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Abstract. We study spectra and pseudospectra of certain bounded linear operators on �2(Z) .
The operators are generally non-normal, and their matrix representation has a characteristic off-
diagonal decay. Based on a result of Chandler-Wilde, Chonchaiya and Lindner for tridiagonal
infinite matrices, we demonstrate an efficient algorithm for the computation of upper and lower
bounds on the pseudospectrum of operators that are merely norm limits of band matrices – the so-
called band-dominated operators. After approximation by a band matrix and fixing a parameter
n ∈ N , one looks at n consecutive columns {k + 1, . . . ,k + n} , k ∈ Z , of the corresponding
matrix and computes the smallest singular value of that section via QR factorization. We here
propose a QR factorization by a sequence of Givens rotations in such a way that a large part of
the computation can be reused for the factorization of the next submatrix – when k is replaced
by k + 1 . The computational cost for the next factorization(s) is O(nd) as opposed to a naive
implementation with O(nd2) , where d is the bandwidth. So our algorithm pays off for large
bands, which is attractive when approximating band-dominated operators with a full (i.e. not
banded) matrix.

1. Introduction, notations, and main results

Band-dominated operators. We study bounded linear operators on the space
�2 := �2(Z) of square-summable bi-infinite complex sequences x = (xk)k∈Z with ‖x‖=√

∑k∈Z |xk|2 < ∞ . Each linear operator A on �2 acts via matrix-vector multiplication
with a bi-infinite matrix (ai j)i, j∈Z – and vice versa. We say that A is a band operator
if its matrix (ai j) is banded (i.e. supported on only finitely many diagonals) and has
uniformly bounded entries, so that A is a bounded linear operator. In that case, d :=
max{|i− j| : ai j �= 0} is called the bandwidth of A . Moreover, A is called a band-
dominated operator if it is the limit, in the induced operator norm on �2 , of a sequence
of band operators; in particular it is a bounded operator, too, and its matrix entries decay
with their distance from the main diagonal.

Pseudospectra. Because the spectrum of a non-normal operator A can be highly
unstable under small perturbations of A , one is interested in the so-called ε -pseudo-
spectrum of A , that is,

specεA := {λ ∈ C : ‖(A−λ I)−1‖ > 1/ε} =
⋃

‖T‖<ε
spec(A+T), ε > 0.
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Here we agree upon writing ‖B−1‖= ∞ if B is not invertible. The second equality sign
(see e.g. [30]) shows that specεA measures the sensitivity of specA w.r.t. additive per-
turbations of A of norm < ε . For normal operators A , specεA is the ε -neigbourhoodof
specA ; otherwise it is generally larger (but never smaller). The interest in pseudospec-
tra has been increasing over the last two decades. See [30] for many more reasons to
study pseudospectra and for more references.

The lower norm. As a counterpart to the operator norm ‖A‖ = sup‖x‖=1 ‖Ax‖ ,
we look at the quantity

ν(A) := inf
‖x‖=1

‖Ax‖,

that is sometimes (by abuse of notation) called the lower norm of A . While ‖A‖ is
the largest singular value of A , ν(A) is the smallest – provided maximum/minimum
exist, such as in the case of finite matrices. It is well-known (see e.g. [21, p. 69f]) that
ν(A) > 0 holds iff A is injective and has a closed image; moreover, the equality

‖A−1‖ = 1/min(ν(A),ν(A∗))

holds with 1/0 := ∞ indicating non-invertibility of A . In particular, A is invertible
iff ν(A) and ν(A∗) are both nonzero, in which case they coincide. Together with the
definition of specεA it follows that

specεA = {λ ∈ C : min
(
ν(A−λ I),ν((A−λ I)∗)

)
< ε}. (1)

Approximating the lower norm of band-dominated operators. For x ∈ �2 , we
denote its support by suppx := { j ∈ Z : x j �= 0} , and we say that a bounded set J ⊂ Z

has diameter diamJ := max{|i− j| : i, j ∈ J} . One of the main observations of [11]
(also see [13, §4] and [23, Prop. 6]) is that the lower norm1 of a band-dominated
operator A can be realized, up to a given δ > 0, by a unit element x∈ �2 with bounded
support, say of diameter less than n ∈ N (dependent on δ , of course). So one has

ν(A) � ‖Ax‖ � ν(A)+ δ (2)

for a particular x ∈ �2 with ‖x‖= 1 and diam(suppx) < n . If suppx were known to be
contained in the discrete interval Jn

k := {k +1, . . . ,k +n} with a given k ∈ Z , then the
optimal term ‖Ax‖ in (2) could be practically computed as the lower norm / smallest
singular value of the restriction of A to �2(Jn

k ) . Since diam(suppx) < n , the support
must be contained in some interval Jn

k with k ∈ Z . Unfortunately, this k is in general
not known. It “remains” to look at – and minimize over – all k ∈ Z :

ν(A) � inf
k∈Z

ν(A|�2(Jn
k )) � ν(A)+ δ (3)

If A is a band operator then A|�2(Jn
k ) corresponds to a finite rectangular matrix (contain-

ing columns k +1, . . . ,k +n of the infinite matrix, truncated to their joint support that

1A symmetric result holds for the norm, ‖A‖ , see Proposition 3.4 and inequality (ONL) in [17].
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is finite – due to the band structure), so that the smallest singular value, ν(A|�2(Jn
k )) , can

be computed effectively. However, consideration of all k ∈ Z is, in general, of course
practically impossible – unless the set of all restrictions {A|�2(Jn

k ) : k ∈ Z} is finite, say

of the size s(n) < ∞ . This requires some structural simplicity of the matrix: For ex-
ample, if A is eventually periodic then s(·) is bounded; if A is quasiperiodic then s(·)
grows linearly; if each diagonal of A assumes random values from a discrete alphabet
then s(n) grows exponentially with n , prohibiting the study of large values of n .

It is clear that the size n has to be increased in order to decrease the error δ in (2)
and (3). The analysis in [11] (also see §3 and 4 in [13]) shows, for the particular case
of tridiagonal (bandwidth d = 1) bi-infinite matrices (ai j)i, j∈Z , that δ is of the order
1/n ; more precisely,

δ � 2

(
sup
j∈Z

|a j+1, j|+ sup
j∈Z

|a j−1, j|
)

sin
π

2n+2
∈ O

(
1
n

)
, (4)

The constant turns out to be optimal. We make use of that result by two simple steps of
reduction:

(i) Given an accuracy η > 0, approximate our band-dominated operator A (which
is in general a full matrix) by a band operator B with ‖A−B‖ � η and use the
contractivity of ν(·) :

|ν(A)− ν(B)| � ‖A−B‖� η , as well as |ν(A∗)− ν(B∗)| � ‖A∗ −B∗‖ � η .
(5)

(ii) Use that the matrix of the band operator B is block-tridiagonal (with block size
equal to the band width of B , see Figure 1) and that the results of [11, 13] even
apply to tridiagonal matrices with operator entries – hence to block-tridiagonal
matrices. Precisely, the following block version of (4),

δ � 2

(
sup
j∈Z

‖b j+1, j‖+ sup
j∈Z

‖b j−1, j‖
)

sin
π

2n+2
∈ O

(
1
n

)
, (6)

where each entry bi, j of B is now an operator with norm ‖bi, j‖ , follows from
the second proof of Proposition 6 in [23] combined with the proof of Corollary
4.4 of [13], or see [11].

