case 2 are

not only sufficient but also necessary for the invertibility of the operator I − cUα ; i.e.,
the operator I− cUα is invertible on Lp(T) if and only if either

∣∣c(τ j)
∣∣ < 1, j = 1,s ,

or
∣∣c(τ j)

∣∣ > 1, j = 1,s , and c(t) �= 0 for all t ∈ T .
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In [16], on the Hilbert space Ln
2(T) , we obtained estimates for the defect number

dimkerTω for the operator Tω = I − cUωP+ , with matrix and scalar coefficient, sat-
isfying one of the two sets of Fredholmness conditions: the cases 1 (ω = ζ ,α ) and
2 (ω = η ,β ), above. In the present paper we revisited the mentioned work [16]; we
generalize some of the obtained results on the Lebesgue space Ln

p(T) , p∈ (1,∞) (Sec-
tions 2-6). Then we consider the operator cUβ in the matrix case (Section 7); in this
case we can only obtain subsets of the resolvent set of the operator cUβ . We also con-
sider the operator cUβ in the scalar case (Section 8); we write the resolvent set, and the
spectrum, of this operator. In both cases, matrix and scalar, we write estimates for the
dimension of the kernel of the operator I−λ−1cUβ P+ , where λ belongs to the resol-
vent set of the operator cUβ . We think we made a small progress on “the very difficult
question related to the solvability theory of the SIO of type (4) with a non-Carleman
shift” (G. S. Litvinchuk in [20], p. XVI).

2. A SIO with a general shift

In the Sections 2–6 we present some estimates for the dimension of the kernel of
the operator (3) on the Lebesgue space Ln

p(T) , p ∈ (1,∞) . We follow the work [16]
where this estimates were obtained on the Hilbert space Ln

2(T) .

2.1. Estimate one

We begin considering a general shift ζ : T → T , the associated isometric shift
operator Uζ , and the SIO with shift defined by (3) (with ω = ζ )

Tζ = I− cUζ P+. (8)

The following results take place.

THEOREM 2.1. [16] Let Tζ be the operator defined by (8) and

N = I−aUζ P+, (9)

M = I− rP+r−1P−N−1, (10)

where r ∈Cn×n(T) is an invertible matrix function satisfying the condition

P+r±1P+ = r±1P+, (11)

and a(t) = r(t)c(t)r−1[ζ (t)] .
If the operator N is invertible, then the following equality holds

dimkerTζ = dimkerM.

PROPOSITION 2.1. [16] Let M be the operator defined by (10) and r a (n× n)
polynomial matrix satisfying the condition (11); let

l1(r) =
n

∑
i=1

max
j=1,n

li, j, (12)
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where li, j is the degree of the element ri, j of the polynomial matrix r . Then the follow-
ing inequality holds

dimkerM � l1(r).

We can state the following result.

THEOREM 2.2. Let Tζ = I− cUζ P+ be the operator defined by (8) and r a poly-
nomial matrix satisfying the conditions (11) and

max
t∈T

∥∥r(t)c(t)r−1[ζ (t)]
∥∥

2 < sin
π
p
. (13)

Let Rc be the set of all such matrices r , l1(r) be the number defined by (12) for each
matrix r and

l(c) = min
r∈Rc

{l1(r)}. (14)

If the set Rc is not empty, then the following estimate holds

dimkerTζ � l(c).

Proof. We set a(t) = r(t)c(t)r−1[ζ (t)] ; with (13) we can show that the operator
defined by (9) is invertible. Indeed, since maxt∈T ‖a(t)‖2 < sin π

p ,
∥∥Uζ

∥∥
Lp

= 1 and

‖P+‖Lp
= sin−1 π

p (see Corollary 2.5, p. 385, in [5]), it follows that N = I−aUζ P+ is
an invertible operator whose inverse is given by the Neumann series

N−1 = I +aUζ P+ +(aUζ P+)2 + · · · .

