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Abstract. In this paper, based on the notion of diameter, we consider a natural preorder on c0(I)
which is said “diametric majorization”. Then by using this notion we define a norm on c0(I),
where I is assumed to be an infinite set. This norm is equivalent to ‖ ·‖∞ and is said “d-norm”.
Finally, the structures of all bounded linear operators on c0(I) preserving diametric majorization
and also isometries under the d-norm are both determined. We also give the relation between this
isometries and isometries under the usual norm.

1. Introduction and preliminaries

Recently, many authors have discussed some various properties and structures of
isometries on Banach spaces [5, 8]. For the collections of results in the topics of isome-
tries we refer the reader to the monographs [3, 4].

In the following we point out to some important preliminaries.

DEFINITION 1.1. Let I be an infinite set (equipped with the discrete topology).
The point x0 ∈ R is called the limit of f : I → R and is denoted by lim

i∈I
f (i) = x0 (or

more briefly lim f = x0 ) if for each neighborhood V of x0 there exists a finite set F ⊆ I
such that f (i) ∈V, for all i ∈ I \F.

It is easily verified that if lim f = x0, then the set {i ∈ I; f (i) �= x0} is at most a
countable set. We will use the notation c0(I) for the set of all function f : I → R with
lim f = 0. It is easily verified that every f ∈ c0(I) is bounded and c0(I) is a Banach
space with the norm defined by ‖ f‖∞ = sup

i∈I
| f (i)|. Each f ∈ c0(I) can be represented

by ∑
i∈I

f (i)ei, where ei : I → R is defined as ei( j) = δi j, the Kronecker delta.

For a subset C of a metric space (X ,d) the diameter of C is denoted by diam(C)
and is defined as

diam(C) := sup{d(x,y);x,y ∈ X}.
For a function f : I → R, to simplify notations, we use diam( f ), inf( f ), and

sup( f ), instead of diam(Im( f )), inf
i∈I

{ f (i)} and sup
i∈I

{ f (i)}, respectively. Also, the no-

tation co( f ) will be used for the convex combination of the set Im( f ) := { f (i); i ∈ I} .
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The idea of majorization is defined in various forms and on different spaces of
finite and infinite dimension, such as R

n,Mm×n(R), �p(I), �1(I)+, �∞,c0,c and etc. See
for examples [1, 2, 6, 7, 9]. In this paper, on the basis of the notion of diam( f ) , we
define a relation on c0(I) , that is said to be the diametric majorization. Moreover, we
define a norm on c0(I) , where I is assumed to be an infinite set, that is equivalent to ‖ ·
‖∞ and discuss on the properties and characterization of all isometries under this norm.
All bounded linear operators T : c0(I) → c0(I) which preserve diametric majorization,
and their relations between this isometries are also determined.

2. Main results

Diametric majorization defines a relation on c0(I) that compares the distance oc-
curred between the values of inf( f ) and sup( f ). More precisely,

DEFINITION 2.1. For f ,g ∈ c0(I) we say that f is diametrically majorized by g
and is denoted by f ≺d g , whenever diam( f ) � diam(g).

The comparison under the relation diametric majorization for any arbitrary two
elements is possible, i.e., for f ,g ∈ c0(I) we have either f ≺d g or g ≺d f .

DEFINITION 2.2. For f ∈ c0(I) define ‖ f‖d := diam( f ) and it is called the d-
norm.

It is easily verified that the d-norm is a norm on c0(I) , if and only if I is an infinite
set. Moreover, since ‖ · ‖∞ � ‖ · ‖d � 2‖ · ‖∞ , this norm is a complete norm and is
equivalent to the infinity norm. Also, notice that ‖ f‖d is equal to the length of (the
interval) co( f ), that is sup( f )− inf( f ).

A bounded linear operator T : c0(I) → c0(I) is called a diametric majorization
preserver if f ≺d g implies T f ≺d Tg , for all f ∈ c0(I). The set of all such operators
is denoted by Pd . Also, T is said to be a diameter preserving isometry or (for short)
d-isometry if T is an isometry, when c0(I) is equipped with the d-norm. The set of all
d-isometries on c0(I) is denoted by Id .

The next theorem gives the relation between Id and Pd .

THEOREM 2.3. The following statements are equivalent for a bounded linear op-
erator T : c0(I) → c0(I).

(i) T preserves diametric majorization.

(ii) T is a scalar multiple of a d-isometry.

