ERRATUM TO: ON THE DJL CONJECTURE FOR ORDER 6

Peter J. C. Dickinson

(Communicated by C.-K. Li)

Abstract

In this note an erratum is provided to the article "On the DJL conjecture for order 6" by Naomi Shaked-Monderer, published in Operators and Matrices 11(1), 2017, 71-88. We will demonstrate and correct two errors in this article. The first error is in the statement of a proposition, which omits a certain category of extreme matrices. The second error is in the proof of a lemma. Fortunately the lemma itself is correct, and in this note we will in fact show that a stronger result holds.

This note looks at two errors in the paper [1]. The same terms and notations are used in this note as in the original paper, and so it has been decided not to reintroduce them here.

In Section 1 of this note we look at the first error which is in [1, Proposition 2.11], where a certain category of extremal matrix is omitted. This error is briefly explained and a corrected lemma is given.

In Section 2 we look at the second error in the proof of [1, Lemma 3.3]. Fortunately it is only the proof that is incorrect and not the result. We provide a counter example to an important aspect of the proof, and then go on to prove a stronger result from which [1, Lemma 3.3] directly follows.

1. First error

The first error in [1] is Proposition 2.11. In this it states that if $A \in \mathscr{C O} \mathscr{O}{ }_{n}$ is an extremal copositive matrix with $a_{i i}=0$ for some i, then $a_{i j}=0$ for all j. However this is incorrect as it omits the case of extremal copositive matrices which are nonnegative but not positive semidefinite [2]. A summary of known results on the extremal copositive matrices is provided by [3, Theorem 8.20], and using this summary we get the following corrected form of Proposition 2.11:

Lemma 1. Let $\mathrm{A} \in \mathscr{C} \mathscr{O} \mathscr{P}_{n}$ be an extremal copositive matrix with at least one negative entry.

1. If $a_{i i}=0$, then $a_{i j}=0$ for every $i \neq j$, and $\mathrm{A}(i) \in \mathscr{C O} \mathscr{P}_{n-1}$ is extremal.
2. If $\operatorname{diag}(A)=\mathbf{1}$, then $a_{i j} \in[-1,1]$ for every $i \neq j$.

Mathematics subject classification (2010): 15B48, 15A23.
Keywords and phrases: Copositive matrix, extremal matrix, minimal zeros, erratum.

2. Second error

The second error in [1] is in the proof of Lemma 3.3, which comes from a misinterpretation of the results from [4]. This error is slightly more difficult to demonstrate and correct, and we will break down doing this into two parts. First, in Subsection 2.1, we will give a counter example demonstrating that an aspect of the proof is incorrect. Then, in Subsection 2.2, we will prove a new (stronger) result from which [1, Lemma 3.3] directly follows.

2.1. Counter example

The incorrect claim in the proof of [1, Lemma 3.3] can be summed up as follows:

CLAIM 2. Let $\mathbf{v}, \mathbf{w} \in \mathbb{R}_{+}^{n}$ be minimal zeros of $\mathrm{M} \in \mathscr{C O} \mathscr{O}{ }_{n}$ with supports $\sigma_{\mathbf{v}}, \sigma_{\mathbf{w}}$ respectively, and let \mathbf{x} be a zero of M with support $\sigma_{\mathbf{v}} \cup \sigma_{\mathbf{w}}$. Then $\mathbf{x}=a \mathbf{v}+b \mathbf{w}$ for some $\mathbf{v}, \mathbf{w} \in \mathbb{R}_{+}$.

This incorrect claim comes from a misinterpretation of the following (correct) result:

Lemma 3. ([4, Corollary 3.4], [1, Proposition 2.18]) For $\mathrm{A} \in \mathscr{C} \mathscr{O} \mathscr{P}_{n}$ and a zero of this given by $\mathbf{u} \in \mathbb{R}_{+}^{n}$, there exists minimal zeros $\mathbf{w}_{1}, \ldots, \mathbf{w}_{m} \in \mathbb{R}_{+}^{n}$ such that $\mathbf{u}=$ $\sum_{i=1}^{m} a_{i} \mathbf{w}_{i}$ for some $\mathbf{a} \in \mathbb{R}^{m}$ entrywise strictly positive. Letting σ be the support of \mathbf{u} and σ_{i} the support of \mathbf{w}_{i} for all i we then have $\sigma=\bigcup_{i=1}^{m} \sigma_{i}$.

In spite of this (correct) lemma, and in contradiction to the claim, if a zero support is equal to the union of some minimal zero supports, then the corresponding zero is not necessarily a nonnegative combination of the corresponding minimal zeros. Instead it can be a nonnegative combination of a different set of minimal zeros. We now give an example of this occurring.