Taking into account Theorem 2.1 and Proposition 2.1, the result follows. �

2.2. Estimate two

Consider now a shift η such that the corresponding shift operator Uη satisfies the
additional property

UηS = SUη ;

and the SIO with shift (3) (with ω = η )

Tη = I− cUηP+. (15)

Moreover we suppose that the matrix function c ∈Cn×n(T) has the property

detc(t) �= 0, ∀t ∈ T. (16)

Under condition (16) the continuous matrix function c admits the factorization (1). It
is assumed that (2) is satisfied.

We continue with the following result.
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THEOREM 2.3. [16] Let Tη be the operator defined by (15), where c ∈Cn×n(T)
satisfies the conditions (16), (1) and (2); then the following estimate holds

dimkerTη � dimker(I− c̃U−1
η P+)+ ∑

κ j<0

∣∣κ j
∣∣ , (17)

where c̃ = c+c−1c−1
+ (η−1) .

Now, supposing that the operator I− c̃U−1
η P+ is under the conditions of Theorem

2.2, we can state the following result.

THEOREM 2.4. Let Tη = I − cUηP+ be the operator defined by (15), where c ∈
Cn×n(T) satisfies the conditions (16), (1) and (2); and r a polynomial matrix satisfying
the conditions (11) and

max
t∈T

∥∥r(t)c̃(t)r−1[η(t)]
∥∥

2 < sin
π
p
,

where c̃ = c+c−1c−1
+ (η−1) . Let Rc̃ be the set of all such matrices r and l(c̃) the

number defined by (14) for the matrix c̃ .
If the set Rc̃ is not empty, then the following estimate holds

dimkerTη � l(c̃)+ ∑
κ j<0

∣∣κ j
∣∣ ,

where κ j ∈ Z , j = 1,n are the partial indices of the matrix c.

Proof. Since the operators Uη and U−1
η verify similar properties, the operator

I− c̃U−1
η P+ satisfies all the conditions of Theorem 2.2; thus

dimker(I− c̃U−1
η P+) � l(c̃).

With (17) the result follows. �

3. A SIO with a non-Carleman shift

The estimate of the dimension of the kernel of the operator Tω , ω = ζ ,η ,α,β , is
related with the construction of the polynomial matrix r (see Theorems 2.2 and 2.4);
below we perform this task, in the case of a non-Carleman shift, ω = α,β , under
certain conditions for the operator Tω : subcases of the cases 1 and 2 mentioned in the
Introduction. Indeed, then we show that the sets Rc , and Rc̃ , introduced in Theorem
2.2, and Theorem 2.4, are not empty under those conditions.
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3.1. Case 1

Let us consider the SIO with shift defined by (3) (with ω = α )

Tα = I− cUαP+, (18)

with a non-Carleman shift α : T→T , which has a finite set of fixed points {τ1,τ2, . . . ,τs} ,
s � 1; Uα is the associated isometric shift operator.

The following results take place.

PROPOSITION 3.1. For every continuous matrix function d ∈Cn×n(T) such that

σ [d(τ j)] ⊂ D+, j = 1,s, (19)

there exists a polynomial matrix r satisfying the conditions

max
t∈T

∥∥r(t)d(t)r−1[α(t)]
∥∥

2 < sin
π
p

(20)

and
P+r±1P+ = r±1P+. (21)

Proof. We consider only the case when maxt∈T ‖d(t)‖2 > sin π
p , because other-

wise we have simply r = En (En is the unit n×n matrix).
Let

ρ j ≡ ρ [d(τ j)], j = 1,s.

Under condition (19) naturally we have that

ρ j < sin
π
p
, j = 1,s.

Then, for each matrix d(τ j) ∈ Cn×n satisfying the condition (19), there exists a non-
singular matrix Bj ∈ Cn×n such that (see, for instance, p. 316 in [6])∥∥∥Bjd(τ j)B−1

j

∥∥∥
2
< sin

π
p
, j = 1,s.