Proof. (i)⇒(ii). Suppose that T ∈Pd . For each f ,g∈ c0(I) with ‖ f‖d = ‖g‖d �=
0, we have ‖T f‖d = ‖Tg‖d . Hence ‖T f

‖ f‖d
‖d = ‖T g

‖g‖d
‖d . Thus the value c :=

‖T f
‖ f‖d

‖d is constant, independent of chosen f ∈ c0(I)(with ‖ f‖d �= 0). Now let
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f ∈ c0(I). If ‖ f‖d = 0, then f ≺d 0, which implies T f ≺d 0. Therefore, ‖T f‖d = 0.
So, we have obviously

‖T f‖d = c‖ f‖d . (1)

Now if ‖ f‖d �= 0, then

‖T f‖d = ‖ f‖d · ‖T f
‖ f‖d

‖d = c‖ f‖d . (2)

The conclusion follows by using (1), (2), and considering two cases: c = 0 and c �= 0.
(ii)⇒(i). It is evident. �
Theorem 2.3 formulates that the structure of the elements in Pd on c0(I) is di-

rectly related to the structure of d-isometries. For this reason we shall focus on d-
isometries on c0(I).

LEMMA 2.4. Let T ∈ Id and i0 ∈ I. Then

−1 � ∑
j∈I−

Te j(i0) � 0 � ∑
j∈I+

Te j(i0) � 1,

where I− := { j ∈ I;Te j(i0) < 0} and I+ := { j ∈ I;Te j(i0) > 0}.

Proof. To prove 0 � ∑ j∈I+ Te j(i0) � 1, it is sufficient to show that for each finite
subset F ⊆ I+, we have 0 � ∑ j∈F Te j(i0) � 1. So, we assume that F ⊆ I+. Take
f := ∑ j∈F e j. Since ‖ f‖d = 1 and T ∈Id then ‖T f‖d = 1. Also we have T f (i0) � 0,
because Te j(i0) � 0 for all j ∈ I+. Now if T f (i0) > 1, then by using the fact that 0
is a limit point of Im( f ) , we have 1 = ‖T f‖d = sup(T f )− inf(T f ) � T f (i0)− 0 =
T f (i0) > 1, which leads to a contradiction. So, T f (i0) ∈ [0,1]. A similar arguments
shows −1 � ∑ j∈I− Te j(i0) � 0. �

The next result concerns the limits of
(
infTe j

)
j∈I and

(
supTe j

)
j∈I .

LEMMA 2.5. Let T ∈ Id , j0 ∈ I , and λ := supTe j0 . Then

λ = lim
j∈I

λ j, and λ −1 = lim
j∈I

η j,

where λ j := supTe j, and η j := infTe j.

Proof. Because ‖Te j0‖d = 1, it follows that λ ∈ [0,1]. By replacing −T by T
(if necessary), we may assume that 0 < λ � 1. Since λ = supTe j0 > 0, we have λ =
maxTe j0 . So, there exists i1 ∈ I with Te j0(i1) = λ . Now let 0 < ε < λ is arbitrary.
Then infTe j0 = λ −1 and therefore there is i2 ∈ I such that

Te j0(i2) ∈ [λ −1,λ −1+ ε).

Assume that ε0 := min{ε,1− ε}. Since limi∈I Te j0(i) = 0, there exists a finite subset
F ⊆ I such that

∀i ∈ I \F, |Te j0(i)| <
ε0

2
.
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It is easy to see that i1 ∈ F. Moreover, without loss of generality, we may assume that
i1 ∈ F.

Since F is a finite set, there is a finite set G ⊆ I such that

∀ j ∈ I \G, ∀i ∈ F |Te j(i)| < ε0

2
.

Therefore, we have

λ −1− ε0

2
� Te j0(i2)+Te j(i2) � (λ −1+ ε)+

ε0

2

� λ − ε0

2
� Te j0(i1)+Te j(i1) � λ +

ε0

2
+ ε.

Let j ∈ I \G be a fixed element. According to the previous relations, if there exists
i ∈ I such that

Te j0(i)+Te j(i) > λ +
ε0

2
+ ε,

or
Te j0(i)+Te j(i) < λ −1− ε0

2
,

then we have 1 = ‖Te j0 +Te j‖d > 1. This contradiction implies that for all i ∈ I

λ −1− ε0

2
� Te j0(i)+Te j(i) � λ +

ε0

2
+ ε,

or
λ −1− ε0

2
−Te j0(i) � Te j(i) � λ +

ε0

2
+ ε −Te j0(i).

So, if i ∈ I \F, then

λ −1− ε � λ −1− ε0 � Te j(i) � λ + ε0 + ε � λ +2ε, (3)

and if i ∈ F, then
−ε
2

� Te j(i) � ε
2
. (4)

By using (3) and (4) we have

λ −1− ε � min
{

λ −1− ε,
−ε
2

}
� infTe j � supTe j � max

{
λ +2ε,

ε
2

}
� λ +2ε.