We discuss further details of steps (i) and (ii) in Section 2.

Approximating pseudospectra of band-dominated operators. From (1) and the
above approximations and bounds on the lower norm we conclude approximations and
bounds on the pseudospectrum:

Inequality (3) and its counterpart for the adjoint, A∗ , lead to

min(ν(A),ν(A∗)) � inf
k∈Z

min
(
ν(A|�2(Jn

k )),ν(A
∗|�2(Jn

k ))
)

� min(ν(A),ν(A∗))+ δ ,
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Figure 1.1: Left: A banded matrix (support shown in gray) is turned into block-tridiagonal form
with blocks of according size. Right: The dotted blocks equally do the job of turning the banded
matrix into block-tridiagonal form. There are b different ways of positioning a b×b grid along
the main diagonal. Two of them are depicted here (solid and dotted lines).

from which we conclude the implications

inf
k∈Z

min
(
ν(A|�2(Jn

k )),ν(A
∗|�2(Jn

k ))
)

< ε ⇒ min(ν(A),ν(A∗)) < ε

⇒ inf
k∈Z

min
(
ν(A|�2(Jn

k )),ν(A
∗|�2(Jn

k ))
)

< ε + δ

for all ε > 0, and consequently

Γn
ε(A) ⊂ specεA ⊂ Γn

ε+δ (A), (7)

where

Γn
ε(A) :=

⋃
k∈Z

{
λ ∈ C : min

(
ν((A−λ I)|�2(Jn

k )),ν((A−λ I)∗|�2(Jn
k ))

)
< ε

}
. (8)

From (7) it follows that specεA ⊂ Γn
ε+δ (A) ⊂ specε+δ A , so that Γn

ε+δ (A) → specεA in
Hausdorff distance when δ → 0 and hence specε+δ A → specεA (Hausdorff, see e.g.
[15]). By (4) and (6), this happens as n → ∞ .

Concerning the approximation step (i) above, by (5), we have the implications

ν(B) < ε −η ⇒ ν(A) < ε ⇒ ν(B) < ε + η ,

and the same holds for the adjoints. Subtracting λ I from A and B and using (1), this
shows that

specε−ηB ⊂ specεA ⊂ specε+ηB, 0 < η < ε, (9)

so that upper and lower bounds on certain pseudospectra of B yield bounds on specεA .
Moreover, the inclusions (9) are as tight as desired (in the Hausdorff distance) by send-
ing η → 0.

Existing results. The probably most natural idea to approximate specεA is to look
at the pseudospectra specεAn of the finite sections An = (ai j)n

i, j=−n of A = (ai j)i, j∈Z
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as n → ∞ . In some rare cases (Toeplitz operators [26, 8], random Jacobi operators
[12]), the sets specεAn indeed converge to specεA w.r.t. the Hausdorff distance – but in
general, the sequence specεAn does not converge at all; its cluster points usually contain
specεA but also further points (see e.g. [29], one speaks of spectral pollution). Even in
a simple selfadjoint example such as A = diag(. . . ,B,B,B, . . .) with B =

(0 1
1 0

)
, one has2

specA = {−1,1} , while specAn repeatedly switches between {−1,1} and {−1,0,1}
as n grows. As an alternative that is somewhere between spectra and pseudospectra,
[19, 28] study so-called (N,ε)-pseudospectra, where 2N -th powers of the resolvent and
of 1/ε are compared to each other. In [5] the lower norms of rectangular submatrices
are suggested for the approximation of the spectrum and the (N,ε)-pseudospectrum.
Needless to say, there is a large amount of literature on the selfadjoint case (see e.g.
[1, 14] and the references therein).

One major problem in approximating Z by the intervals {−n, . . . ,n} is (besides
the potential of spectral pollution) that generally, huge values of n are required to
capture spectral properties of A . (Think of an infinite diagonal matrix with distin-
guished entries in remote locations.) From a computational perspective, such huge
sections {−n, . . . ,n} are too expensive. The approach of [11] (also see §3 and §4 in
[13] and Proposition 6 in [23]) – that is very much in the spirit of Gershgorin and
that we adopt here – replaces {−n, . . . ,n} with n → ∞ by the family of intervals
Jn
k = {k + 1, . . . ,k + n} for all k ∈ Z but with n of moderate size. The price that is

obviously paid is the infinite amount of positions k that one has to look at, so that
a certain structural simplicity of the infinite matrix is required to make the approach
practically feasible. The other major plus of the [11] approach is that it comes with
sharp and explicit bounds (4) and (6) on the accuracy of the approximation (7), while
working for the general non-normal case.

What is new here? The tridiagonal results and the ideas of transferring them to
band-dominated operators via (i) and (ii) are from [11], therefore not new. But there
are two degrees of freedom in the choice of the blocks in step (ii) : Firstly, the size
of the blocks, say b ∈ N , could be any number greater than or equal to the bandwidth
d ∈ N . Secondly, once this size b is fixed, there are b different choices for the position
of the blocks inside the infinite matrix (see Figure 1.1).

We play with that second degree of freedom, arguing that there is usually no best
choice (in terms of sharpness of (7)) of block positioning, and instead we consider all b
possibilities, thereby improving sharpness of the bounds on specεA . (We take the union
of the b different lower bounds and the intersection of the b upper bounds.) Naively im-
plemented, this increases the computational cost by the factor b . However, we present
an algorithm that compensates for this increase by reusing much of the effort that was
put into the computation of ν(A|�2(Jn

k )) for the computation of ν(A|�2(Jn
k+1)

) . This is

possible due to the large overlap between the two matrices A|�2(Jn
k ) and A|�2(Jn

k+1)
. We

cannot see a similar idea to work for the b -sized step from ν(A|�2(Jn
k )) to ν(A|�2(Jn

k+b)
)

in the block matrix, though.
In a nutshell, the smallest singular value of A|�2(Jn

k ) coincides with that of the

2The ε -pseudospectra are the ε -neighbourhoods of the spectra in this selfadjoint example.



1176 M. LINDNER AND T. SCHMIDT

upper triangular matrix3 Rk from the factorization A|�2(Jn
k ) = QkRk with a unitary Qk

that results from a sequence of Givens rotations. The key idea is now to rearrange and
reuse most of these Givens rotations for the next step when k is replaced by k+1. With
this algorithm, the complexity of the computation of ν(A|�2(Jn

k+1)
) = ν(Rk+1) decreases

from O(nd2) to just O(nd) , thereby compensating for the increase by a factor of b≈ d
that was mentioned above. The same recycling idea and the same complexity then also
apply to the computation of ν(A|�2(Jn

k+2)
),ν(A|�2(Jn

k+3)) , etc.