Now let B be the non-singular polynomial matrix, without zeros on the closure of T+ ,
defined by (see, for instance, Sections 0.9.11 in [6] and 6.1 in [7])

B(t) = B1L1(t)+B2L2(t)+ · · ·+BsLs(t),

where

Lj(t) =

s

∏
i=1
i�= j

(t− τi)

s

∏
i=1
i�= j

(τ j − τi)
, j = 1,s,
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are the Lagrange interpolating polynomials.
Then we define the continuous matrix function

b(t) = B(t)d(t)B−1[α(t)].

We represent the function b(t) in the form

b(t) = u(t)v(t),

where
u(t) ∈Cn×n(T), max

t∈T

‖u(t)‖2 = γ < sin
π
p
,

and v(t) is a continuous real valued function on T such that

v(t) � δ > 0, t ∈ T,

v(τ j) < 1, j = 1,s.

Compare with (34)–(36), p. 207, in [16]; from here, doing exactly as in [16], pp. 207–
208, in a similar way we obtain the inequality (20). �

THEOREM 3.1. Let Tα = I− cUαP+ be the operator defined by (18), where c ∈
Cn×n(T) satisfies the condition (19). Then the following estimate holds

dimkerTα � l(c),

where l(c) is the number defined by (14) for the matrix c.

Proof. According to Proposition 3.1, there exists a polynomial matrix r such that
the conditions (20) and (21) are verified for the matrix c . Taking into account Theorem
2.2, the result follows. �

3.2. Case 2

Now we consider a linear fractional non-Carleman shift preserving the orientation
on T

β (t) =
at +b

bt +a
, t ∈ T,

where a,b∈ C are such that |a|2−|b|2 = 1. This shift has two fixed points, τ1 and τ2 ,
given by the formula

τ1,2 =
a−a±

√
(a+a)2−4

2b
.

Obviously τ1 �= τ2 if |Rea| �= 1
The shift β (t) admits the factorization

β (t) = β+(t)tβ−(t),
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where

β+(t) =
1

bt +a
, β−(t) =

at +b
t

.

We see that the functions β±,β−1
± are analytic in T± and continuous in the closure of

T± , respectively.
For the linear fractional shift β (t) , it is convenient to consider the isometric shift

operator
(Uβ ϕ)(t) = β+(t)ϕ [β (t)], (22)

because Uβ satisfies the additional property

Uβ S = SUβ .

Then we consider the operator (3) (with ω = β )

Tβ = I− cUβP+, (23)

where we suppose now that c ∈Cn×n(T) has the properties

σ [c(τ j)] ⊂ D−, j = 1,2, (24)

detc(t) �= 0, ∀t ∈ T.

The non-singular continuous matrix function c admits the factorization (1) and (2) is
assumed. Then we apply Theorem 2.3 to the operator (23); this implies the estimate

dimkerTβ � dimker(I− c̃U−1
β P+)+ ∑

κ j<0

∣∣κ j
∣∣ , (25)

where c̃ = c+c−1c−1
+ (β−1) .

Now we analyze the operator I− c̃U−1
β P+ .

We note that the matrices c̃(t) and c−1(t) are similar at the fixed points of the
shift; indeed at τ j , j = 1,2,

c̃ = c+c−1c−1
+ .

We have that σ [c(τ j)] ⊂ D− ; then

σ [c−1(τ j)] = σ [c̃(τ j)] ⊂ D+, j = 1,2.

Therefore the operator I− c̃U−1
β P+ satisfies all the conditions of Theorem 3.1; thus

dimker(I− c̃U−1
β P+) � l(c̃).

Finally, with (25) we get the following estimate.