If supTe j < λ − ε, then supTe j − infTe j < 1, which contradicts because supTe j −
infTe j = 1. Therefore,

λ − ε � λ j = supTe j � λ +2ε.

A similar argument shows

λ −1− ε � η j = infTe j � λ −1+2ε.

Thus, we proved that

∀ 0 < ε < λ , ∃G ⊆ I(finite set) s.t. ∀ j ∈ I \G |λ j −λ | � 2ε , |η j − (λ −1)| � 2ε,

i.e. λ = lim
j∈I

λ j and λ −1 = lim
j∈I

η j. �
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REMARK 2.6. Let T ∈Id . Then the value of infTe j is independent of j because
according to the previous lemma

supTe j1 = lim
j∈I

(
supTe j

)
= supTe j2 ,

holds for each j1, j2 ∈ I. A similar argument also holds for infTe j.

THEOREM 2.7. Suppose that T ∈Id . Then one of the following conditions hold.

(i) For each j ∈ I , infTe j = −1 and supTe j = 0; or

(ii) For each j ∈ I , infTe j = 0 and supTe j = 1.

Proof. By the previous remark the value of λ := supTe j is constant. It is clear
that λ ∈ [0,1]. To show that λ = 0 or λ = 1, suppose on the contrary λ ∈ (0,1). Since
infTe j = λ −1 < 0 < λ = supTe j, we conclude that λ −1 = minTe j = Te j0(i1) and
λ = maxTe j = Te j0(i2), for some i1, i2 ∈ I. Now for each 0 < ε < min{λ ,1− λ},
there exists a finite set F ⊆ I such that |Te j0(i)| < ε

2 for all i ∈ I \F. It is clear that
i1, i2 ∈ F. Moreover, there exists a finite set G⊆ I such that for all i ∈ F, and j ∈ I \G,
we have |Te j(i)| < ε

2 , because F is finite and lim j∈I Te j(i) = 0 for all i ∈ F. Suppose
that j ∈ I \G. Then we have

a1 := Te j0(i1)−Te j(i1) = (λ −1)−Te j(i1) ∈ Im(Te j0 −Te j), (5)

and
a2 := Te j0(i2)−Te j(i2) = λ −Te j(i2) ∈ Im(Te j0 −Te j). (6)

Now, there exist i3, i4 ∈ I with Te j(i3) = λ −1 and Te j(i4) = λ , since minTe j =
λ −1 and maxTe j = λ . It is clear that i3, i4 ∈ I \F. Also we have

∀i ∈ F, |Te j(i)| < ε
2

< min{λ ,1−λ}.

Hence Te j(i) /∈ {λ ,λ −1}, and we also have

a3 := Te j0(i3)−Te j(i3) = Te j0(i3)−λ ∈ Im(Te j0 −Te j), (7)

and
a4 := Te j0(i4)−Te j(i4) = Te j0(i4)−λ ∈ Im(Te j0 −Te j). (8)

Relations (5)–(8) imply a1,a2,a3,a4 ∈ Im(Te j0 −Te j) and furthermore,

a1 = λ −1−Te j(i1) � λ −1+
ε
2

λ − ε
2

� λ −Te j(i2) = a2.

So we have a1 � a2. A similar method implies a3 � a4. Thus

co(Te j0 −Te j) ⊆
[
min

(
λ −1− ε

2
,−λ − ε

2

)
,max

(
λ +

ε
2
,1−λ +

ε
2

)]
(9)
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Now if λ � 1−λ , then the length of the interval[
min

(
λ −1− ε

2
,−λ − ε

2

)
,max

(
λ +

ε
2
,1−λ +

ε
2

)]
,

used in the previous relation, is equal to 2−2λ + ε . So, according to (9) we have

2 = ‖Te j0 −Te j‖d � 2−2λ + ε.

Thus λ � ε
2 , which contradicts the choice ε, since ε was selected such that 0 < ε <

min{λ ,1−λ}. In the case λ � 1−λ , using again (9), we obtain 2 = ‖Te j0 −Te j‖d �
2λ + ε. This case also contradicts the choice of ε. �

In the following theorem, we obtain the structure of diameter preserving isometries
on c0(I).

THEOREM 2.8. Suppose that T : c0(I) → c0(I) is a bounded linear operator.
Then T ∈ Id if and only if one of the following conditions hold.

(i) For each j ∈ I , minTe j = 0 and maxTe j = 1, and for each i ∈ I, 0 �
∑k∈I Tek(i) � 1;
or

(ii) For each j ∈ I, minTe j = −1 and maxTe j = 0, and for each i ∈ I, −1 �
∑k∈I Tek(i) � 0.