Contents of the paper. In Section 2 we show the details of both reduction steps
(i) and (ii) . The heart of the paper is Section 3, where we present the algorithm for
the computation of ν(A|�2(Jn

k+1)
) from ν(A|�2(Jn

k )) by appropriately reordering Givens
rotations. In Section 4 we illustrate our results in two examples with non-trivial pseu-
dospectra. Moreover, we compare the efficiency of our algorithm with the standard QR
decomposition in each step.

2. From band-dominated to tridiagonal operators

Recall that we call an operator A on �2 band-dominated if it is the limit, in the
operator norm, of a sequence of band operators (which are bounded operators with a
bandedmatrix representation). Let us denote the sets of all band and all band-dominated
operators on �2 by BO and BDO, respectively. We make use of the results from
[11, 13] for tridiagonal operators by two steps of reduction:

2.1. Step (i): From band-dominated to banded

Let A ∈ BDO and η > 0 be given. There are different approaches of constructing
a band operator B with ‖A−B‖� η , leading to (5) and (9):

Case 1. If A is in the so-called Wiener algebra, the problem is simple. To ex-
plain this, let (bi j)i, j∈Z be the matrix representation of some B ∈ BO and let dk :=
(b j+k, j) j∈Z be its k -th diagonal, where k ∈ Z . Then

B = ∑
k∈Z

MdkVk,

where Mf refers to the operator on �2 of entrywise multiplication with a sequence
f ∈ �∞ and Vk is the forward shift on �2 by k positions. (Note that the sum is actually
finite, by B ∈ BO.) It now follows that

‖B‖ =

∥∥∥∥∥∑
k∈Z

MdkVk

∥∥∥∥∥ � ∑
k∈Z

‖Mdk‖‖Vk‖ = ∑
k∈Z

‖dk‖∞ =: �B�. (10)

The new expression � · � indeed defines a norm on BO. The completion of BO with
respect to � · � is the so-called Wiener algebra W . By (10), W is contained in the

3For the computation of the smallest singular value of Rk , one can use an inverse Lanczos method.
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completion of BO w.r.t. ‖ · ‖ , that is BDO. Moreover, (W ,� · �) is a Banach algebra
(see §1.6.8 in [20] or §3.7.3 in [22]).

So if A ∈ W ⊂ BDO and dk refers to its k -th diagonal for all k ∈ Z , then

Bn :=
n

∑
k=−n

MdkVk ∈ BO (11)

is the desired approximation of A if n ∈ N is chosen large enough for

‖A−Bn‖ � �A−Bn� = ∑
|k|>n

‖dk‖∞ � η . (12)

Such an n exists since ∑n∈Z ‖dk‖∞ < ∞ , by A ∈ W .
Case 2. If A ∈ BDO\W , the simple approach (11) of restriction to a finite subset

of diagonals need not lead to a sequence Bn that converges to A in the operator norm.
A simple example is shown in Remark 1.40 of [21]. The example relies on the fact that,
for a continuous 2π -periodic function f on R , the partial sums of the Fourier series
need not converge uniformly to f . This is repaired by looking at Fejer-Cesaro means
instead, and the same trick works for the approximation of band-dominated operators:

Cn :=
B0 + . . .+Bn

n+1
=

n

∑
k=−n

(
1− |k|

n+1

)
MdkVk ∈ BO (13)

with Bn from (11) can be shown to converge to A in the operator norm as n → ∞ , see
e.g. the proof of the implication (e) ⇒ (a) in Theorem 2.1.6 of [25].

Another way to explicitly approximate A ∈ BDO by band operators is shown in
(1.18) of [27].

2.2. Step (ii): From banded to tridiagonal

Now we can assume A ∈ BO. Let d denote its bandwidth. The idea is captured
by Figure 1.1 above: A can be expressed as a block-tridiagonal matrix with block size
b � d . Besides the choice of b , there is another degree of freedom in this identification.
If the blocks are centered on the main diagonal, there are still b different positions at
which to start, see Figure 1.1.

Precisely, each block is of the form⎛
⎜⎝ai+1, j+1 · · · ai+1, j+b

...
...

ai+b, j+1 · · · ai+b, j+b

⎞
⎟⎠ ∈ C

b×b with i, j ∈ c+bZ := {c+bz : z ∈ Z}, (14)

where c ∈ {0, . . . ,b− 1} is this second degree of freedom. This leads to b different
ways (one for each choice of the offset c) of turning A into a block-tridiagonal matrix
with blocks of size b×b .

For the moment, fix one choice of c ∈ {0, . . . ,b−1} . To apply the results on the
block-tridiagonal matrix behind A , we have to adjust the intervals Jn

k := {k+1, . . . ,k+
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n} (of matrix columns under current investigation in (3)) with the blocks. Therefore,
we restrict ourselves to positions k ∈ c + bZ and to interval lengths n = Nb , where
N ∈ N is the number of blocks to be considered in Jn

k .
Now we slightly modify (8) to

Γn,M
ε (A) :=

⋃
k∈M

{
λ ∈ C : min

(
ν((A−λ I)|�2(Jn

k )),ν((A−λ I)∗|�2(Jn
k ))

)
< ε

}
(15)

for any set M ⊂ Z , where our particular interest is in sets of the form M = c + bZ .
Assuming b as given and fixed, we abbreviate Γn,c+bZ

ε (A) =: Γn,c
ε (A) .

Because each offset c∈ {0, . . . ,b−1} yields a tridiagonal representation of A , we
get from (7) that all inclusions

Γn,0
ε (A) ⊂ specεA ⊂ Γn,0

ε+δ (A)
Γn,1

ε (A) ⊂ specεA ⊂ Γn,1
ε+δ (A)

...
Γn,b−1

ε (A) ⊂ specεA ⊂ Γn,b−1
ε+δ (A)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(16)

hold. Here, by evaluating (6) for the block tridiagonal matrix,

δ � 2

(
sup
l∈Z

‖Al+1,l‖+ sup
l∈Z

‖Al−1,l‖
)

sin
π

2N +2
∈ O

(
1
N

)
= O

(
1
n

)
, (17)

where we denote the block (14) by Akl if i = c+bk and j = c+bl with k, l ∈ Z .
Taking unions on the left and intersections on the right of (16), we conclude

Γn,0
ε (A)∪·· ·∪Γn,b−1

ε (A) ⊂ specεA ⊂ Γn,0
ε+δ (A)∩·· ·∩Γn,b−1

ε+δ (A). (18)

In examples one observes that the bound (18) on specεA is sharper than any of (16).