THEOREM 3.2. Let Tβ = I − cUβP+ be the operator defined by (23), where c ∈
Cn×n(T) satisfies the conditions (24), (16), (1)) and (2). Then the following estimate
holds

dimkerTβ � l(c̃)+ ∑
κ j<0

∣∣κ j
∣∣ ,

where l(c̃) is the number defined by (14) for the matrix c̃ = c+c−1c−1
+ (β−1) and κ j ∈

Z , j = 1,n are the partial indices of the matrix c.
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4. On the scalar case

4.1. The case of a general shift

Let us formulate the obtained results for the operator (8) in the scalar case:

Tζ = I− cUζ P+ : Lp(T) → Lp(T). (26)

COROLLARY 4.1. Let Tζ be the operator defined by (26); if there exists a poly-
nomial r of degree m, with zeros in T− ,

r(t) =
m

∏
k=1

(t −λk), |λk| > 1, k = 1,m,

such that ∣∣r(t)c(t)r−1[ζ (t)]
∣∣ < sin

π
p
, ∀t ∈ T, (27)

then
dimkerTζ � m.

Proof. Follows from Theorem 2.2 with n = 1. �
Now we consider the operator (15) in the scalar case:

Tη = I− cUηP+ : Lp(T) → Lp(T), (28)

where c ∈C(T) has the property

c(t) �= 0, ∀t ∈ T. (29)

The continuous function c admits the factorization (1) and (2) is assumed; in this case

c = c−tκc+, (30)

where

c− ∈ L−
p (T), c−1

− ∈ L−
q (T), c+ ∈ L+

q (T), c−1
+ ∈ L+

p (T), κ = indc,

and it is assumed that
c±1
± ∈C(T). (31)

Suppose that a polynomial r , satisfying the condition (27) for the function c and the
shift η , does not exist, but there exists such one that (27) holds for the function c̃ =
c+c−1c−1

+ (η−1) . In this case we can state the following result.

COROLLARY 4.2. Let Tη be the operator defined by (28). Then the following
estimate holds

dimkerTη � m+max(0,− indc),

where m is the degree of the polynomial r defined in Corollary 4.1 for the function
c̃ = c+c−1c−1

+ (η−1) and indc is the Cauchy index of the function c.

Proof. Follows from Theorem 2.4 with n = 1. �
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4.2. The case of a non-Carleman shift

Consider the operator (18) on Lp(T) , with c ∈C(T) ,

Tα = I− cUαP+. (32)

COROLLARY 4.3. For every continuous function c ∈C(T) such that

∣∣c(τ j)
∣∣ < sin

π
p
, j = 1,s,

there exists a polynomial r of degree m, with zeros in T− ,

r(t) =
m

∏
k=1

(t −λk), |λk| > 1, k = 1,m,

such that ∣∣r(t)c(t)r−1[α(t)]
∣∣ < sin

π
p
, ∀t ∈ T.

Moreover

dimkerTα � m,

where Tα is the operator defined by (32).

Proof. Follows from Theorem 3.1 with n = 1. �

Now consider the operator (23) on Lp(T) ,

Tβ = I− cUβP+, (33)

where c ∈C(T) satisfies the properties (29), (30), (31) and

∣∣c(τ j)
∣∣ > sin−1 π

p
, j = 1,2.

COROLLARY 4.4. Let Tβ be the operator defined by (33). Then the following
estimate holds

dimkerTβ � m+max(0,− indc),

where m is the degree of the polynomial r defined in Corollary 4.3 for the function
c̃ = c+c−1c−1

+ (β−1) and indc is the Cauchy index of the function c.

Proof. Follows from Theorem 3.2 with n = 1. �
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5. A SIO with polynomial coefficient relative to the shift operator

Now let us consider the SIO with shift of the form

Kω = AωP+ +P− : Lp(T) → Lp(T), (34)

where

Aω = I +
n

∑
i=1

aiU
i
ω ,

ai ∈ C(T) , i = 1,n , and Uω , ω = η ,β , is the shift operator satisfying the property
UωS = SUω .

Consider also the matrix operator (see [15], [16], [13], and [18])

K̃ω = ÃωP+ +P− : Ln
p(T) → Ln

p(T), (35)

with
Ãω = I +aUω,

where

a =
(

a1 a2 · · · an−1 an

−En−1 O(n−1)×1

)
.

The following result holds

PROPOSITION 5.1. [16] Let Kω and K̃ω be the operators defined by (34) and
(35), respectively. The operator Kω is a Fredholm operator on Lp(T) if and only if the
operator K̃ω is a Fredholm operator on Ln

p(T) . In the affirmative case, dimkerKω =
dimker K̃ω and dimcokerKω = dimcokerK̃ω .