Proof. Using Theorem 2.7 for the constant value λ := supTe j, we have λ = 0,
or λ = 1. By replacing −T by T , we may assume that λ = 1. So, infTe j = 0 and
supTe j = 1, for all j ∈ I. Now suppose j0 ∈ I. Since Te j0 ∈ c0(I) and supTe j0 > 0,
the value of maxTe j0 exists and maxTe j0 = supTe j0 = 1.

A similar argument for j1 �= j0, leads to maxTe j1 = 1. Thus there exists i1 ∈ I
with Te j1(i1) = 1. On the other hand 0 � Te j0(i1) � 1. If Te j0(i1) > 0, then

1 < Te j0(i1)+Te j1(i1) � ∑
j∈I+

Te j(i1),

which contradicts to Lemma 2.4. Thus Te j0(i1) = 0, and therefore minTe j0 exists and
is equal to 0. On the other hand,

minTek = 0 � Tek(i) � maxTek = 1.

Thus using Lemma 2.4, again we have

0 � ∑
k∈I

Tek(i) = ∑
k∈I+

Tek(i) � 1.

Conversely, suppose that (i) satisfies and f = ( f j) j∈I ∈ c0(I). For each j0 ∈ I, there is
i0 ∈ I such that Te j0(i0) = 1 because maxTe j0 = 1. So, we can imply that Te j(i0) = 0
for all j �= j0 since ∑ j∈I Te j(i0) = 1, 0 � Te j(i0) � 1, and Te j0(i0) = 1. Therefore

T f (i0) = ∑
j∈I

Te j(i0) f j = Te j0(i0) f j0 = f j0 ,
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which implies Im( f ) ⊆ Im(T f ). Thus

‖ f‖d � ‖T f‖d . (10)

On the other hand, for f ∈ c0(I), inf( f ) � 0 � sup( f ) since I is an infinite set. So, we
have

inf( f ) � inf( f )∑
j∈I

Te j(i) � T f (i) = ∑
j∈I

Te j(i) f j � sup( f )∑
j∈I

Te j(i) � sup( f ).

This implies
‖T f‖d � ‖ f‖d . (11)

From (10) and (11), T is a d-isometry. Now, if condition (ii) holds, then the operator
−T satisfies (i). Therefore, the previous part of this proof shows that −T is a d-
isometry. Then T is also a d-isometry. �

Note that the previous theorem says that any d-isometry T : c0(I)→ c0(I) is either
positive (i.e. T f � 0, for all f � 0) or negative operator (i.e. T f � 0, for all f � 0).

The following remark compares the relation between isometries under the usual
norm on c0(I) and d-isometries.

REMARK 2.9. It can be proved that, the operator T : c0(I) → c0(I) is an isome-
try(in the usual sense), if and only if T satisfies the following conditions.

(i) For each j ∈ I, ‖Te j‖∞ = 1,

(ii) For each i ∈ I,∑ j∈I |Te j(i)| � 1.

Thus according to Theorem 2.8, every d-isometry T : c0(I) → c0(I) is an isometry, but
the converse need not be true in general. For example, if T : c0 → c0, is defined for
each f = ( f1, f2, . . .) ∈ c0 by T ( f ) = (∑∞

n=1
(−1)n

2n fn, f1, f2, . . .) , then T is an isometry
however, T /∈ Id , because ‖Te1‖d = ‖(−1

2 ,1,0,0,0, . . .)‖d = 3
2 �= 1 = ‖e1‖d .

REMARK 2.10. Let I be a finite set with n elements. Lemma 2.4, Theorems 2.7
and 2.8 do not hold. Towards a counterexample for these results we define T : R

2 →R
2

given by the matrix T =
[
1 3
2 2

]
. Note that T satisfies:

‖T f‖d = |(x+3y)− (2x+2y)|= |x− y|= ‖ f‖d,

for each f =
[
x
y

]
∈ R

2, which shows that T ∈ Id .

In fact, an easy computation shows that if n = 1, then every linear map belongs to

Pd and if n = 2, then T ∈Id if and only if T has the matrix form T =
[

a b+ c
a+ c b

]
,

for some a,b,c ∈ R. But for n � 3 without being able to characterize Pd , we give a
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large class of matrices in Pd . In fact, if θ : Rn →R is a linear operator and P : Rn →R
n

is a permutation, then for T : R
n → R

n which is defined by

T f = θ ( f )e+ αP( f ),

we have T ∈ Pd , where e :=

⎡
⎢⎣

1
...
1

⎤
⎥⎦ ∈ R

n and α ∈ R. This claim can be proved easily.

Remark 2.10 shows a significant difference for the diametric majorization pre-
servers when I is finite and infinite. More precisely, we give examples of diametric
majorization preservers, but a complete characterization for these operators remains
open.
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