EXAMPLE 2.1. We look at the following 2-periodic bi-infinite matrix with band-
width d = 2:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .
. . . 0 9 4. . . 9 0 2 0

0 2 0 9 4
0 9 0 2

. . .
0 2 0

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .
. . . 0 9 4. . . 9 0 2 0

0 2 0 9 4
0 9 0 2

. . .
0 2 0

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The block size was chosen to be b = d = 2, leading to the two different possibilities of
block positioning (c = 0 and c = 1) shown above. Figure 2.1 below shows a plot of
Γn,0

ε (A) and, for comparison, of Γn,1
ε (A) , as well as Γn,0

ε (A)∪Γn,1
ε (A) for n = 6.

This is why we suggest to look at all (instead of just one) of the inclusions (16).
Of course this improvement in quality of the bound on specεA increases the numerical
costs by a factor of b . The next section shows how to compensate for that.
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Figure 2.1: Regarding Example 2.1, we see the boundaries of the sets Γn,0
ε (A) (dark/red line)

and, for comparison, of Γn,1
ε (A) (light/green line), both for n = 6 and ε = 3,4, . . . ,8 . The color

bar on the right corresponds to the value of ε . The colored areas denote Γn,0
ε (A)∪Γn,1

ε (A) . We
can see that the union, as suggested in (18), gives a better (larger) lower bound than each of the
individual sets. A similar observation can be made for the intersection of upper bounds of the
form Γn,0

ε+δ (A)∩Γn,1
ε+δ (A) .

3. The algorithm

To simplify notation abbreviate, for k ∈ Z,n ∈ N and λ ∈ C ,

Ak
λ := (A−λ I)|�2(Jn

k ) : �2(Jn
k ) → �2(Jn+2d

k−d )
∼= ∼=
Cn Cn+2d

and treat Ak
λ as a finite rectangular matrix. We define A

k
λ := (A− λ I)∗|�2(Jn

k ) analo-
gously.

As has been described in the previous section, we need to approximate ν(Ak
λ ) and

ν(Ak
λ ) for different values λ ∈ C and multiple consecutive values of k . This can be

done by computing the smallest singular values σn(Ak
λ ) and σn(A

k
λ ) which is strongly

related to pseudospectra of rectangular matrices ([33]) and similar computational prob-
lems arise.

If the considered matrices Ak
λ were square, we could compute the Schur decom-

position of Ak
0 – thus transforming Ak

0 into upper rectangular form – while preserving
the shift by λ . Afterwards we could compute σn(Ak

λ ) for multiple values of λ ∈ C

using a bidiagonalization method [9] on (Ak
λ )−1 . In the rectangular case though, no
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shift-preserving method to reduce Ak
0 to a simple form appears to be known and an

inverse iteration is more difficult to implement for rectangular matrices.
We can however use the fact, that for each λ ∈ C we have two sequences (Ak

λ )k

and (Ak
λ )k each of which contains large overlaps between consecutive matrices. We

will introduce an algorithm that takes advantage of this property.
We fix λ ∈ C and n ∈ N and abbreviate Ak := Ak

λ ∈ C(n+2d)×n for k ∈ Z .
Let Ak0+1,Ak0+2, . . . ,Ak0+kmax be a finite sequence of such matrices. W.l.o.g. we

consider k0 = 0. We can describe the overlapping property of these matrices by

Ak
i, j = Ak+1

i−1, j−1, for all

⎧⎪⎪⎨
⎪⎪⎩

1 � k � kmax−1

2 � i � n+2d =: m

2 � j � n.

(19)

Since ν(Ak) = σn(Ak) , we are interested in computing the set

{σn(Ak)}1�k�kmax ,

where σn denotes the smallest singular value, which can be approximated using a QR
decomposition

QkAk = Rk =
(

R̃k

0

)
, with R̃k ∈ C

n×n upper triangular,Qk ∈ C
m×m unitary (20)

and applying an inverse Golub-Kahan-Lanczos-Bidiagonalization method ([2, 16]),
from now on abbreviated as GKLB method, to R̃k (i.e. applying the GKLB method

to (R̃k)−1
). Since this is a unitary transformation, the singular values of Ak and R̃k are

the same. The inverse GKLB method requires solving two linear systems of equations
in each iteration which can be achieved using backward-substitution, since R̃k is upper
triangular.

Note that unlike convention we write QkAk = Rk instead of (Qk)HAk = Rk to
simplify notation. It is possible to compute a QR decomposition such that the banded
structure of Ak is preserved in R̃k , i.e. R̃k has at most 2d + 1 consecutive non-zero
diagonals. Therefore solving a linear system of equations involving R̃k requires only
O(nd) flops. The QR decomposition (20) itself however requires O(nd2) operations
and is therefore the bottleneck of the algorithm for large d .

This bottleneck is addressed in the QH-shift-algorithm which we will develop in
this section. The idea of the algorithm is to use Givens rotations to compute the fac-
torization Q1A1 = H1 , where H1 ∈ Cm×n is an upper Hessenberg-matrix4 with 2d +1
consecutive non-zero diagonals, and then reuse these rotations to factorize A2,A3, . . .
the same way.

Having factorized A1,A2, . . . into Hessenberg form using unitary transformations,
we only need to apply n additional Givens rotations to each matrix to arrive at the QR
decomposition (20). The total effort for each QR decomposition of A2,A3, . . . is only
O(nd) instead of O(nd2) .

4We say a matrix H ∈ Cm×n is an upper Hessenberg-matrix if Hi, j = 0 for all i > j+1
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Preliminaries. We will only use Givens rotations acting on consecutive rows and
define a rotation on the i th and (i+1)st row by the mapping

Gi : D×D → Cm×m

(c,s) → Gi(c,s).

and

Gi(c,s) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i i+1

1 · · · 0 0 · · · 0
...

. . .
...

...
...

i 0 · · · c s · · · 0

i+1 0 · · · −s c · · · 0
...

...
...

. . .
...

0 · · · 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where D := {z ∈ C : |z| � 1} is the closed complex unit disc. Details on the choice of
c,s can be found in standard literature [16, 31]. To simplify notation we will, in most
cases, write Gi ≡ Gi(c,s) , if the choice of c,s is clear from the context. This naturally
leads to the problem of possibly having multiple rotations on the same row, each having
different entries c,s and we hope that it will be clear from the context that these Givens
rotations are not the same.

In the interest of readability we will mainly use the arrow-notation introduced by
Raf Vandebril et al. in [31, 32]:

1 �
2 �

�

3 �
�

4 �
�

5
�

4 3 2 1

(21)

The arrows in (21) each depict a Givens rotation operation, acting on the two rows in
which the arrow is drawn (see axis of ordinates). The order of application of these
rotations is described in the abscissa, i.e. from right to left, so that (21) represents
the product G4G3G2G1 . It is important to note the order of application of the Givens
rotations, since they do not commute in general unless they act on disjoint couples of
rows:

��

��

⎡
⎢⎣
× ×
× ×
× ×
× ×

⎤
⎥⎦ =

��

��

⎡
⎢⎣
× ×
× ×
× ×
× ×

⎤
⎥⎦ , but

��
��

⎡
⎢⎣
× ×
× ×
× ×
× ×

⎤
⎥⎦ �=

�
�

�
�

⎡
⎢⎣
× ×
× ×
× ×
× ×

⎤
⎥⎦ (22)

We say that a product Gi1 ,Gi2 , . . . ,Gil is a descending, respectively ascending, se-
quence of Givens rotations of length l , if ip+1 = ip − 1, respectively ip+1 = ip + 1,
for p = 1, . . . , l−1. (21) is an example of a descending sequence of length 4.
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EXAMPLE 3.1. The following Givens rotations can be written as a product of 3
descending sequences of length 4 or as a product of 4 ascending sequences of length
3.