Obviously the operator K̃ω is a particular case of the operator Tω defined by (15)
(with ω = η ) or the operator defined by (23) (with ω = β ). Then, taking into account
Proposition 5.1, Theorems 2.2, 2.4, 3.1 and 3.2, can be used to study the operator Kω .

6. A SIO with a block triangular matrix coefficient

The results obtained for the matrix cases 1 and 2 (Theorems 3.1 and 3.2, respec-
tively) can be applied to treat the cases 3 and 4 (see Introduction). Let us consider the
SIO with non-Carleman shift Tβ = I − cUβP+ , where c is a block diagonal matrix of
normal form (5)

c(t) =
(

c1(t) Om×k

Ok×m c2(t)

)
;

the operator Tβ can be written in the matrix form

Tβ =
(

T1 Om×k

Ok×m T2

)
: Ln

p(T) → Ln
p(T),
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where
T1 = I− c1Uβ P+ : Lm

p (T) → Lm
p (T),

T2 = I− c2Uβ P+ : Lk
p(T) → Lk

p(T).

Then we have
dimkerTβ = dimkerT1 +dimkerT2. (36)

Consider now the operator Tβ = I− cUβP+ , where c is a block triangular matrix
of the form (7)

c(t) =
(

c1(t) Om×k

f (t) c2(t)

)
; (37)

in this case the operator Tβ can be written in the matrix form

Tβ =
(

T1 Om×k

F T2

)
: Ln

p(T) → Ln
p(T),

where T1 and T2 are defined above, and

F = − fUβ P+ : Lm
p (T) → Lk

p(T).

It is not difficult to see that in this case we obtain the inequality 2.

dimkerTβ � dimkerT1 +dimkerT2. (38)

Now, considering the matrix blocks c1 and c2 satisfying the properties

σ [c1(τ j)] ⊂ D+, σ [c2(τ j)] ⊂ D−, j = 1,2, detc2(t) �= 0, ∀t ∈ T;

we note that:
a) The operator T1 satisfies all the conditions of Theorem 3.1. Let l(c1) be the

number defined by (14) for the matrix c1 ; then

dimkerT1 � l(c1).

b) The operator T2 satisfies all the conditions of Theorem 3.2. Let the matrix c2

satisfy the properties (1) and (2); let l(c̃2) be the number defined by (14) for the matrix
c̃2 = c+c−1c−1

+ (β−1) , and κ j ∈Z , j = 1,n be the partial indices of the matrix c2 . Then

dimkerT2 � l(c̃2)+ ∑
κ j<0

∣∣κ j
∣∣ .

Taking into account (36) and (38) we can state the following estimate for the matrix
cases 3 and 4.

PROPOSITION 6.1. Let Tβ = I− cUβP+ be the operator defined by (23), where c
is the block triangular matrix defined by (37). Then the following estimate holds

dimkerTβ � l(c1)+ l(c̃2)+ ∑
κ j<0

∣∣κ j
∣∣ .

2The equality in (38) can happen when the equation T2φ = −Fϕi is solved for all ϕi , with ϕi ∈ kerT1 ,
i = 1,2, . . . ,dimkerT1 ; or in particular cases, including when f = 0 (the case 3).
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7. On the resolvent set of the operator cU and the dimension of the kernel of a
SIO with shift – the matrix case

Let us consider on Ln
p(T) , p ∈ (1,∞) , the operators cU and cU − λ I , where

c ∈ Cn×n(T) is a continuous matrix function, U is the shift operator defined by (22)
(i.e., U := Uβ ), and λ ∈ C . Consider λ = 0; the operator cU −λ I is invertible if and
only if detc(t) �= 0 for all t ∈ T . Let λ �= 0; the operator cU −λ I or, equivalently, the
operator I−λ−1cU is invertible if and only if λ−1c is α -reducible to the normal form
on T , according to Theorem 1.1. Then, if detc(t) �= 0 for all t ∈ T , the resolvent set
and the spectrum of the operator cU are, respectively,

ρ(cU) = {λ = 0 ∨ λ ∈ C\ {0} : λ−1c is α-reducible to the normal form on T},

σ(cU) = C\ρ(cU).