EXAMPLE 4. Consider the matrix

$$
\mathrm{M}=\left(\begin{array}{c}
1 \\
1 \\
-1 \\
-1
\end{array}\right)\left(\begin{array}{c}
1 \\
1 \\
-1 \\
-1
\end{array}\right)^{\top} \in \mathscr{C} \mathscr{O} \mathscr{P}_{n}
$$

Up to multiplication by a positive scalar, the minimal zeros of this are given uniquely by the vectors:

$$
\mathbf{t}=\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right), \quad \mathbf{u}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right), \quad \mathbf{v}=\left(\begin{array}{c}
0 \\
1 \\
1 \\
0
\end{array}\right), \quad \mathbf{w}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right)
$$

whose supports are respectively

$$
\sigma_{\mathbf{t}}=\{1,3\}, \quad \sigma_{\mathbf{u}}=\{2,4\}, \quad \sigma_{\mathbf{v}}=\{2,3\}, \quad \sigma_{\mathbf{w}}=\{1,4\}
$$

Now considering the vector $\mathbf{x}=\mathbf{t}+2 \mathbf{u}=\left(\begin{array}{lll}1 & 2 & 1\end{array} 2^{\top}\right.$, we have that \mathbf{x} is a zero of M with support equal to $\sigma_{\mathbf{v}} \cup \sigma_{\mathbf{w}}=\{1,2,3,4\}$, however clearly $\mathbf{x} \neq a \mathbf{v}+b \mathbf{w}$ for all $a, b \in \mathbb{R}$.

2.2. New result

We will now prove the following new result, from which [1, Lemma 3.3] directly follows:

THEOREM 5. Let $\mathrm{M} \in \mathscr{C} \mathscr{O} \mathscr{P}_{n}$ and for $m \geqslant 3$ let $\sigma_{1}, \ldots, \sigma_{m}$ be zero supports of M such that $\sigma_{i, j}:=\sigma_{i} \cup \sigma_{j}$ is also a zero support of M for all $1 \leqslant i<j \leqslant m$. Then $\bigcup_{i=1}^{m} \sigma_{i}$ is a zero support of M .

Proof. For $1 \leqslant i \leqslant m$ let $\mathbf{w}_{i} \in \mathbb{R}_{+}^{n}$ be a zero of M with support σ_{i}.
For all $1 \leqslant i, j \leqslant m$ we have that the support of σ_{i} is contained in the $\sigma_{i, j}$, and thus we trivially have

$$
\begin{equation*}
\mathbf{w}_{i}\left[\sigma_{i, j}\right]^{\top} \mathrm{M}\left[\sigma_{i, j}\right] \mathbf{w}_{i}\left[\sigma_{i, j}\right]=\mathbf{w}_{i}^{\top} \mathrm{M} \mathbf{w}_{i}=0 \tag{1}
\end{equation*}
$$

Therefore, using [3, Theorems 6.3 and 6.4] and the fact that $\sigma_{i, j}$ is a zero support of M , we have that $\mathrm{M}\left[\sigma_{i, j}\right]$ is a positive semidefinite matrix and $\mathrm{M}\left[\sigma_{i, j}\right] \mathbf{w}_{i}\left[\sigma_{i, j}\right]=\mathbf{0}$.

Therefore, for all $1 \leqslant i, j \leqslant m$ we have

$$
\mathbf{w}_{j}^{\top} \mathrm{M} \mathbf{w}_{i}=\mathbf{w}_{j}\left[\sigma_{i, j}\right]^{\top} \mathrm{M}\left[\sigma_{i, j}\right] \mathbf{w}_{i}\left[\sigma_{i, j}\right]=\mathbf{w}_{j}\left[\sigma_{i, j}\right]^{\top} \mathbf{0}=0
$$

Now letting $\mathbf{z}=\sum_{i=1}^{m} \mathbf{w}_{i} \in \mathbb{R}_{+}^{n}$, we have that the support of \mathbf{z} is equal to $\bigcup_{i=1}^{m} \sigma_{i}$ and $\mathbf{z}^{\top} \mathrm{M} \mathbf{z}=\left(\sum_{j=1}^{m} \mathbf{w}_{j}\right)^{\top} \mathrm{M}\left(\sum_{i=1}^{m} \mathbf{w}_{i}\right)=\sum_{i, j=1}^{m} \mathbf{w}_{j}^{\top} \mathrm{M} \mathbf{w}_{i}=0$.

An immediate corollary of this result is [1, Lemma 3.3], which for the sake of completeness is included below:

Corollary 6. ([1, Lemma 3.3]) Let $\mathrm{M} \in \mathscr{C O} \mathscr{P}_{n}$, and let $\sigma_{1}, \sigma_{2}, \sigma_{3}$ be three minimal supports of M , such that $\sigma_{i} \cup \sigma_{j}$ is a zero support for every $1 \leqslant i \neq j \leqslant 3$. Then $\sigma_{1} \cup \sigma_{2} \cup \sigma_{3}$ is a zero support of M .

Acknowledgements. The author would like to gratefully acknowledge support from the Netherlands Organisation for Scientific Research (NWO) through grant no. 613.009.021. The author would also like to thank Naomi Shaked-Monderer, the author of the original paper, for her rapid and gracious response to these errors being found.

REFERENCES

[1] N. Shaked-Monderer, On the DJL conjecture for order 6, Operators and Matrices 11 (1), 71-88, 2017.
[2] M. Hall Jr. and and M. Newman, Copositive and Completely Positive Quadratic Forms, Mathematical Proceedings of the Cambridge Philosophical Society, 59: 329-339, 1963.
[3] P. J. C. Dickinson, The Copositive Cone, the Completely Positive Cone and their Generalisations PhD Thesis, University of Groningen, 2013.
[4] R. Hildebrand, Minimal zeros of copositive matrices, Linear Algebra and Its Applications 459, 154-174, 2014.
(Received June 8, 2017)
Peter J. C. Dickinson
University of Twente
Dep. Appl. Mathematics
P. O. Box 217, 7500 AE Enschede, The Netherlands
e-mail: p.j.c.dickinson@utwente.nl