(G4G3G2G1)(G5G4G3G2)(G6G5G4G3) =

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

=

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

︸ ︷︷ ︸
(∗)

=

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

=(G4G5G6)(G3G4G5)(G2G3G4)(G1G2G3)

Note that the rotations can be written in this compact form since the order of rotations
that are in the same column of (∗) is irrelevant by (22).

We illustrate the algorithm using example matrices with parameters n = 7, d = 2,
i.e. matrices from C11×7 , which is just large enough to visualize the procedure. Most
transformations which are applied in this algorithm are easy to see but technical to
prove, and most proofs have therefore been omitted.

The algorithm is divided into several steps, each representing one matrix from the
sequence {Ak}1�k�kmax .

Step 1: We start the first step by computing a QH factorization of A1 using con-
secutive Givens rotations. The number of subdiagonals5 is 2d , we therefore require

5Where we define the main diagonal as the set {Ak
i,i : 1 � i � n}
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2d−1 sequences of Givens rotations to achieve Hessenberg form:

�
�

�

�
�

�
�

�
�

�
�

�
�

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× 0 0 0 0 0 0
× × 0 0 0 0 0
× × × 0 0 0 0
× × × × 0 0 0
× × × × × 0 0
0 × × × × × 0
0 0 × × × × ×
0 0 0 × × × ×
0 0 0 0 × × ×
0 0 0 0 0 × ×
0 0 0 0 0 0 ×

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× 0 0 0 0 0 0
× × 0 0 0 0 0
× × × 0 0 0 0
× × × × × 0 0
0 × × × × × 0
0 0 × × × × ×
0 0 0 × × × ×
0 0 0 0 × × ×
0 0 0 0 0 × ×
0 0 0 0 0 0 ×
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇓

Q1A1 =

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× 0 0 0 0 0 0
× × 0 0 0 0 0
× × × 0 0 0 0
× × × × 0 0 0
× × × × × 0 0
0 × × × × × 0
0 0 × × × × ×
0 0 0 × × × ×
0 0 0 0 × × ×
0 0 0 0 0 × ×
0 0 0 0 0 0 ×

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× 0 0 0 0 0 0
× × × × × 0 0
0 × × × × × 0
0 0 × × × × ×
0 0 0 × × × ×
0 0 0 0 × × ×
0 0 0 0 0 × ×
0 0 0 0 0 0 ×
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= H1.

(23)

Notice that, since the right hand side is of Hessenberg form, no rotations acting on the
first row are required and the first row of Q1 is the unit vector eT

1 . Since Q1 is unitary
it has the form

Q1 =
(

1 0
0 Q̃1

)
, Q̃1 ∈ C

m−1×m−1 (24)

The computational effort of this step consists of the computation and application of
n(2d−1) Givens rotations. Because of the band structure the number of flops required
is O(nd2) .

We can now easily compute a QR decomposition by applying n additional Givens
rotations to the matrix H1 . This is done in O(nd) flops.

Step 2: Since A1 and A2 overlap in all but one row and column each, we can derive
A2 from A1 by cutting off the first row and column, shifting all values by one entry to
the top left (as in (19)) and add a new row and column at the end. More precisely, let

Cp :=
(

0 Ip−1

1 0

)
:

⎛
⎜⎜⎜⎝

x1
...

xp−1

xp

⎞
⎟⎟⎟⎠ →

⎛
⎜⎜⎜⎝

x2
...

xp

x1

⎞
⎟⎟⎟⎠
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denote the circulant backward shift of size p . Then Â2 := CmA1C−1
n differs from A2

only in the last column (the first n−1 entries in the last row are zero in both matrices)
and satisfies (19). We illustrate this step A1 → Â2 → A2 as follows, where − and +
denote the entries lost and gained respectively:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 0 0 0 0 0 0
− × 0 0 0 0 0
− × × 0 0 0 0
− × × × 0 0 0
− × × × × 0 0
0 × × × × × 0
0 0 × × × × ×
0 0 0 × × × ×
0 0 0 0 × × ×
0 0 0 0 0 × ×
0 0 0 0 0 0 ×

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
=A1

→

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× 0 0 0 0 0 −
× × 0 0 0 0 −
× × × 0 0 0 −
× × × × 0 0 −
× × × × × 0 0
0 × × × × × 0
0 0 × × × × 0
0 0 0 × × × 0
0 0 0 0 × × 0
0 0 0 0 0 × 0
0 0 0 0 0 0 −

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
=Â2

→

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× 0 0 0 0 0 0
× × 0 0 0 0 0
× × × 0 0 0 0
× × × × 0 0 0
× × × × × 0 0
0 × × × × × 0
0 0 × × × × +
0 0 0 × × × +
0 0 0 0 × × +
0 0 0 0 0 × +
0 0 0 0 0 0 +

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
=A2

We apply the same transformation to the factorization Q1A1 = H1 :

Q1A1 = H1 ⇒CmQ1C−1
m︸ ︷︷ ︸

=:Q̂2

CmA1C−1
n︸ ︷︷ ︸

=Â2

= CmH1C−1
n︸ ︷︷ ︸

=:Ĥ2

. (25)

Notice that Q̂2 is again unitary and can be written as

Q̂2 = CmQ1C−1
m = Cm

(
1 0
0 Q̃1

)
C−1

m =
(

Q̃1 0
0 1

)
.

The matrix Q̂2 consists of the same sequences of Givens rotations as before, where all
Givens rotations have been shifted up by one row. We write the factorization (25) as

Q̂2Â2 =
(

Q̃1 0
0 1

)
·

⎛
⎜⎜⎝

| | |
â2

1 · · · â2
n−1 â2

n
| | |
0 · · · 0 â2

n,n

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

| | |
Q̃1â2

1 · · · Q̃1â2
n−1 Q̃1â2

n
| | |
0 · · · 0 â2

n,n

⎞
⎟⎟⎠ = Ĥ2, (26)

where â2
i denotes the i th column of Â2 without the last row. Notice that, by (25), Ĥ2

is again of upper Hessenberg form everywhere except in the last column. We will now
replace Â2 with A2 in (25) and (26) which leads to Q̂2A2 =: H̃2 . As can be seen in
(26), the matrices Ĥ2 and H̃2 only differ in the last column because Â2 and A2 only
differ in the last column. These new values have to be computed by applying Q̂2 to
the last column of A2 . These are the only values which have to be calculated in this
transformation and there is a fill-in of at most 2d−1 non-zero values.