Moreover, the essential spectrum of the operator cUP+ is given by (see Introduction)

σess(cUP+) = σ(cU).

If detc(t) = 0 for some t ∈ T , the resolvent set and the spectrum of the operator cU
are, respectively,

ρ(cU) = {λ ∈ C\ {0} : λ−1c is α-reducible to the normal form on T},

σ(cU) = C\ρ(cU);

and
σess(cUP+) = σ(cU).

We can obtain concrete subsets of the resolvent set of the operator cU , taking into
account the four cases of explicit sufficient conditions of invertibility for the operator
I− cU mentioned in the Introduction.

Let λ �= 0; the operator I −λ−1cU is invertible if one of the two following con-
ditions is fulfilled

a) σ [λ−1c(τ j)] ⊂ T+ , j = 1,2;
b) σ [λ−1c(τ j)] ⊂ T− , j = 1,2, and det[λ−1c(t)] �= 0 for all t ∈ T .
Let

μ = max
j=1,2

ρ [c(τ j)], ν = min
j=1,2

θ [c(τ j)].

The condition a) implies that |λ | > μ , and the condition b) implies that 0 < |λ | < ν .
Then, if detc(t) �= 0 for all t ∈ T the following set belongs to the resolvent set of

the operator cU ,
{λ ∈ C : |λ | < ν ∨ |λ | > μ} ⊂ ρ(cU). (39)

If detc(t) = 0 for some t ∈ T the following set belongs to the resolvent set of the
operator cU ,

{λ ∈ C : |λ | > μ} ⊂ ρ(cU).
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Now we consider the SIO with shift on Ln
p(T) , p ∈ (1,∞) , defined by

Tλ = I−λ−1cUP+. (40)

and the subsets of the set (39)

A =
{

λ ∈ C : |λ | > μ sin−1 π
p

}
,

B =
{

λ ∈ C : 0 < |λ | < ν sin
π
p

}
.

The following results take place

PROPOSITION 7.1. Let λ ∈ A; then there exists a polynomial matrix r satisfying
the conditions

max
t∈T

∥∥r(t)λ−1c(t)r−1[β (t)]
∥∥

2 < sin
π
p

and
P+r±1P+ = r±1P+.

Moreover
dimkerTλ � l(λ−1c), (41)

where Tλ is the operator defined by (40), and l(λ−1c) is the number defined by (14)
for the matrix λ−1c.

Proof. It is easy to see that ρ [λ−1c(τ j)] < sin π
p , i.e., σ [λ−1c(τ j)]⊂D+, j = 1,2;

this means that the operator Tλ satisfies all the conditions of Theorem 3.1 and it follows
the result. �

PROPOSITION 7.2. Let λ ∈ B; let Tλ be the operator defined by (40), where the
matrix function c ∈Cn×n(T) satisfies the properties

detc(t) �= 0, ∀t ∈ T,

(1), and (2). Then the following estimate holds

dimkerTλ � l(λ c̃)+ ∑
κ j<0

∣∣κ j
∣∣ , (42)

where l(λ c̃) is the number defined by (14) for the matrix λ c̃ , c̃ = c+c−1c−1
+ (β−1) , and

κ j ∈ Z , j = 1,n are the partial indices of the matrix c.

Proof. We have that ρ [λ−1c(τ j)] > sin−1 π
p , i.e., σ [λ−1c(τ j)] ⊂ D− , j = 1,2;

and the matrix λ−1c admits the factorization λ−1c = λ−1c−Λc+ . Evidently the partial
indices of the matrices λ−1c and c are the same. We conclude that the operator Tλ
satisfies all the conditions of Theorem 3.2 and the result follows. �
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Now let
ξ = max

t∈T

‖c(t)‖2 ,

and the subset of the set A

E =
{

λ ∈ C : |λ | > ξ sin−1 π
p

}
.