We illustrate this entire procedure as follows, where + denotes the fill-in produced
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by applying Q̂2 to the last column of A2 :

Q1A1 =

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× 0 0 0 0 0 0
× × 0 0 0 0 0
× × × 0 0 0 0
× × × × 0 0 0
× × × × × 0 0
0 × × × × × 0
0 0 × × × × ×
0 0 0 × × × ×
0 0 0 0 × × ×
0 0 0 0 0 × ×
0 0 0 0 0 0 ×

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× 0 0 0 0 0 0
× × × × × 0 0
0 × × × × × 0
0 0 × × × × ×
0 0 0 × × × ×
0 0 0 0 × × ×
0 0 0 0 0 × ×
0 0 0 0 0 0 ×
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= H1

⇓

Q̂2A2 =

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× 0 0 0 0 0 0
× × 0 0 0 0 0
× × × 0 0 0 0
× × × × 0 0 0
× × × × × 0 0
0 × × × × × 0
0 0 × × × × ×
0 0 0 × × × ×
0 0 0 0 × × ×
0 0 0 0 0 × ×
0 0 0 0 0 0 ×

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × × × 0 0 0
× × × × × 0 0
0 × × × × × 0
0 0 × × × × +
0 0 0 × × × +
0 0 0 0 × × +
0 0 0 0 0 × ×
0 0 0 0 0 0 ×
0 0 0 0 0 0 ×
0 0 0 0 0 0 ×
0 0 0 0 0 0 ×

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= H̃2

(27)

We anticipate that in the next step we would like to apply the same shift again. However,
since Q̂2 acts on the first row, the requirement (24) does not hold. If we were to naively
shift all values of Q̂2 again to the top left by one entry and add eT

m in the last row and
column, the resulting matrix Q̂3 would not be unitary. Figuratively speaking we would
cut one Givens-rotation in half, since there can be no rotation acting on the “zero”th
row.6

Therefore we have to remove the Givens rotation acting on the first row in Q̂2 in
the left-most descending sequence, which is marked as gray in (27). This can be done
by applying the inverse rotations. The rotations in this sequence do not commute, since
they are ordered consecutively. Thus we remove the entire sequence and add it again
only this time starting in the second and ending in the (n− 1)st row. This again costs
O(nd) .

Starting with (27) we remove the left-most descending sequence, which results in
a fill-in in the 2nd subdiagonal (+ signs) and can be illustrated as

6It is of course possible to allow Givens rotations acting on non-consecutive rows. However these rotations
are difficult to remove leading to an ever increasing number of rotations.
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�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× 0 0 0 0 0 0
× × 0 0 0 0 0
× × × 0 0 0 0
× × × × 0 0 0
× × × × × 0 0
0 × × × × × 0
0 0 × × × × ×
0 0 0 × × × ×
0 0 0 0 × × ×
0 0 0 0 0 × ×
0 0 0 0 0 0 ×

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× 0 0 0 0 0 0
× × × × 0 0 0
+ × × × × 0 0
0 + × × × × 0
0 0 + × × × ×
0 0 0 + × × ×
0 0 0 0 + × ×
0 0 0 0 0 + ×
0 0 0 0 0 0 ×
0 0 0 0 0 0 ×
0 0 0 0 0 0 ×

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Now we remove the second subdiagonal on the right hand side by adding a descending
sequence of Givens rotations from the left:

� �
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× 0 0 0 0 0 0
× × 0 0 0 0 0
× × × 0 0 0 0
× × × × 0 0 0
× × × × × 0 0
0 × × × × × 0
0 0 × × × × ×
0 0 0 × × × ×
0 0 0 0 × × ×
0 0 0 0 0 × ×
0 0 0 0 0 0 ×

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× 0 0 0 0 0 0
× × × × × 0 0
0 × × × × × 0
0 0 × × × × ×
0 0 0 × × × ×
0 0 0 0 × × ×
0 0 0 0 0 × ×
0 0 0 0 0 0 ×
0 0 0 0 0 0 ×
0 0 0 0 0 0 ×
0 0 0 0 0 0 ×

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (28)

Finally we can reduce the last column of the right hand side thus bringing it into
Hessenberg-form. This can be achieved using an ascending sequence of Givens ro-
tations of length 2d− 1, i.e. we add one Givens rotation to each existing sequence at
the end:

� �
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
︸ ︷︷ ︸

=:Q2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× 0 0 0 0 0 0
× × 0 0 0 0 0
× × × 0 0 0 0
× × × × 0 0 0
× × × × × 0 0
0 × × × × × 0
0 0 × × × × ×
0 0 0 × × × ×
0 0 0 0 × × ×
0 0 0 0 0 × ×
0 0 0 0 0 0 ×

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× 0 0 0 0 0 0
× × × × × 0 0
0 × × × × × 0
0 0 × × × × ×
0 0 0 × × × ×
0 0 0 0 × × ×
0 0 0 0 0 × ×
0 0 0 0 0 0 ×
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
=:H2

(29)

Notice, that Q2 (29) has almost the same structure as Q1 (23) except for two additional
rotations on the second and third row.
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Step 3: We start as we have in the second step by shifting the factorization Q2A2 =
H2 one entry to the top left. Corresponding to (27) we get

Q̂3A3 =

� �
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× 0 0 0 0 0 0
× × 0 0 0 0 0
× × × 0 0 0 0
× × × × 0 0 0
× × × × × 0 0
0 × × × × × 0
0 0 × × × × ×
0 0 0 × × × ×
0 0 0 0 × × ×
0 0 0 0 0 × ×
0 0 0 0 0 0 ×

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × × × 0 0 0
× × × × × 0 0
0 × × × × × 0
0 0 × × × × ×
0 0 0 × × × ×
0 0 0 0 × × ×
0 0 0 0 0 × ×
0 0 0 0 0 0 ×
0 0 0 0 0 0 ×
0 0 0 0 0 0 ×
0 0 0 0 0 0 ×

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= H̃3

Analogous to step 2 we want to remove all Givens rotations acting on the first row so
that we can apply the shift again. This time however we have two descending sequences
starting in the first row. We could of course remove both outer-most sequences of
Givens-rotations and add them again starting in the second row, but in our illustrative
example this would already cost more than simply restarting an entire factorization from
scratch. One may argue that for higher values d this would not be the case. However
when taking a closer look at our sequences of Givens-rotations we can see that if we
continue this procedure we would have 3 rotations acting on the first row when we
arrive at the 4th step and so on, up to 2d−1, which is the total number of descending
sequences. We therefore have to solve this problem another way.

If we apply Theorem 3.2 below to the two outer-most sequences, we would arrive
at
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, (30)

i.e. all but one Givens rotation acting on the first row has been moved to the end of the
outer-most sequence. Note, that when applying Theorem 3.2, the values (c,s) of all
rotations involved will generally change and the application costs O(n) flops for each
rotation that has been removed in the first row.

We can now remove the remaining rotation acting on the first row as we have in
step 2.
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Step 4, . . . ,2d : We repeat the procedure applied in step 3, only this time Theorem
3.2 has to be applied to 3 descending sequences. With each step the number of Givens-
rotations acting on the first row increases by one, therefore the number of descending
sequences to which we apply Theorem 3.2 also increases by one with each step. This
number is however limited by the total number of descending sequences, 2d− 1, and
therefore the effort required by applying Theorem 3.2 is only O(nd) flops.

Step 2d +1, . . . ,kmax : From now on the entire procedure simply repeats itself.

The whole procedure is summarized in Algorithm 1.

Algorithm 1: QH-Shift Algorithm

Input: A sequence of d -banded consecutive matrices {Ak}k=1,...,kmax as in (19)
Output: A sequence of upper triangular matrices {Rk}k=1,...,kmax with

bandwidth d
First step: Compute QH factorization Q1A1 = H1 using 2d−1 sequences of1

Givens rotations as in (23);
Compute QR factorization G1Q1A1 = R1 using one more sequence of Givens2

rotations;
for k = 2, . . . ,kmax do3

Shift factorization Qk−1Ak−1 = Hk−1 → Q̂kAk = H̃k as in (27);4

Move rotations acting on the first row to the left-most sequence as in5

Theorem 3.2;
Remove the last rotation acting on the first row by replacing the left-most6

sequence as in (28);
Bring Ĥk to Hessenberg form by removing 2d−1 entries in the last7

column as in (29);
Compute QR factorization GkQkAk = Rk ;8

end9

The reordering of Givens rotations applied in (30) is described in the following
theorem:

THEOREM 3.2. Let l,s,m ∈ N , l + s � m and let

Q = (G(1)
l G(1)

l−1 · · ·G(1)
1 (G(2)

l+1G
(2)
l · · ·G(2)

1 ) · · · (G(s)
l+s−1G

(s)
l+s−2 · · ·G(s)

1 ) ∈ C
m×m

be a product of s descending sequences of Givens rotations, each starting in the first
row and decreasing in length (from left to right).

Then Q can be described as a product of s sequences of Givens rotations of the
form

Q = (G(1)
l+s−1G

(1)
l+s−2 · · ·G(1)

1 )(G(2)
l+1G

(2)
l · · ·G(2)

2 ))

× (G(3)
l+2G

(3)
l+1 · · ·G(3)

2 ) · · · (G(s)
l+s−1G

(s)
l+s−2 · · ·G(s)

2 )
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Proof. The theorem follows directly from applying the shift-through-lemma of
higher length [31] pairwise s− 1 times to the descending sequences from the right
to the left. �

Restarted QH-Shift.

step

time

1 2d kmax

Figure 3.1: QH-Shift Algorithm without reset: Time per step

As stated before, the number of descending Givens sequences to which Theorem
3.2 is applied in Algorithm 1 grows with each step. Therefore the algorithm is fastest
in the second step and then slows down until it reaches step 2d , as is illustrated in
Figure 3.1. Depending on the time required for the initial QH factorization in step 1
and the time required in the following steps, it may be more efficient to “restart” the
method after step number r (for some r ∈ {2, . . . ,2d} ) in order to take advantage of the
cheap steps with number 2, . . . ,r . This is illustrated in Figure 3.2. The time parameters
required to determine the optimal point r for a restart can be estimated during runtime
(see e.g. Figure 3.3 below).

We note that the QH-Shift algorithm can be interpreted as a successive update
of a QR factorization by deleting the first row and column and appending one row
and column at the end of A . Updating QR factorizations by deleting and appending
rows and columns is analyzed thoroughly in [18] for general dense matrices; efficient
algorithms to implement this are presented. However, deleting the first row in A and
updating both Q and R using the procedure proposed would require more than O(nd)
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step

time

1 kmax

Figure 3.2: QH-Shift Algorithm with one restart after r = 9 steps.

flops. Our algorithm avoids this problem by using the Hessenberg-form and the special
structure of A .

We compare the speed of the QH-shift method, the restarted QH-shift method
and the classic QR decomposition, including the SVD computation using the GKLB
method, for a single λ ∈ C , as can be seen in Figure 3.3.

Figure 3.3: Two plots of the CPU-time that is required for each step (=value of k ) in Algo-
rithm 1 using the restarted QH-shift method (black), the QH-Shift method (dark grey) and, for
comparison, the classical full QR decomposition using Givens rotations (light grey). The total
CPU time is the corresponding sum over all steps – that is the total black, dark or light grey
area, respectively. Comparison of the left (d = 40 ) and right (d = 80 ) image confirms that our
algorithm pays off with increasing bandwidth. The cut-size is N = 20 in both cases, so that
n = 40 ·20 = 800 and n = 80 ·20 = 1600 , respectively. The total CPU times on the left are: 2.2
sec for the restarted QH-Shift (black), 6.1 sec for the non-restarted QH-Shift (dark grey), and
4.6 sec for the classical QR (light grey). The total CPU times on the right are: 14.5 sec for the
restarted QH-Shift, 20.5 sec for the QH-Shift, and 49.0 sec for the classical QR.
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4. Applications

4.1. Laurent operators with local impurities

We start with bi-infinite matrices with constant diagonals, also known as Laurent
operators. Let a be a continuous function on the complex unit circle T , and denote by
(a j) j∈Z the sequence of Fourier coefficients of a so that

a(t) = ∑
j∈Z

a jt
j, t = eiθ ∈ T. (31)

We denote the corresponding bounded linear operator on �2 := �2(Z) (see [8]), as well
as the infinite matrix ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . a0 a−1 a−2 a−3 a−4

. . .
. . . a1 a0 a−1 a−2 a−3

. . .
. . . a2 a1 a0 a−1 a−2

. . .
. . . a3 a2 a1 a0 a−1

. . .
. . . a4 a3 a2 a1 a0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

by L(a) . Via the Fourier transform, the convolution operator L(a) corresponds to
multiplication on L2(T) by the function a from (31), which is referred to as the symbol
of the operator L(a) . In particular, the spectrum of L(a) is the image of T under
the function a . Moreover, Laurent operators are normal and therefore specε(L(a)) =
spec(L(a))+ εD can be explicitly computed. We lose these properties when we add
so-called local impurities, meaning operators E : �2 → �2 with a finitely supported
matrix. In condensed matter physics this corresponds to a local impurity in an otherwise
periodic crystal structure. The resulting operator L(a)+ E is in general non-normal,
and its spectrum and pseudospectra are difficult to approximate (see e.g. [6, 7]). So let
us apply our algorithm.