The following result takes place

PROPOSITION 7.3. Let λ ∈ E; then

dimkerTλ = 0,

and the operator Tλ defined by (40) is invertible.

Proof. Since maxt∈T

∥∥λ−1c(t)
∥∥

2 < sin π
p , ‖U‖Lp

= 1, and ‖P+‖Lp
= sin−1 π

p , it

follows that Tλ = I−λ−1cUP+ is an invertible operator whose inverse is given by the
Neumann series

T−1
λ = I +

c
λ

UP+ +
( c

λ
UP+

)2
+ · · · . �

The operator I −λ−1cU is also invertible if the matrix c is the block triangular
matrix

c(t) =
(

c1(t) Om×k

f (t) c2(t)

)
, (43)

where c1 ∈Cm×m(T) , c2 ∈Ck×k(T) , f ∈Ck×m(T) , k+m = n , and

σ [λ−1c1(τ j)] ⊂ T+, σ [λ−1c2(τ j)] ⊂ T−, j = 1,2, det[λ−1c2(t)] �= 0, ∀t ∈ T.

Let
μ1 = max

j=1,2
ρ [c1(τ j)], ν2 = min

j=1,2
θ [c2(τ j)].

We have that μ1 < |λ | ∧ 0 < |λ | < ν2 .
Suppose that μ1 < ν2

3; then, the following set also belongs to the resolvent set of
the operator cU ,

{λ ∈ C : μ1 < |λ | < ν2} ⊂ ρ(cU). (44)

REMARK 7.1. In general, the subsets, (39) and (44), of the resolvent set of the
operator cU are not disjoint.

Let us consider now the SIO with shift defined by (40)

Tλ = I−λ−1cUP+, (45)

where c is the block triangular matrix defined by (43) and the matrix c2 satisfies the
properties (1) and (2); and the subset of the set (44)

F =
{

λ ∈ C : μ1 sin−1 π
p

< |λ | < ν2 sin
π
p

}
.

The following result takes place.
3Suppose that μ1 > ν2 ; in this case, μ1 < |λ |∧0 < |λ | < ν2 , defines an empty set.
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PROPOSITION 7.4. Let λ ∈ F and Tλ be the operator defined by (45). Then the
following estimate holds

dimkerTλ � l(λ−1c1)+ l(λ c̃2)+ ∑
κ j<0

∣∣κ j
∣∣ , (46)

where l(λ−1c1) and l(λ c̃2) are the numbers defined by (14) for the matrices λ−1c1

and λ c̃2 , respectively, c̃2 = c+c−1c−1
+ (β−1) , and κ j ∈ Z , j = 1,n are the partial

indices of the matrix c2 .

Proof. The operator Tλ can be written in the matrix form

Tλ =
(

Tλ ,1 Om×k

F Tλ ,2

)
: Ln

p(T) → Ln
p(T),

where
Tλ ,1 = I−λ−1c1UP+ : Lm

p (T) → Lm
p (T),

Tλ ,2 = I−λ−1c2UP+ : Lk
p(T) → Lk

p(T),

F = −λ−1 fUP+ : Lm
p (T) → Lk

p(T).

The operator Tλ ,1 satisfies all the conditions of Proposition 7.1 and the operator Tλ ,2
satisfies all the conditions of Proposition 7.2. Taking into account Proposition 6.1, the
result follows. �

REMARK 7.2. Since the subsets (39) and (44) of ρ(cU) , and the sets A (or B)
and F , are not disjoint in general, we can have two estimates, (41) and (46), or (42) and
(46), holding for the same concrete operator Tλ defined by (45).