In this example we consider exponentially decreasing Fourier coefficients ak as
k → ±∞ , so that L(a) is in the Wiener algebra W (see Section 2.1). More precisely,
when approximating L(a) by operators with finite bandwidth, say Ld(a) with band-
width d ∈ N , we can explicitly give upper bounds on the approximation error as in
(12). Here this means

‖L(a)−Ld(a)‖ � �L(a)−Ld(a)� = ∑
|k|>d

|ak| � ηd (32)

for some error ηd > 0. For simplicity, we choose E to be of bandwidth � d , although
impurities with larger support could be treated analogously with an appropriate error
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estimation in (32). The resulting lower and upper bounds on specε(L(a) + E) for a
given bandwidth d and cut-size N can be summed up, using (9) and (18), as follows:

d−1⋃
c=0

Γn,c
ε−ηd

(Ld(a)+E) ⊂ specε(L(a)+E) ⊂
d−1⋂
c=0

Γn,c
ε+ηd+δN

(Ld(A)+E), (33)

where ε > 0 and δN ∈ O( 1
N ) denotes the approximation error introduced in (17). In

order to compute the spectral inclusion sets Γn,c
ε (Ld(a)+E) from (15), we can make

use of the fact that we only need to consider a finite number (growing linearly with n )
of positions k , since L(a)+E is constant along its diagonals as we move away from
the support of E .

We rewrite the pseudospectral sub- and supersets from (33) as

{λ ∈ C : Fl(λ ) < ε −ηd} and (34)

{λ ∈ C : Fu(λ ) < ε + ηd + δN} , (35)

respectively, where

Fl(λ ) := min
c=0,...,d−1

(
min

k∈c+dZ

(
min(ν((A−λ I)|�2(Jn

k )),ν((A−λ I)∗|�2(Jn
k )))

))

Fu(λ ) := max
c=0,...,d−1

(
min

k∈c+dZ

(
min(ν((A−λ I)|�2(Jn

k )),ν((A−λ I)∗|�2(Jn
k )))

))
with A := Ld(a)+E . If we are only interested in specε(A) for a few values ε > 0, then
we can approximate connected components of these sets by determining the boundary
of each set. To that end, we use continuation methods to determine all λ ∈ C which
satisfy

Fl(λ )− (ε −ηd) = 0, (36)

Fu(λ )− (ε + ηd + δn) = 0, (37)

respectively. There have been several approaches to computing the boundary curves
of pseudospectra of finite square matrices using gradient-based methods, see e.g. [10,
4]. However, since Fu and Fl involve several nested minima and maxima of smallest
singular values of rectangular matrices, they are non-smooth, so that these methods are
not well suited to our case.

In [24] a piecewise linear (PL)-continuation method was used to approximate
pseudospectral boundaries of matrices, and this algorithm can be easily modified to
be applied to Fu and Fl as well. The idea is to triangulate the complex plane and
determine all triangles in which the signs of Fu (respectively Fl ) are not equal on all
three vertices. The functions have therefore to be evaluated on these vertices only,
and each function evaluation consists of two applications of the QH-shift method (one
for (A − λ I) and one for (A − λ I)∗ ). We note the difficulty of finding a starting
point, an initial triangle, which can be solved using a coarse grid or a bisection based
method (see [24]). The boundaries can be estimated prior using the coarse upper bound
specε (L(a)+E)⊂ spec(L(a))+ (ε +‖E‖)D .
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We applied this method to a Laurent operator defined by the coefficients

ak :=

⎧⎪⎨
⎪⎩

(
1
2

)k +1.1
(

1
2i

)k
, k > 0

3.1, k = 0(
i
2

)−k
, k < 0

(38)

and an impurity E which is a 10×10 Grcar-matrix that is scaled by a factor of .6 and
shifted by 2.5. We refer to L(a) as “the fish”, motivated by the shape of its spectrum.
The approximation error (32) can be estimated as ηd � 1

2d−2 . The results can be seen
in Figure 4.1. In addition to the upper and lower bounds on specε(L(a)+E) , we see
that the superset does not contain the origin, implying that this particular operator is
invertible.

Figure 4.1: Boundary sets for the impure Laurent operator with symbol (38) and a scaled
10× 10 Grcar-matrix as local impurity. Left: Triangulation of solution curves of (36) and
(37) and spec (L(a)) superimposed as a dotted line; Right: Visualization of the resulting sub-
and superset of specε(L(a) + E) . Dimensions are d = 15 , N = 200 and ε = 0.1 , and the
approximation errors are ηd � 1.2 ·10−4 and δN � 0.0512 . We used a total of 1486 equilateral
triangles of side-length 0.05 for the computations.

4.2. Singular integral operators

Let c and e be continuous functions on T which define Laurent operators L(c)
and L(e) on �2 via the Fourier isomorphism (see Section 4.1 and [8]). In our numerical
example below, we use the “whale” symbol from [8] and our “fish” symbol from (38).
Now we interbreed “whale” and “fish”:

Put S�2 := P−Q on �2 , where P is the orthogonal projection of �2(Z) onto
�2(N0) and Q := I − P . Then S�2 corresponds to the so-called Cauchy singular in-
tegral operator on L2(T) (see e.g. [21, p. 130f]). After composition and addition with
our multiplication operators by c and e on L2(T) , we study the bounded linear integral
operator

Ax(t) := c(t)x(t)+
e(t)
π i

∫
T

x(s)
s− t

ds, t ∈ T (39)
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on L2(T) , where the integral has to be understood in the sense of the Cauchy principal
value. A from (39) can be identified with A�2 on �2(Z) , where

A�2 = L(c)+L(e)S�2 = L(c)(P+Q)+L(e)(P−Q)
= L(c+ e)P+L(c− e)Q = L(a)P+L(b)Q with a := c+ e, b := c− e.

The functions a,b are continuous on T and, analogously to (31), the matrix of A�2 is
of the form

A�2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . a0 a−1 a−2 b−3 b−4 b−5
. . .

. . . a1 a0 a−1 b−2 b−3 b−4
. . .

. . . a2 a1 a0 b−1 b−2 b−3
. . .

. . . a3 a2 a1 b0 b−1 b−2
. . .

. . . a4 a3 a2 b1 b0 b−1
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

As there are only N + 1 distinct submatrices formed by N consecutive columns of
A�2 , our algorithm can be efficiently applied (i.e. only N + 1 positions k have to be
considered; actually some more positions are needed for the adjoint) – similarly to the
situation in Section 4.1.

Figure 4.2: Left: The spectrum of the Laurent operators and the resulting operator A. Right:
Estimations of specε (A) for the three values ε = 0.01,0.5,1.0 (from light to dark grey) using
d = 10 and N = 200 . Each grey area contains the contour line of specε(A) for one of the
three values of ε . The higher we choose N , the smaller and therefore more accurate these areas
become. The lightest grey area is contained in all three pseudospectra and is depicted here to
clarify which parts of the plane (on which side of the contour lines) belong to the pseudospectra
and which do not.

We again define functions Fl and Fu as in (36) and (37) respectively. This time
we want to approximate specε(A�2) for many values of ε and therefore use a simple
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grid-based approach. We determine a finite grid G ⊂ C in the complex plane and then
apply the QH-Shift method twice for every λ ∈ G . The result has been illustrated in
Figure 4.2.
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