8. On the resolvent set of the operator cU and the dimension of the kernel of a
SIO with shift – the scalar case

Now let us consider on Lp(T) , p ∈ (1,∞) , the operators cU and cU −λ I , where
c ∈C(T) is a continuous function, U is the shift operator defined by (22), and λ ∈ C .
Consider λ = 0; the operator cU−λ I is invertible if and only if c(t) �= 0 for all t ∈ T .
Let λ �= 0; the operator cU −λ I or, equivalently, the operator I−λ−1cU is invertible
if and only if if one of the two following conditions is fulfilled

a)
∣∣λ−1c(τ j)

∣∣ < 1, j = 1,2;
b)

∣∣λ−1c(τ j)
∣∣ > 1, j = 1,2, and λ−1c(t) �= 0 for all t ∈ T .

Let
γ = max

j=1,2

∣∣c(τ j)
∣∣ , δ = min

j=1,2

∣∣c(τ j)
∣∣ .

The condition a) implies that |λ | > γ , and the condition b) implies that 0 < |λ | < δ .
Then, if c(t) �= 0 for all t ∈ T , the resolvent set and the spectrum of the operator

cU are, respectively,

ρ(cU) = {λ ∈ C : |λ | < δ ∨ |λ | > γ},
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σ(cU) = {λ ∈ C : δ � |λ | � γ}.
The essential spectrum of the operator cUP+ is given by

σess(cUP+) = σ(cU).

If c(t) = 0 for some t ∈ T , the resolvent set and the spectrum of the operator cU are,
respectively,

ρ(cU) = {λ ∈ C : |λ | > γ},
σ(cU) = {λ ∈ C : |λ | � γ};

and
σess(cUP+) = σ(cU).

Now we consider the SIO with shift on Lp(T) , p ∈ (1,∞) , defined by

Tλ = I−λ−1cUP+, (47)

and the subsets of ρ(cU)

G =
{

λ ∈ C : |λ | > γ sin−1 π
p

}
,

H =
{

λ ∈ C : 0 < |λ | < δ sin
π
p

}
.

The following results take place

PROPOSITION 8.1. Let λ ∈ G ; then there exists a polynomial r of degree m,
with zeros in T− ,

r(t) =
m

∏
k=1

(t −λk), |λk| > 1, k = 1,m,

such that ∣∣r(t)λ−1c(t)r−1[β (t)]
∣∣ < sin

π
p
, ∀t ∈ T. (48)

Moreover
dimkerTλ � m,

where Tλ is the operator defined by (47).

Proof. We have that
∣∣λ−1c(τ j)

∣∣ < sin π
p , j = 1,2; then the operator Tλ satisfies

all the conditions of Corollary 4.3 and it follows the result. �

PROPOSITION 8.2. Let λ ∈ H ; let Tλ be the operator defined by (47), where the
function c ∈C(T) satisfies the properties

c(t) �= 0, ∀t ∈ T,
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(30), and (31). Then the following estimate holds

dimkerTλ � m+max(0,− indc),

where m is the degree of the polynomial r defined in Corollary 4.3 considering the
function λc+c−1c−1

+ (β−1) instead of λ−1c in (48), and indc is the Cauchy index of
the function c.

Proof. We have that
∣∣λ−1c(τ j)

∣∣ > sin−1 π
p , j = 1,2; and the function λ−1c ad-

mits the factorization λ−1c = λ−1c−tκc+ , with κ = indc . We conclude that the oper-
ator Tλ satisfies all the conditions of Corollary 4.4 and the result follows. �

Let
ε = max

t∈T

|c(t)| ,

and the subset of the set G

L =
{

λ ∈ C : |λ | > ε sin−1 π
p

}
.

The following result takes place

PROPOSITION 8.3. Let λ ∈ L; then

dimkerTλ = 0,

and the operator Tλ defined by (47) is invertible.

Proof. Since maxt∈T

∣∣λ−1c(t)
∣∣ < sin π

p , ‖U‖Lp
= 1, and ‖P+‖Lp

= sin−1 π
p , anal-

ogously to the matrix case, it follows that Tλ = I−λ−1cUP+ is an invertible operator
whose inverse is given by the Neumann series

T−1
λ = I +

c
λ

UP+ +
( c

λ
UP+

)2
+ · · · . �
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